Top Banner
1 Component Analysis Methods for Computer Vision and Pattern Recognition Fernando De la Torre Fernando De la Torre Component Analysis for CV & PR F. De la Torre CVPR Easter School-2011 1 Computer Vision and Pattern Recognition Easter School Computer Vision and Pattern Recognition Easter School March 2011 March 2011 Component Analysis for CV & PR Computer Vision & Image Processing Structure from motion. Spectral graph methods for segmentation. Appearance and shape models. Fundamental matrix estimation and calibration. – Compression. – Classification. Dimensionality reduction and visualization. Signal Processing Spectral estimation, system identification (e.g. Kalman filter), sensor array processing (e.g. cocktail problem, eco cancellation), blind source Component Analysis for CV & PR F. De la Torre CVPR Easter School-2011 2 array processing (e.g. cocktail problem, eco cancellation), blind source separation, … Computer Graphics Compression (BRDF), synthesis,… Speech, bioinformatics, combinatorial problems. Computer Vision & Image Processing Structure from motion. Spectral graph methods for segmentation. Appearance and shape models. Structure from motion Component Analysis for CV & PR Fundamental matrix estimation and calibration. – Compression. – Classification. Dimensionality reduction and visualization. Signal Processing Spectral estimation, system identification (e.g. Kalman filter), sensor array processing (e.g. cocktail problem, eco cancellation), blind source Component Analysis for CV & PR F. De la Torre CVPR Easter School-2011 3 array processing (e.g. cocktail problem, eco cancellation), blind source separation, … Computer Graphics Compression (BRDF), synthesis,… Speech, bioinformatics, combinatorial problems. Computer Vision & Image Processing Structure from motion. Spectral graph methods for segmentation. Appearance and shape models. Spectral graph methods for segmentation. Component Analysis for CV & PR Fundamental matrix estimation and calibration. – Compression. – Classification. Dimensionality reduction and visualization. Signal Processing Spectral estimation, system identification (e.g. Kalman filter), sensor array processing (e.g. cocktail problem, eco cancellation), blind source Component Analysis for CV & PR F. De la Torre CVPR Easter School-2011 4 array processing (e.g. cocktail problem, eco cancellation), blind source separation, … Computer Graphics Compression (BRDF), synthesis,… Speech, bioinformatics, combinatorial problems.
36

Component Analysis for CV & PRcvpr11.cecs.anu.edu.au/files/australia_summer_school_4_Fernando.pdf · array processing (e.g. cocktail problem, eco cancellation), blind source Component

Oct 20, 2020

Download

Documents

dariahiddleston
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
  • 1

    Component Analysis Methodsfor Computer Vision and

    Pattern Recognition

    Fernando De la TorreFernando De la Torre

    Component Analysis for CV & PR F. De la Torre CVPR Easter School-2011 1

    Computer Vision and Pattern Recognition Easter School Computer Vision and Pattern Recognition Easter School March 2011March 2011

    Component Analysis for CV & PR • Computer Vision & Image Processing

    – Structure from motion.– Spectral graph methods for segmentation.– Appearance and shape models.– Fundamental matrix estimation and calibration.– Compression.– Classification.– Dimensionality reduction and visualization.

    • Signal Processing– Spectral estimation, system identification (e.g. Kalman filter), sensor

    array processing (e.g. cocktail problem, eco cancellation), blind source

    Component Analysis for CV & PR F. De la Torre CVPR Easter School-2011 2

    array processing (e.g. cocktail problem, eco cancellation), blind source separation, …

    • Computer Graphics– Compression (BRDF), synthesis,…

    • Speech, bioinformatics, combinatorial problems.

    • Computer Vision & Image Processing– Structure from motion.– Spectral graph methods for segmentation.– Appearance and shape models.

    Structure from motion

    Component Analysis for CV & PR

    – Fundamental matrix estimation and calibration.– Compression.– Classification.– Dimensionality reduction and visualization.

    • Signal Processing– Spectral estimation, system identification (e.g. Kalman filter), sensor

    array processing (e.g. cocktail problem, eco cancellation), blind source

    Component Analysis for CV & PR F. De la Torre CVPR Easter School-2011 3

    array processing (e.g. cocktail problem, eco cancellation), blind source separation, …

    • Computer Graphics– Compression (BRDF), synthesis,…

    • Speech, bioinformatics, combinatorial problems.

    • Computer Vision & Image Processing– Structure from motion.– Spectral graph methods for segmentation.– Appearance and shape models.

    Spectral graph methods for segmentation.

    Component Analysis for CV & PR

    – Fundamental matrix estimation and calibration.– Compression.– Classification.– Dimensionality reduction and visualization.

    • Signal Processing– Spectral estimation, system identification (e.g. Kalman filter), sensor

    array processing (e.g. cocktail problem, eco cancellation), blind source

    Component Analysis for CV & PR F. De la Torre CVPR Easter School-2011 4

    array processing (e.g. cocktail problem, eco cancellation), blind source separation, …

    • Computer Graphics– Compression (BRDF), synthesis,…

    • Speech, bioinformatics, combinatorial problems.

  • 2

    • Computer Vision & Image Processing– Structure from motion.– Spectral graph methods for segmentation.– Appearance and shape models.Appearance and shape models

    Component Analysis for CV & PR

    – Fundamental matrix estimation and calibration.– Compression.– Classification.– Dimensionality reduction and visualization.

    • Signal Processing– Spectral estimation, system identification (e.g. Kalman filter), sensor

    array processing (e.g. cocktail problem, eco cancellation), blind source

    pp p

    Component Analysis for CV & PR F. De la Torre CVPR Easter School-2011 5

    array processing (e.g. cocktail problem, eco cancellation), blind source separation, …

    • Computer Graphics– Compression (BRDF), synthesis,…

    • Speech, bioinformatics, combinatorial problems.

    • Computer Vision & Image Processing– Structure from motion.– Spectral graph methods for segmentation.– Appearance and shape models.

    Component Analysis for CV & PR

    – Fundamental matrix estimation and calibration.– Compression.– Classification.– Dimensionality reduction and visualization.

    • Signal Processing– Spectral estimation, system identification (e.g. Kalman filter), sensor

    array processing (e.g. cocktail problem, eco cancellation), blind source

    Dimensionality reduction and visualization

    Component Analysis for CV & PR F. De la Torre CVPR Easter School-2011 6

    array processing (e.g. cocktail problem, eco cancellation), blind source separation, …

    • Computer Graphics– Compression (BRDF), synthesis,…

    • Speech, bioinformatics, combinatorial problems.

    • Computer Vision & Image Processing– Structure from motion.– Spectral graph methods for segmentation.– Appearance and shape models.

    Component Analysis for CV & PR

    – Fundamental matrix estimation and calibration.– Compression.– Classification.– Dimensionality reduction and visualization.

    • Signal Processing– Spectral estimation, system identification (e.g. Kalman filter), sensor

    array processing (e.g. cocktail problem, eco cancellation), blind sourcecocktail problem

    Component Analysis for CV & PR F. De la Torre CVPR Easter School-2011 7

    array processing (e.g. cocktail problem, eco cancellation), blind source separation, …

    • Computer Graphics– Compression (BRDF), synthesis,…

    • Speech, bioinformatics, combinatorial problems.

    cocktail problem

    Independent Component Analysis (ICA)Sound

    Source 1Mixture 1

    Sound Source 2

    Mixture 2

    Output 1

    Output 2ICA

    Component Analysis for CV & PR F. De la Torre CVPR Easter School-2011 8

    Sound Source 3

    Mixture 3

    Output 3

  • 3

    • Computer Vision & Image Processing– Structure from motion.– Spectral graph methods for segmentation.– Appearance and shape models.

    Component Analysis for CV & PR

    – Fundamental matrix estimation and calibration.– Compression.– Classification.– Dimensionality reduction and visualization.

    • Signal Processing– Spectral estimation, system identification (e.g. Kalman filter), sensor

    array processing (e.g. cocktail problem, eco cancellation), blind source

    Component Analysis for CV & PR F. De la Torre CVPR Easter School-2011 9

    array processing (e.g. cocktail problem, eco cancellation), blind source separation, …

    • Computer Graphics– Compression (BRDF), synthesis,…

    • Speech, bioinformatics, combinatorial problems.

    Why CA for CV & PR?• Learn from high dimensional data and few samples.

    – Useful for dimensionality reduction.

    (Everitt,1984)

    • Easy to incorporate – Robustness to noise, missing data, outliers (de la Torre & Black, 2003a)– Invariance to geometric transformations (Frey et al. 99, de la Torre & Black,

    2003b;, Cox et al. 2008)

    – Non-linearities (Kernel methods) (Scholkopf & Smola,2002; Shawe-Taylor & Cristianini,2004)

    – Probabilistic (latent variable models)M lti f t i l (t ) ( & O’ &

    Component Analysis for CV & PR F. De la Torre CVPR Easter School-2011 10

    features samples

    • Efficient methods O( d n<

  • 4

    Generative Models

    • Principal Component Analysis/Singular Value Decomposition

    BCD

    Decomposition1) Robust PCA/SVD, PCA with uncertainty and missing data.2) Parameterized PCA3) Filtered Component Analysis4) Subspace regression5) Kernel PCA

    • K-means and spectral clustering

    Component Analysis for CV & PR F. De la Torre CVPR Easter School-2011 13

    6) Aligned Cluster Analysis (ACA)• Non-Negative Matrix Factorization• Independent Component Analysis.

    Principal Component Analysis (PCA)(Pearson, 1901; Hotelling, 1933;Mardia et al., 1979; Jolliffe, 1986; Diamantaras, 1996)

    Component Analysis for CV & PR F. De la Torre CVPR Easter School-2011 14

    • PCA finds the directions of maximum variation of thedata based on linear correlation.

    • PCA decorrelates the original variables.

    PCA

    Tnn μ1BCdddD ...21

    d=d=pixelspixels

    nn= images= images

    kdnd BD

    kccc ......21

    kbbb 21

    1 dnk μC

    •Assuming 0 mean data the basis B that preserve the maximum

    Component Analysis for CV & PR F. De la Torre CVPR Easter School-2011 15

    Assuming 0 mean data, the basis B that preserve the maximumvariation of the signal is given by the eigenvectors of DDT.

    BΛBDD Td d

    Snap-shot Method & SVD• If d>>n (e.g. images 100*100 vs. 300 samples) no DDT.• DDT and DTD have the same eigenvalues (energy) and

    related eigenvectors (by D). • B is a linear combination of the data! (Sirovich 1987)• B is a linear combination of the data!

    • [α,L]=eig(DTD) B=D α(diag(diag(L))) -0.5ΛDαDDαDDDDαBBΛBDD TTTT

    TVUΣD

    • SVD factorizes the data matrix D as:

    BCD

    TT UUΛDD

    TT VVΛDD

    (Beltrami, 1873; Schmidt, 1907; Golub & Loan, 1989)

    (Sirovich, 1987)

    Component Analysis for CV & PR F. De la Torre CVPR Easter School-2011 16

    SVDPCA

    diagonal

    nnnkkd

    T

    ΣIVVIUUVΣU

    VUΣD

    TT

    TT CCIBBCB

    BCDnkkd

  • 5

    Error Function for PCA

    (Eckardt & Young, 1936; Gabriel & Zamir, 1979; Baldi & Hornik, 1989; Shum et al., 1995; de la Torre & Black, 2003a)

    n

    E BCDBdCB 2)(

    • PCA minimizes the following function:

    • Not unique solution:• To obtain same PCA solution R has to satisfy:

    TT CCIBB

    CRCBRBˆˆˆˆ

    ˆˆ 1

    kk RBCCBRR 1

    Fi

    iiE BCDBcdCB, 1

    21)(

    Component Analysis for CV & PR F. De la Torre CVPR Easter School-2011 17

    • R is computed as a generalized k×k eigenvalue problem.

    CCIBB

    11 BRBRCC TT (de la Torre, 2006)

    PCA/SVD in Computer Vision• PCA/SVD has been applied to:

    – Recognition (eigenfaces:Turk & Pentland, 1991; Sirovich & Kirby, 1987; Leonardis & Bischof, 2000; Gong et al., 2000; McKenna et al., 1997a)

    – Parameterized motion models (Yacoob & Black, 1999; Black et al., 2000; Black, 1999; Black & Jepson, 1998)

    – Appearance/shape models (Cootes & Taylor, 2001; Cootes et al., 1998; Pentland t l 1994 J & P i 1998 C i & S l ff 1999 Bl k & J 1998 Bl &et al., 1994; Jones & Poggio, 1998; Casia & Sclaroff, 1999; Black & Jepson, 1998; Blanz &

    Vetter, 1999; Cootes et al., 1995; McKenna et al., 1997; de la Torre et al., 1998b; de la Torre et al., 1998b)

    – Dynamic appearance models (Soatto et al., 2001; Rao, 1997; Orriols & Binefa, 2001; Gong et al., 2000)

    – Structure from Motion (Tomasi & Kanade, 1992; Bregler et al., 2000; Sturm & Triggs, 1996; Brand, 2001)

    – Illumination based reconstruction (Hayakawa, 1994)– Visual servoing (Murase & Nayar, 1995; Murase & Nayar, 1994)– Visual correspondence (Zhang et al., 1995; Jones & Malik, 1992)

    C i i i

    Component Analysis for CV & PR F. De la Torre CVPR Easter School-2011 18

    – Camera motion estimation (Hartley, 1992; Hartley & Zisserman, 2000)– Image watermarking (Liu & Tan, 2000)– Signal processing (Moonen & de Moor, 1995)– Neural approaches (Oja, 1982; Sanger, 1989; Xu, 1993)– Bilinear models (Tenenbaum & Freeman, 2000; Marimont & Wandell, 1992)– Direct extensions (Welling et al., 2003; Penev & Atick, 1996)

    1-Robust PCA•Two types of outliers:

    Sample outliers Intra-sample outliers(Xu & Yuille., 1995) (de la Torre & Black, 2001b; Skocaj & Leonardis, 2003)

    •Standard PCA solution (noisy data):

    Component Analysis for CV & PR F. De la Torre CVPR Easter School-2011 19

    Robust PCA• Using robust statistics:

    Pixel residual(de la Torre & Black, 2001b; de la Torre & Black, 2003a)

    n

    i

    d

    pp

    k

    jjipjppirpca cbdE

    1 1 1

    ),(),,( μCB

    quadraticoutlieroutlier

    Component Analysis for CV & PR F. De la Torre CVPR Easter School-2011 20

    meanBasis (B) &Coefficients(c)

    robustrobust

  • 6

    Numerical Problems• No closed form solution in terms of an eigen-equation.• Deflation approaches do not hold.

    First eigenvector with

    T

    T11

    uuAA

    uuAA

    222

    1

    '''

    '

    First eigenvector with

    highest eigenvalue.

    Second eigenvector with highest eigenvalue.

    Component Analysis for CV & PR F. De la Torre CVPR Easter School-2011 21

    • In the robust case all the basis have to be computed simultaneously (including the mean).

    How to Optimize it?

    n

    i

    d

    pp

    k

    jjipjppirpca cbdE

    1 1 1

    ),(),,( μCB

    C

    HCC

    BHBB

    rpcac

    nn

    rpcab

    nn

    E

    E

    11

    11

    )(max

    )(max

    2

    2

    Tii

    rpca

    Tii

    rpca

    Ediag

    Ediag

    ccH

    bbH

    c

    b

    • Normalized Gradient descent

    Component Analysis for CV & PR F. De la Torre CVPR Easter School-2011 22

    (Blake & Zisserman, 1987)• Deterministic annealing methods to avoid local minima.

    Example

    Statistical outlier

    • Small region• Short amount of time

    Component Analysis for CV & PR F. De la Torre CVPR Easter School-2011 23

    Robust PCA

    Original PCA RPCA Outliers

    Component Analysis for CV & PR F. De la Torre CVPR Easter School-2011 24

  • 7

    Structure from Motion

    More work on Robust PCA

    Component Analysis for CV & PR F. De la Torre CVPR Easter School-2011 25

    • Robust estimation of coefficients (Black & Jepson, 1998; Leonardis & Bischof, 2000; Ke & Kanade, 2004)

    • Robust estimation of basis and coefficients (Gabriel & Odoro, 1984; Croux & Filzmoser., 1981; Skocaj et al., 2002;Skocaj & Leonardis, 2003; de la Torre & Black, 2001b; de la Torre & Black, 2003a)

    • Other Robust PCA techniques (sample outliers) (Campbell, 1980; Ruymagaart, 1981; Xu & Yuille., 1995)

    More work on Robust PCA

    1- PCA with Uncertainty and Missing Data

    • If weights are separable closed-form solutionTwwW

    d

    i

    n

    j

    k

    ssjisijijF

    cbdwE1 1

    2

    12 )()()( BCDWCB, • Adding uncertainty

    If weights are separable closed form solution.

    productHadamard

    wij

    nd

    0 W

    D

    n

    n

    dd

    dd

    221

    111

    r

    r

    r w

    w

    ...2

    1

    w

    cnccc www 21w ……

    r cwwW

    Component Analysis for CV & PR F. De la Torre CVPR Easter School-2011 26

    • Generalized SVD

    productHadamard

    dnd dd 1

    rdw

    (Greenacre, 1984; Irani & Anandan, 2000;)

    General Case• For arbitrary weights no closed-form solution.

    dpTppTpTp

    n

    iiii

    TiiF

    diag

    diagE1

    2

    ))(()(

    ))(()()()(

    bCdwbCd

    BcdwBcdBCDWCB,

    (Wiberg, 1976 , Torre & Black, 2003a)

    • Alternated least squares algorithms– Slow convergence, easy implementation.

    • Damped Newton Algorithm– Fast convergence.

    B

    CBBCDWCB,

    12

    212

    ][)(

    ||||||||)()(

    EEvec

    E FFF

    p 1

    I

    repeat

    EErepeat

    )(10

    1

    22

    22

    gHxy

    vg

    vH

    (Buchanan & Fitzgibbon., 2005)

    Component Analysis for CV & PR F. De la Torre CVPR Easter School-2011 27

    – H definite positive:

    vvvv

    CB

    v

    22

    22

    )1( ][)()( EE

    vecvec nn

    Iv

    H

    22

    2E econvergencuntil

    FFuntilI

    10;

    )()()(

    yx

    xygHxy

    Related work

    • Iterative (Wiberg, 1976; Shum et al., 1995; Morris & Kanade, 1998; Aans et al.,2002; Guerreiro & Aguiar, 2002)

    • Closed-form (Aguiar & Moura, 1999; Irani & Anandan, 2000)P f t i ti• Power factorization (Hartley & Schaalitzky, 2003)

    • Bayesian estimation (L.Torresani & Bregler, 2004)

    Component Analysis for CV & PR F. De la Torre CVPR Easter School-2011 28

  • 8

    • Learn a subspace invariant to geometric transformations?

    2- Parameterized Component Analysis (PaCA) (de la Torre & Black, 2003b)

    . . .

    • Data has to be geometrically normalized– Tedious manual cropping.

    Component Analysis for CV & PR F. De la Torre CVPR Easter School-2011 29

    Tedious manual cropping.

    – Inaccuracies due to matching ambiguities.

    – Hard to achieve sub-pixel accuracy.

    Error function for PaCA

    )()()(),,( 211

    2

    1caBc)af(x,daCB

    WtppE

    T

    ttt

    Basis ((BB) &) &Motion Regularization

    Component Analysis for CV & PR F. De la Torre CVPR Easter School-2011 30

    coefficients ((cc))(warping)Regularization

    2

    3121 1

    2

    211 WWaΓacΓc

    tat

    T

    t

    L

    ltct

    EigenEye Learning

    Component Analysis for CV & PR F. De la Torre CVPR Easter School-2011 31

    More examples• UPS dataset.

    Random selection of 100 images (16×16 pixels). Incrementally update until preserve 80% of the energy.

    PaK PCAOriginal CongealingPaK-PCAOriginal Congealing

    Component Analysis for CV & PR F. De la Torre CVPR Easter School-2011

  • 9

    Improving facial landmark labeling•Hand label (red dots), PaK-PCA label (yellow)

    Component Analysis for CV & PR F. De la Torre CVPR Easter School-2011

    More on Parameterized CA• Probabilistic model

    – Search scales exponentially with the number of motion parameters (Frey & Jojic, 1999a; Frey & Jojic, 1999b; Williams & Titsias, 2004)

    • Other continuous approaches.

    • Invariant clustering

    • Non-rigid motion

    (Schewitzer, 1999; Rao, 1999; Shashua et al., 2002, Cox et al. 2008)

    (Fitzgibbon & Zisserman, 2003)

    (Baker et al., 2004)

    Component Analysis for CV & PR F. De la Torre CVPR Easter School-2011 34

    • Invariant recognition

    • Invariant support vector machines• Parameterized Kernel Component Analysis (De la Torre, 2008)

    (Black & Jepson, 1998)

    (Avidan, 2001)

    3- Filtered Component Analysis(de la Torre et al.,2007b)

    1) No local minimum in the expected place.

    2) Many local minima

    Component Analysis for CV & PR F. De la Torre CVPR Easter School-2011 35

    2) Many local minima.

    Multi-band representation

    • Texture classification (Nunes et al. ‘03, Freeman, Zalesny & Van Gool, Leung & Malik ‘01, Cula & Dana ‘01, Varma & Zisserman ‘02, De Bonet ’97, Heeger & Bergen ’95, Portilla & Simoncelli ’00, Zhu et al. ‘98)

    • Face recognition (Wang et al ’03 Hie et al ’04 Wiskott et al ’97 Lades et alFace recognition (Wang et al. 03, Hie et al. 04, Wiskott et al. 97, Lades et al. ’93, Wechler et al. ’02, Zhao et al. ‘98)

    • Filters (Gabor, Wavelets, Volterra, Fourier transform, …)Convolution

    Component Analysis for CV & PR F. De la Torre CVPR Easter School-2011 36

  • 10

    Multi-band representation

    1) Global minimum in the

    Component Analysis for CV & PR F. De la Torre CVPR Easter School-2011 37

    1) Global minimum in the expected place.

    2) Distance between global and other minima is larger.

    Filtered Component Analysis (FCA)

    22

    11

    22

    11 ||)(||||)(||),...,(

    2

    fbackgroundj

    n

    j

    F

    ff

    n

    iFE FμdFμdFF

    Filters

    Images

    ConvolutionConvolution

    jivecvecvecvec

    jTi

    iTi

    0)()(1)()(

    FFFF

    No overlap between filters

    No trivial solution (0)

    F n

    T 2

    Component Analysis for CV & PR F. De la Torre CVPR Easter School-2011 38

    f i

    TfPCAE

    1

    22

    1

    ||)(|| μdF

    Robustness of FCA Training: 100 images Testing: 120 images

    Correct global minimum

    Gray FCA (4) Gabor(4)

    41 % 74 % 62%

    Component Analysis for CV & PR F. De la Torre CVPR Easter School-2011 39

    Correct global minimum 41 % 74 % 62%14.59 26 19.683.28 1.4 1.92

    Correct to 2nd minimum distance

    Average number of local minima

    Other work

    • Incremental PCA (de la Torre et al., 1998b; Ross et al., 2004; Brand, 2002; Skocaj & Leonardis, 2003; Champagne & Liu., 1998; A. Levy, 2000)

    Mixture of subspaces• Mixture of subspaces (Vidal et al., 2003; Leonardis et al., 2002)• Changing the margin in SVM (Ashraf and Lucey 2010)• Exponential family PCA (Collins et al. 01)

    Component Analysis for CV & PR F. De la Torre CVPR Easter School-2011 40

  • 11

    4- Subspace Regression: From a Single Image to a Subspace

    • Traditional subspace methods

    • Subspace Regression (Kim et al. 2010)

    Component Analysis for CV & PR F. De la Torre CVPR Easter School-2011 41

    4- Subspace Regression (II)

    frontal(s=0) Subject Subspace

    subj=1

    subj=2

    subj=i

    … … … … ……

    … … … … ……

    ……

    Component Analysis for CV & PR F. De la Torre CVPR Easter School-2011 42

    TestImage(s=0)

    ?Predict a subspace from a single image

    Subspace Regression (II)

    b1 b2 b3 b4 b5

    • Generated samples for each pose

    Optimi ation problem

    1 2 3 4 5

    Component Analysis for CV & PR F. De la Torre CVPR Easter School-2011

    • Optimization problem

    Experiment I

    Component Analysis for CV & PR F. De la Torre CVPR Easter School-2011

    ErrorMeasure

    Baseline I(img -> img)

    Baseline II(img -> subsp)

    SubspaceRegression

    Matlab®’ssubspace()

    1.3507(1.2312)

    1.4088(1.1645)

    1.0860(1.0651)

  • 12

    Experiment II

    • Predicting a Subspace for Illumination– CMU PIE data set– 60 aligned subjects– 19 different illuminations

    Component Analysis for CV & PR F. De la Torre CVPR Easter School-2011

    Subspace tracking

    Component Analysis for CV & PR F. De la Torre CVPR Easter School-201146

    (Template Matching: 42.99)

    IVT-SS: 38.41

    Subspace Regression: 37.98

    5-Kernel PCA

    ),,(),,(),( 32122

    212121 zzzxxxxxx

    • The kernel defines an implicit mapping (usually high dimensional andnon-linear) from input to feature space so the data becomes linearly

    Feature spaceInput space

    Component Analysis for CV & PR F. De la Torre CVPR Easter School-2011 47

    non linear) from input to feature space, so the data becomes linearlyseparable.

    • Computation in the feature space can be costly because it is(usually) high dimensional– The feature space is typically infinite-dimensional!

    Kernel Methods• Suppose (.) is given as follows

    • An inner product in the feature space is

    • So, if we define the kernel function as follows, there is no need to carry out (.) explicitly

    • This use of kernel function to avoid carrying out ( )

    Component Analysis for CV & PR F. De la Torre CVPR Easter School-2011 48

    • This use of kernel function to avoid carrying out (.) explicitly is known as the kernel trick. In any linear algorithm that can be expressed by inner products can be made nonlinear by going to the feature space

  • 13

    Kernel PCA(Scholkopf et al., 1998)

    Component Analysis for CV & PR F. De la Torre CVPR Easter School-2011 49

    Generative Models

    • Principal Component Analysis/Singular Value Decomposition

    BCD

    Decomposition1) Robust PCA/SVD, PCA with uncertainty and missing data.2) Parameterized PCA3) Filtered Component Analysis4) Subspace regression5) Kernel PCA

    • K-means and spectral clustering

    Component Analysis for CV & PR F. De la Torre CVPR Easter School-2011 50

    6) Aligned Cluster Analysis (ACA)• Non-Negative Matrix Factorization• Independent Component Analysis.

    The Clustering Problem• Partition the data set in c-disjoint “clusters” of data points.

    • Number of possible partitions

    Component Analysis for CV & PR F. De la Torre CVPR Easter School-2011

    12

    1

    10421

    )1(1),(

    cn

    iic

    ccnS n

    c

    i

    c

    • NP-hard and approximate algorithms (k-means, hierarchical clustering, mog, …)

    K-means

    FTE ||)(||),(0 MGDGM

    (Ding et al., ‘02, Torre et al ‘06)

    xyD

    TMG xy

    57

    y

    TG

    yD

    M xy

    Component Analysis for CV & PR F. De la Torre CVPR Easter School-2011

    1

    2

    3

    45

    6

    7

    8

    9

    10

    x

  • 14

    Spectral ClusteringAffinity Matrix

    (Dhillon et al., ‘04, Zass & Shashua, 2005; Ding et al., 2005, De la Torre et al ‘06)

    FcTE ||)(||),(0 WMCΓCM

    Component Analysis for CV & PR F. De la Torre CVPR Easter School-2011 53

    Fc0

    )(DΓ )](...)()([ 21 ndddΓ Normalized Cuts (Shi & Malik ’00)Ratio-cuts(Hagen & Kahng ’02)

    6- Aligned Cluster Analysis (ACA)• Mining facial expression

    Component Analysis for CV & PR F. De la Torre CVPR Easter School-2011

    • Mining facial expression for one subject• Mining facial expression for one subject

    Problem

    • Summarization

    • Visualization

    Component Analysis for CV & PR F. De la Torre CVPR Easter School-2011

    • Indexing

    • Mining facial expression for one subjectLooking up Sleeping SmilingLooking forwardWaking up

    Problem

    • Summarization

    • Visualization

    Component Analysis for CV & PR F. De la Torre CVPR Easter School-2011

    • Indexing

  • 15

    • Mining facial expression of one subject

    Problem

    • Summarization

    • Embedding

    I d i

    Component Analysis for CV & PR F. De la Torre CVPR Easter School-2011

    • Indexing

    • Mining facial expression for one subject

    Problem

    • Summarization

    • Embedding

    Component Analysis for CV & PR F. De la Torre CVPR Easter School-2011

    • Indexing

    k-means and kernel k-means2||||),( FJ MGXGM

    (MacQueen 67, Ding et al. 02, Dhillon et al. 04, Zass and Shashua 05, De la Torre 06)

    xyX

    )(G

    MG xy

    24

    57

    y

    G )))((()( 1n GGGGIKG TTtrJM xy

    Component Analysis for CV & PR F. De la Torre CVPR Easter School-2011

    13

    4 6

    8

    9

    10

    x)()( XXK T

    Problem formulation for ACA (I)

    )..[ 21 ssX )..[ 43 ssX )..[ 1 mm ss X

    1 2 3 1Labels (G)

    1s 2s 3s 4sStart and end of the segments (s)

    s 2)(),,( FacaJ MGXGM )..[)..[)..[ 13221 ,...,, mm ssssss XXX

    Component Analysis for CV & PR F. De la Torre CVPR Easter School-2011

  • 16

    Problem formulation for ACA (II)

    2

    )..[)..[)..[ ),...,,(),,( 13221 Fssssssaca mmJ MGXXXSGM

    k

    ccSS

    m

    ici mg ii

    1

    2

    2)..[1

    1X

    Dynamic Time Alignment Kernel (Shimodaira et al. 01)

    X[Si , Si+1) mc

    X [Si , Si+1)

    Component Analysis for CV & PR F. De la Torre CVPR Easter School-2011

    [ i , i+1)

    mc

    Matrix formulation for ACA

    GGGGILKL 1n )(with)( TTkmk trJ

    )()( XXK T

    men

    ts

    GHGGGHILWLK 1n )(with))o(( TTTaca trJ

    ers

    Component Analysis for CV & PR F. De la Torre CVPR Easter School-2011

    samples

    segm

    2371,0 H

    2323RW

    clus

    te

    segments 731,0 G

    Optimizing ACA (forward step)• Efficient Dynamic Programming

    i =23 i =25 i =29

    2.11.81.7

    2.41.21.8

    2.41.91.5

    Component Analysis for CV & PR F. De la Torre CVPR Easter School-2011

    maxw

    Optimizing ACA (backward step)

    )( max2wnO

    Component Analysis for CV & PR F. De la Torre CVPR Easter School-2011

  • 17

    Honey bee dance data (Oh et al. 08)

    Three behaviors:  1‐waggle, 2‐left turn, 3‐right turn

    Seq 1 Seq 2 Seq 3 Seq 4 Seq 5 Seq 6ACA 0.845 0.925 0.600 0.922 0.878 0.928

    Component Analysis for CV & PR F. De la Torre CVPR Easter School-2011

    PS- SLDS (Oh et al 08) 0.759 0.924 0.831 0.934 0.904 0.910

    HDP- VAR(1)-HMM (Fox et al 08)

    0.465 0.441 0.456 0.832 0.932 0.887

    Spectral Clustering 0.698 0.631 0.509 0.671 0.577 0.649

    Facial image features• Active Appearance Models (Baker and Matthews ‘04)

    Appearance

    Upper face

    Shape• Image features

    Component Analysis for CV & PR F. De la Torre CVPR Easter School-2011

    Lower face

    • Cohn-Kanade: 30 people and five different expressions (surprise, joy, sadness, fear, anger)

    Facial event discovery across subjects

    Component Analysis for CV & PR F. De la Torre CVPR Easter School-2011

    • Cohn-Kanade: 30 people and five different expressions (surprise, joy, sadness, fear, anger)

    Facial event discovery across subjects

    Component Analysis for CV & PR F. De la Torre CVPR Easter School-2011

    ACA Spectral Clustering

    (SC)0.87(.05) 0.56(.04)

    • 10 sets of 30 people

  • 18

    Unsupervised facial event discovery

    Component Analysis for CV & PR F. De la Torre CVPR Easter School-2011

    Clustering human motion

    Component Analysis for CV & PR F. De la Torre CVPR Easter School-2011

    clustering of human motion II

    Component Analysis for CV & PR F. De la Torre CVPR Easter School-2011

    Generative Models

    • Principal Component Analysis/Singular Value Decomposition

    BCD

    Decomposition1) Robust PCA/SVD, PCA with uncertainty and missing data.2) Parameterized PCA3) Filtered Component Analysis4) Kernel PCA

    • K-means and spectral clustering5) Aligned Cluster Analysis (ACA)

    Component Analysis for CV & PR F. De la Torre CVPR Easter School-2011 72

    • Non-Negative Matrix Factorization• Independent Component Analysis.

  • 19

    “Intercorrelations among variables are the bane of the

    multivariate researcher’s struggle for meaning”

    Cooley and Lohnes, 1971

    Component Analysis for CV & PR F. De la Torre CVPR Easter School-2011 73

    Part-based Representation

    The firing rates of neurons are never negative. Independent representations.

    NMF & ICA

    Component Analysis for CV & PR F. De la Torre CVPR Easter School-2011 74

    NMF & ICA

    Non-negative Matrix Factorization• Positive factorization.

    • Leads to part-based representation.0||||)( CB,BCDCB, FE

    Component Analysis for CV & PR F. De la Torre CVPR Easter School-2011 75

    Nonnegative Factorization

    ij ijijdF

    2

    0,0)(min BC

    CB Inference:

    (Lee & Seung, 1999;Lee & Seung, 2000)

    j

    ij

    ijijij )(

    )(BVBDB

    CC TT

    Learning:

    Tij

    T

    ijij )()(

    BCCDC

    BB

    Derivatives:

    ijijij

    F )()( CBBCBC

    TT

    TTF )()( DCBCC

    Component Analysis for CV & PR F. De la Torre CVPR Easter School-2011

    • Multiplicative algorithm can be interpreted as diagonally rescaled gradient descent.

    ijTjj )(BCCijij

    ij

    )()( DCBCCB

  • 20

    Generative Models

    • Principal Component Analysis/Singular Value Decomposition

    BCD

    Decomposition1) Robust PCA/SVD, PCA with uncertainty and missing data.2) Parameterized PCA3) Filtered Component Analysis4) Kernel PCA

    • K-means and spectral clustering5) Aligned Cluster Analysis (ACA)

    Component Analysis for CV & PR F. De la Torre CVPR Easter School-2011 77

    • Non-Negative Matrix Factorization• Independent Component Analysis.

    Independent Component Analysis

    • We need more than second order statistics to represent the signal.

    Component Analysis for CV & PR F. De la Torre CVPR Easter School-2011 78

    ICA

    • Look for si that are independent.• PCA finds uncorrelated variables, the independent

    components have non Gaussian distributions

    1 BWWDSCBCD(Hyvrinen et al., 2001)

    components have non Gaussian distributions.• Uncorrelated E(sisj)= E(si)E(sj)• Independent E(g(si)f(sj))= E(g(si))E(f(sj)) for any non-

    linear f,g

    Component Analysis for CV & PR F. De la Torre CVPR Easter School-2011 79

    PCA ICA

    ICA vs PCA

    Component Analysis for CV & PR F. De la Torre CVPR Easter School-2011 80

  • 21

    Many optimization criteria

    • Minimize high order moments: e.g. kurtosiskurt(W) = E{s4} -3(E{s2}) 2

    • Many other information criteria.

    n

    ii

    n

    iii S

    11)(cBcd

    Sparseness (e.g. S=| |)

    (Olhausen & Field, 1996)• Also an error function:

    Component Analysis for CV & PR F. De la Torre CVPR Easter School-2011 81

    (Chennubhotla & Jepson, 2001b; Zou et al., 2005; dAspremont et al., 2004;)

    • Other sparse PCA.

    Basis of natural images

    Component Analysis for CV & PR F. De la Torre CVPR Easter School-2011 82

    Denoising

    Originalimage Noisy Image

    (30% i )(30% noise)

    Denoise(Wi filt ) ICA

    Component Analysis for CV & PR F. De la Torre CVPR Easter School-2011 83

    (Wiener filter) ICA

    Outline• Introduction• Generative models

    – Principal Component Analysis (PCA) and extensions– K-means, spectral clustering and extensions– Non-negative Matrix Factorization (NMF)– Independent Component Analysis (ICA)

    • Discriminative models– Linear Discriminant Analysis (LDA) and extensions– Oriented Component Analysis (OCA)– Canonical Correlation Analysis (CCA) and extensions

    • A unifying view of CA

    Component Analysis for CV & PR F. De la Torre CVPR Easter School-2011 84

    • A unifying view of CA• Standard extensions of linear models

    – Latent variable models.– Tensor factorization

  • 22

    Discriminative Models

    • Linear Discriminant Analysis (LDA)7) Discriminative Cluster Analysis ) y8) Multimodal Oriented Discriminant Analysis

    • Oriented Component Analysis (OCA)• Canonical Correlation Analysis (CCA)

    9) Dynamical Coupled Component Analysis10) Canonical Time Warping

    Component Analysis for CV & PR F. De la Torre CVPR Easter School-2011 85

    Linear Discriminant Analysis (LDA)

    C C

    (Fisher, 1938;Mardia et al., 1979; Bishop, 1995)

    BΛSBSBSBBSBB bb t

    tT

    T

    J ||||)(

    C

    i

    C

    j

    Tjijib

    1 1

    ))(( μμμμS

    n

    i

    Tii

    Tt

    1

    ddDDS

    c C

    Component Analysis for CV & PR F. De la Torre CVPR Easter School-2011 86

    • Optimal linear dimensionality reduction if classes are Gaussian with equal covariance matrix.

    Tji

    c

    j

    C

    ijiw

    i

    )()(1 1

    μdμdS

    Error function for LDA

    FTTT

    LDAE ||)()(||),( 21

    DBAGGGBA

    (de la Torre & Kanade, 2006)

    [d1 d2 ... dn]

    Equations n×c Unknowns d×c

    Ad=pixels

    K=di

    m

    subs

    pace

    knnk

    ijg

    G

    1G1

    }1,0{

    0...01...00...1

    TG

    c=cl

    asse

    s

    n=samples

    Component Analysis for CV & PR F. De la Torre CVPR Easter School-2011

    Equations n×c Unknowns d×c

    • d>>n an UNDETERMINED system of equations! (over-fitting)

    15

    20

    6

    8

    7-Discriminative Cluster Analysis (DCA)(de la Torre & Kanade, 2006)

    FTTT

    DCAE ||)()(||),,( 21

    DBAGGGGBA

    −10

    −5

    0

    5

    10 −10−5

    05

    10

    −20

    −15

    −10

    −5

    0

    5

    10

    15

    YX

    Z

    −8 −6 −4 −2 0 2 4 6 8−10

    −8

    −6

    −4

    −2

    0

    2

    4

    6

    X

    Y

    20PCA+k-means DCA

    Component Analysis for CV & PR F. De la Torre CVPR Easter School-2011 88

    −10−5

    05

    10 −10−5

    05

    10−20

    −15

    −10

    −5

    0

    5

    10

    15

    20

    Y

    X

    Z

    −10

    −5

    0

    5

    10 −10−5

    05

    10

    −20

    −15

    −10

    −5

    0

    5

    10

    15

    20

    YX

    Z

    PCA+k means

  • 23

    Clustering faces20

    40

    60

    80

    100

    TT GGGG 1)(

    20 40 60 80 100 120 140

    120

    140

    0

    0.1

    0.2

    PCA

    PCA DCA

    Component Analysis for CV & PR F. De la Torre CVPR Easter School-2011 89

    −0.4−0.2

    00.2

    0.4

    −0.2

    0

    0.2

    0.4

    0.6−0.2

    −0.1

    DCA vs. PCA+k-means

    1

    1.05

    DCA

    PCA+k−means

    0.75

    0.8

    0.85

    0.9

    0.95

    Acc

    urac

    y

    PCA+k−means

    Component Analysis for CV & PR F. De la Torre CVPR Easter School-2011 90

    5 10 15 20 25 30 35 400.65

    0.7

    0.75

    Number of clusters (classes)

    8- Multimodal Oriented Component Analysis (MODA)

    • How to extend LDA to deal with:– Model class covariances.

    (de la Torre & Kanade, 2005a)

    – Multimodal classes.– Deal efficiently with huge covariance matrices

    (e.g. 100*100).

    Component Analysis for CV & PR F. De la Torre CVPR Easter School-2011 91

    Multimodality

    −5

    0

    5

    10

    −200−100

    0100

    200

    −200

    0

    200−10

    −5

    MODA

    10

    20

    30

    40

    2

    4

    6

    8

    10

    LDA

    Component Analysis for CV & PR F. De la Torre CVPR Easter School-2011 92

    0 10 20 30 40 50 60−40

    −30

    −20

    −10

    0

    10

    0 10 20 30 40 50 60−10

    −8

    −6

    −4

    −2

    0

    2

  • 24

    MODAB that MAXIMIZES the Kullback-Leibler divergence between clusters among l

    classes

    Trj

    ri

    classesri

    rj

    rj

    ri

    ri

    rj

    ri

    rj

    Ttr 1111 )))())(((( 2121211212 BμμΣΣμμΣΣΣΣB

    classes.

    Component Analysis for CV & PR F. De la Torre CVPR Easter School-2011 93

    i

    jiij Cr Cr

    ijjiijiji j1 1 2

    • 1 mode per class and equal covariances equivalent to LDA.

    Optimization

    1

    1 ))()(()(i

    iT

    iTtrJ BABBΣBB

    • Hard optimization problem

    T(B)

    )()()()(

    00 BBBBB

    JTJT

    J(B)

    • Iterative Majorization (Kiers, 1995; Leeuw, 1994)

    Component Analysis for CV & PR F. De la Torre CVPR Easter School-2011 94

    W1

    W0

    Related LDA work

    • Face recognition (Belhumeur et al., 1997;Zhao, 2000;Martinez & Kak, 2003)

    • Small sample problem (Chen et al., 2000; Yu & Yang, 2001)• Mixture (Hastie et al., 1995; Zhu & Martinez, 2006;)• Neural approaches (Gallinari et al., 1991; Lowe & Webb, 1991)• Heteroscedastic discriminant analysis (Kumar &

    Andreou, 1998; Fukunaga, 1990; Mardia et al., 1979; Saon et al., 2000;)

    Component Analysis for CV & PR F. De la Torre CVPR Easter School-2011 95

    Discriminative Models

    • Linear Discriminant Analysis (LDA)7) Discriminative Cluster Analysis ) y8) Multimodal Oriented Discriminant Analysis

    • Oriented Component Analysis (OCA)• Canonical Correlation Analysis (CCA)

    9) Dynamical Coupled Component Analysis10) Canonical Time Warping

    Component Analysis for CV & PR F. De la Torre CVPR Easter School-2011 96

  • 25

    Oriented Component Analysis (OCA)

    T bΣbsignal

    OCAb

    • Generalized eigenvalue problem:

    OCAT

    OCAOCA

    noiseOCA

    signal

    bΣb

    bΣb

    keki bΣbΣ

    noise

    Component Analysis for CV & PR F. De la Torre CVPR Easter School-2011 97

    Generalized eigenvalue problem:• boca is steered by the distribution of noise

    keki

    (de la Torre et al., 2005a)

    Representational Oriented Component Analysis (ROCA)

    kT

    kTk

    ek

    i

    bΣbbΣb

    1

    1

    jTj

    jTj

    e

    i

    bΣbbΣb

    2

    2

    Component Analysis for CV & PR F. De la Torre CVPR Easter School-2011 98

    Discriminative Models

    • Linear Discriminant Analysis (LDA)7) Discriminative Cluster Analysis ) y8) Multimodal Oriented Discriminant Analysis

    • Oriented Component Analysis (OCA)• Canonical Correlation Analysis (CCA)

    9) Dynamical Coupled Component Analysis10) Canonical Time Warping

    Component Analysis for CV & PR F. De la Torre CVPR Easter School-2011 99

    Canonical Correlation Analysis (CCA)

    • Learn relations between multiple data sets? (e.g. find features in one set related to another data set)

    • Given two sets , CCA finds the pair of directions w and w that maximize the correlation

    ndnd and 21 YX

    (Mardia et al., 1979; Borga 98)

    of directions wx and wy that maximize the correlation between the projections (assume zero mean data)

    • Several ways of optimizing it:Ty

    TTy

    Tx

    TTx

    yTT

    x

    YwYwXwXw

    YwXw

    TT w0XXYX0

    Component Analysis for CV & PR F. De la Torre CVPR Easter School-2011 100

    • An stationary point of r is the solution to CCA.

    y

    xddddT

    ddddT w

    ww

    YY00XX

    Β0YXYX0

    A )()()()( 21212121 ,

    ΒwAw

  • 26

    9- Dynamic Coupled Component Analysis (DCCA)

    Data 1Data 1 Data 2Data 2

    (de la Torre & Black, 2001a)

    • Learning the coupling

    Component Analysis for CV & PR F. De la Torre CVPR Easter School-2011 101

    Learning the coupling.• High dimensional data.• Limited training data.

    Solutions?• PCA independently and general mapping

    PCA PCA

    Component Analysis for CV & PR F. De la Torre CVPR Easter School-2011 102

    • Signals dependent signals with small energy can be lost.

    DCCA

    ˆ

    n

    iiicca

    i

    E1

    2

    1ˆˆˆ)ˆ,,,,ˆ,(

    WcBμdμμCABB

    ectio

    nec

    tion

    BReconstructionReconstruction

    Component Analysis for CV & PR F. De la Torre CVPR Easter School-2011 103

    n

    iii

    n

    ii

    Ti

    i

    ii 1

    2

    3121

    2

    2

    1

    )(WW

    AccμdBc DynamicsDynamicsPro

    jePr

    oje

    Dynamic Coupled Component Analysis

    Component Analysis for CV & PR F. De la Torre CVPR Easter School-2011 104

  • 27

    10- Canonical Time Warping (CTW)

    Component Analysis for CV & PR F. De la Torre CVPR Easter School-2011

    Canonical Correlation Analysis (CCA)(Hotelling 1936)

    • CCA minimizes:different #rows, same #columns

    TT

    ndnd yx YX ,

    CCASpatial transformation

    2),(

    F

    Ty

    TxyxccaJ YVXVVV b

    yTT

    y

    xTT

    xts IVYYV

    VXXV

    .

    Component Analysis for CV & PR F. De la Torre CVPR Easter School-2011

    A least-square formulation for DTW

    same #rows, different #columnsyx ndnd YX ,

    2),(

    F

    Ty

    TxyxdtwJ YWXWWW

    Component Analysis for CV & PR F. De la Torre CVPR Easter School-2011

    Canonical Time Warping (CTW)

    Reminder 2

    2

    ),(

    ),(

    F

    Ty

    Txyxdtw

    F

    Ty

    Txyxcca

    J

    J

    YWXWWW

    YVXVVV

    different #rows, different #columns

    spatial transformation

    F

    Ty

    Ty

    Tx

    TxyxyxctwJ YWVXWVVVWW ),,,(

    2

    yyxx ndnd YX ,

    Component Analysis for CV & PR F. De la Torre CVPR Easter School-2011

    temporal alignment

    by

    Ty

    Ty

    Ty

    xT

    xTx

    Txts I

    VYWYWV

    VXWXWV

    ..

  • 28

    Facial expression alignment

    Component Analysis for CV & PR F. De la Torre CVPR Easter School-2011

    Facial expression alignment

    Component Analysis for CV & PR F. De la Torre CVPR Easter School-2011

    Aligning human motion

    Boxing O i bi t

    Component Analysis for CV & PR F. De la Torre CVPR Easter School-2011

    Boxing Opening a cabinet

    Aligning motion capture and video

    Component Analysis for CV & PR F. De la Torre CVPR Easter School-2011

  • 29

    Outline• Introduction• Generative models

    – Principal Component Analysis (PCA) and extensions– K-means, spectral clustering and extensions– Non-negative Matrix Factorization (NMF)– Independent Component Analysis (ICA)

    • Discriminative models– Linear Discriminant Analysis (LDA) and extensions– Oriented Component Analysis (OCA)– Canonical Correlation Analysis (CCA) and extensions

    • A unifying view of CA

    Component Analysis for CV & PR F. De la Torre CVPR Easter School-2011 113

    • A unifying view of CA• Standard extensions of linear models

    – Latent variable models.– Tensor factorization

    The fundamental equation of CA

    FTE ||)(||),(0 WBAWBA

    Given two datasets : nxnd and XD

    CC

    FcrE ||)(||),(0 WBAWBA

    Weightsfor rows

    Weightsfor columns

    Regressionmatrices XD )()(

    C

    Component Analysis for CV & PR F. De la Torre CVPR Easter School-2011

    AB

    Properties of the cost function• E0(A,B) has a unique global minimum (Baldi and Hornik-89).

    • Closed form solutions for A and B are:

    )()()( 22120 AWWWAAWAA TrTTTT ccctrE

    ))(()()( 221222120 BWWWWWBBWBB TTTTTtrE

    Component Analysis for CV & PR F. De la Torre CVPR Easter School-2011

    ))(()()(0 BWWWWWBBWBB rcccrrtrE

    Principal Component Analysis (PCA)

    • PCA finds the directionsof maximum variation ofthe data based on linear

    (Pearson, 1901; Hotelling, 1933;Mardia et al., 1979; Jolliffe, 1986; Diamantaras, 1996)

    the data based on linearcorrelation.

    • Kernel PCA finds the

    Component Analysis for CV & PR F. De la Torre CVPR Easter School-2011

    directions of maximumvariation of the data inthe feature space.

    ),,(),,(),( 32122

    212121 zzzxxxxxx

  • 30

    PCA-Kernel PCA

    FTE ||)(||),(0 WBAWBA

    • Error function for KPCA: (Eckardt & Young, 1936; Gabriel & Zamir, 1979; Baldi & Hornik, 1989; Shum et al., 1995; de la Torre & Black, 2003a)

    • The primal problem:

    FcrE ||)(||),(0 WBAWBA F

    TkpcaE ||)(||),( BADBA

    )(D

    )()()( 1 BDDBBBB TTTkpca trE

    Component Analysis for CV & PR F. De la Torre CVPR Easter School-2011

    ))()(()()( 1 ADDAAAA TTTkpca trE

    )()()(kpca• The dual problem:

    Linear Discriminant Analysis (LDA)(Fisher, 1938;Mardia et al., 1979; Bishop, 1995)

    C

    i

    C

    j

    Tjijib

    1 1))(( μμμμS

    n

    BΛSBSBSBBSBB bb tTtTtrJ )()()( 1

    Component Analysis for CV & PR F. De la Torre CVPR Easter School-2011

    • Optimal linear dimensionality reduction if classes are Gaussian with equal covariance matrix.

    n

    i

    Tii

    Tt

    1

    ddDDS

    Canonical Correlation Analysis (CCA)

    • Given two sets , CCA finds the pair of directions wx and wy that maximize the correlation between the projections (assume zero mean data)

    ndnd and 21 DX

    (Fisher 36;Mardia et al., 1979;)

    between the projections (assume zero mean data)

    Td

    Td

    Tx

    TTx

    dTT

    x

    DwDwXwXwDwXw

    T

    Component Analysis for CV & PR F. De la Torre CVPR Easter School-2011

    FcT

    rE ||)(||),(0 WBAWBA TTE ||)()(||)( 2

    1

    XBADDDBA

    Canonical Correlation Analysis (CCA)

    FTT

    CCAE ||)()(||),( 2 XBADDDBA

    0...01...00...1

    TG

    c=cl

    asse

    s

    n=samples

    Component Analysis for CV & PR F. De la Torre CVPR Easter School-2011

    • CCA is the same as LDA changing the label matrix by a new set X

  • 31

    K-means

    FcT

    rE ||)(||),(0 WBADWBA (Ding et al., ‘02, Torre et al ‘06)

    xyD

    TBA xy

    57

    y

    TA

    yD

    B xy

    Component Analysis for CV & PR F. De la Torre CVPR Easter School-2011

    1

    2

    3

    45

    6

    7

    8

    9

    10

    x

    Normalized cuts

    FcT

    rE ||)(||),(0 WBAΓWBA

    (Dhillon et al., ‘04, Zass & Shashua, 2005; Ding et al., 2005, De la Torre et al ‘06)

    )(DΓ )](...)()([ 21 ndddΓ

    Affinity Matrix

    Normalized Cuts (Shi & Malik ’00)Ratio-cuts(Hagen & Kahng ’02)

    Component Analysis for CV & PR F. De la Torre CVPR Easter School-2011

    Other Connections

    • The LS-KRRR (E0) is also the generative model for:– Laplacian Eigenmaps, Locality Preserving projections, MDS,

    Partial least-squaresPartial least squares, ….

    • Benefits of LS framework:– Common framework to understand difference and communalities

    between different CA methods (e.g. KPCA, KLDA, KCCA, Ncuts)– Better understanding of normalization factors and

    generalizations– Efficient numerical optimization less than θ(n3) or θ(d3), where n

    Component Analysis for CV & PR F. De la Torre CVPR Easter School-2011

    p ( ) ( )is number of samples and d dimensions

    Outline• Introduction• Generative models

    – Principal Component Analysis (PCA).– Non-negative Matrix Factorization (NMF).– Independent Component Analysis (ICA).

    • Discriminative models– Linear Discriminant Analysis (LDA).– Oriented Component Analysis (OCA).– Canonical Correlation Analysis (CCA).

    • A unifying view of CASt d d t i f li d l

    Component Analysis for CV & PR F. De la Torre CVPR Easter School-2011 124

    • Standard extensions of linear models– Latent variable models.– Tensor factorization

  • 32

    Latent Variable Models

    Component Analysis for CV & PR F. De la Torre CVPR Easter School-2011 125

    Factor Analysis• A Gaussian distribution on the coefficients and noise is

    added to PCA Factor Analysis.

    k NpNp BcμdBcdI0,ccηBcμd

    ),|(),|()|()(

    (Mardia et al., 1979)

    • Inference (Roweis & Ghahramani, 1999;Tipping & Bishop, 1999a)

    TT

    d

    k

    E

    diagNppp

    BBμdμdd

    0,cημ,

    )))((()cov(

    ),...,,()|()(),|(),|()|()(

    21

    ),|()( Vmcd|c Np

    ),( dcp Jointly Gaussian

    Component Analysis for CV & PR F. De la Torre CVPR Easter School-2011 126

    11

    1

    )()()(

    ),|()(

    BBIVμdBBBm

    |

    T

    TT

    p

    PCA reconstruction low error.FA high reconstruction error (low likelihood).

    Ppca• If PPCA.• If is equivalent to PCA. TTTT BBBBBB 11 )()(0

    dTE Iηη )(

    0

    • Probabilistic visual learning (Moghaddam & Pentland, 1997;)

    2)(

    2)(

    1

    21

    2

    21

    21

    2

    )()()(21

    21

    2

    )()(21

    )2()2()2()2()()()(

    2

    1

    211

    kdk

    ii

    d

    c

    ddeeeedppp

    k

    i i

    iTT

    d

    μdIBBμdμdμd T

    ccc|dd

    iT

    i dBc

    Component Analysis for CV & PR F. De la Torre CVPR Easter School-2011 127

    More on PPCA

    • Tracking (Yang et al 1999; Yang et al 2000a; Lee et al 2005; de la Torre et(Tipping & Bishop, 1999b; Black et al., 1998; Jebara et al., 1998)

    • Extension to mixtures of Ppca (mixture of subspaces).

    Tracking (Yang et al., 1999; Yang et al., 2000a; Lee et al., 2005; de la Torre et al., 2000b)

    • Recognition/Detection (Moghaddam et al., 2000; Shakhnarovich & Moghaddam, 2004; Everingham & Zisserman, 2006)

    • PCA for the exponential family (collins et al., 2001)

    Component Analysis for CV & PR F. De la Torre CVPR Easter School-2011 128

  • 33

    Tensor Factorization

    Component Analysis for CV & PR F. De la Torre CVPR Easter School-2011 129

    Tensor faces(Vasilescu & Terzopoulos, 2002; Vasilescu & Terzopoulos, 2003)

    people

    expressions

    Component Analysis for CV & PR F. De la Torre CVPR Easter School-2011 130

    viewsilluminations

    Eigenfaces• Facial images (identity change)

    • Eigenfaces bases vectors capture the variability in facial appearance (do not decouple pose, illumination, …)

    Component Analysis for CV & PR F. De la Torre CVPR Easter School-2011 131

    Data Organization• Linear/PCA: Data Matrix

    – Rpixels x images

    – a matrix of image vectorsD

    Pixe

    ls

    ImagesD

    • Multilinear: Data Tensor– Rpeople x views x illums x express x pixels

    – N-dimensional matrix

    Views

    D

    D

    Component Analysis for CV & PR F. De la Torre CVPR Easter School-2011 132

    N dimensional matrix– 28 people, 45 images/person– 5 views, 3 illuminations,

    3 expressions per personexilvpp ,,,iIl

    lum

    inat

    ions

  • 34

    N-Mode SVD Algorithm

    N = 3

    pixelsxexpressxillums.xviews xpeoplex 51 UUUUU . ZD 432

    Component Analysis for CV & PR F. De la Torre CVPR Easter School-2011 133

    PCA:

    TensorFaces:

    Component Analysis for CV & PR F. De la Torre CVPR Easter School-2011 134

    Strategic Data Compression = Perceptual Quality

    • TensorFaces data reduction in illumination space primarily degrades illumination effects (cast shadows, highlights)

    • PCA has lower mean square error but higher perceptual errorTensorFaces

    Mean Sq. Err. = 409.153 illum + 11 people param.

    33 basis vectors

    PCA

    Mean Sq. Err. = 85.7533 parameters

    33 basis vectors

    Original

    176 basis vectors

    TensorFaces

    6 illum + 11 people param.66 basis vectors

    • PCA has lower mean square error but higher perceptual error

    Component Analysis for CV & PR F. De la Torre CVPR Easter School-2011 135

    Acknowledgments• The content of some of the slides has been taken from previous

    presentations/papers of:– Ales Leonardis.– Horst BischofHorst Bischof.– Michael Black.– Rene Vidal.– Anat Levin.– Aleix Martinez.– Juha Karhunen.– Andrew Fitzgibbon.– Daniel Lee.– Chris Ding.

    Component Analysis for CV & PR F. De la Torre CVPR Easter School-2011 136

    – M. Alex Vasilescu.– Sam Roweis.– Daoqiang Zhang.– Ammon Shashua.

  • 35

    CA

    Thanks

    Component Analysis for CV & PR F. De la Torre CVPR Easter School-2011 137

    Bibliography

    Component Analysis for CV & PR F. De la Torre CVPR Easter School-2011 138

    Component Analysis for CV & PR F. De la Torre CVPR Easter School-2011 139 Component Analysis for CV & PR F. De la Torre CVPR Easter School-2011 140

  • 36

    Component Analysis for CV & PR F. De la Torre CVPR Easter School-2011 141 Component Analysis for CV & PR F. De la Torre CVPR Easter School-2011 142

    Component Analysis for CV & PR F. De la Torre CVPR Easter School-2011 143

    Bibliography

    Zhou F., De la Torre F. and Hodgins J. (2008) "Aligned Cluster Analysis for Temporal Segmentation of Human Motion“ IEEE Conference on Automatic Face and Gestures Recognition, September, 2008.

    De la Torre, F. and Nguyen, M. (2008) “Parameterized Kernel Principal Component Analysis: Theory and Applications to Supervised and Unsupervised Image Alignment“ IEEE Conference on Computer Vision and Pattern Recognition, June, 2008.

    Component Analysis for CV & PR F. De la Torre CVPR Easter School-2011 144