Top Banner
1 How Minds Work Neurobiological Nonlinear Complex Systems Stan Franklin Computer Science Division & Institute for Intelligent Systems The University of Memphis
22

Complex Systems - brains-minds-media.org › ... › tutorial › pdf › htmw_bmm_… · 1 How Minds Work Neurobiological Non linear Complex Systems Stan Franklin Computer Science

Jun 29, 2020

Download

Documents

dariahiddleston
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Complex Systems - brains-minds-media.org › ... › tutorial › pdf › htmw_bmm_… · 1 How Minds Work Neurobiological Non linear Complex Systems Stan Franklin Computer Science

How Minds Work Neurobiological Non­linear Complex Systems 

Stan Franklin Computer Science Division & Institute for Intelligent Systems The University of Memphis

Page 2: Complex Systems - brains-minds-media.org › ... › tutorial › pdf › htmw_bmm_… · 1 How Minds Work Neurobiological Non linear Complex Systems Stan Franklin Computer Science

Neurobiological Non­linear Complex Systems  2 

Systems •  Undefined term •  Examples: solar system, automobile, weather system, desktop computer, nervous system, chair 

•  Systems often composed of parts or subsystems 

•  Subsystems generate the behavior of the system

Page 3: Complex Systems - brains-minds-media.org › ... › tutorial › pdf › htmw_bmm_… · 1 How Minds Work Neurobiological Non linear Complex Systems Stan Franklin Computer Science

Neurobiological Non­linear Complex Systems  3 

Dynamical System 

•  X a set, called the state space •  Each point x ∈ X is a state of the system •  A state is a snapshot of the system’s condition at some point in time 

•  T:X—>X the system’s global dynamics •  T(x) is the next state following x

Page 4: Complex Systems - brains-minds-media.org › ... › tutorial › pdf › htmw_bmm_… · 1 How Minds Work Neurobiological Non linear Complex Systems Stan Franklin Computer Science

Neurobiological Non­linear Complex Systems  4 

Itinerary x 0  the state at time 0 T(x 0 ) = x 1 state at time 1 T(x 1 ) = x 2 state at time 2 …T(x n ) = x n+1 The sequence x 0, x 1, x 2, … x n … 

Is called an itinerary 

Dynamical systems theory studies the long range behavior of itineraries 

Does it – Stabilize (fixed point)? – Endlessly repeat (periodic)? 

– Go wild (chaotic)?

Page 5: Complex Systems - brains-minds-media.org › ... › tutorial › pdf › htmw_bmm_… · 1 How Minds Work Neurobiological Non linear Complex Systems Stan Franklin Computer Science

Neurobiological Non­linear Complex Systems  5 

One Dimensional Example 

•  X the set of digits {0,1,2,3,4,5,6,7,8,9} 

•  Itinerary an infinite decimal between 0 and 1 

•  .1212121212… an itinerary with x 0 = 1, x 1 = 2, x 2 = 1, etc.

Page 6: Complex Systems - brains-minds-media.org › ... › tutorial › pdf › htmw_bmm_… · 1 How Minds Work Neurobiological Non linear Complex Systems Stan Franklin Computer Science

Neurobiological Non­linear Complex Systems  6 

Example Itineraries •  .3333333… stabilizes (converges to a fixed point 3) 

•  .987654321111111… stabilizes after a transient 

•  .123412341234… oscillates with period 4 •  .654321212121… oscillates after a transient

Page 7: Complex Systems - brains-minds-media.org › ... › tutorial › pdf › htmw_bmm_… · 1 How Minds Work Neurobiological Non linear Complex Systems Stan Franklin Computer Science

Neurobiological Non­linear Complex Systems  7 

Chaotic Itinerary 

•  .41421256... (√2 ­ 1) chaotic itinerary •  Deterministic (in this case algorithmic) •  Inherently unpredictable •  Sensitive dependence on initial conditions

Page 8: Complex Systems - brains-minds-media.org › ... › tutorial › pdf › htmw_bmm_… · 1 How Minds Work Neurobiological Non linear Complex Systems Stan Franklin Computer Science

Neurobiological Non­linear Complex Systems  8 

Long­term Behavior of Itineraries 

•  An itinerary can – Converge to a fixed point (stabilize) – Be periodic (oscillate) – Be chaotic (unpredictable) 

•  Attractors – itineraries of states close to them converge to them 

•  Basin of attraction  – set of initial states whose itineraries converge to an attractor

Page 9: Complex Systems - brains-minds-media.org › ... › tutorial › pdf › htmw_bmm_… · 1 How Minds Work Neurobiological Non linear Complex Systems Stan Franklin Computer Science

Neurobiological Non­linear Complex Systems  9 

One­dimensional dynamical system 

State space X = real numbers & ∞

Global Dynamics T(x) = x 2 

Itineraries 0,0,0,0,… fixed point 1,1,1,1,… fixed point 2,4,8,16, … converges 

to ∞ .5, .25,.125 … converges 

to 0 ­2,4,8,16, … converges 

to ∞

Page 10: Complex Systems - brains-minds-media.org › ... › tutorial › pdf › htmw_bmm_… · 1 How Minds Work Neurobiological Non linear Complex Systems Stan Franklin Computer Science

Neurobiological Non­linear Complex Systems  10 

Basins of attraction 

. . . 

. . 

­1 

   

X = reals plus    T = squaring function 

point repellor 

point attractor 

point attractor 

Basin of   0   1    

Page 11: Complex Systems - brains-minds-media.org › ... › tutorial › pdf › htmw_bmm_… · 1 How Minds Work Neurobiological Non linear Complex Systems Stan Franklin Computer Science

Neurobiological Non­linear Complex Systems  11 

Continuous vs Discrete •  Discrete dynamical system, discrete time steps, x(t + 1) = T(x(t)) 

•  Continuous dynamical system, continuous time, update continuously via solutions to differential equations 

•  Either can be approximated by the other

Page 12: Complex Systems - brains-minds-media.org › ... › tutorial › pdf › htmw_bmm_… · 1 How Minds Work Neurobiological Non linear Complex Systems Stan Franklin Computer Science

Neurobiological Non­linear Complex Systems  12 

Vector Field •  Vector field – vector at each state specifies the global dynamics 

•  Vector gives direction and velocity of the instantaneous movement of that state 

•  Trajectory instead of itinerary

Page 13: Complex Systems - brains-minds-media.org › ... › tutorial › pdf › htmw_bmm_… · 1 How Minds Work Neurobiological Non linear Complex Systems Stan Franklin Computer Science

Neurobiological Non­linear Complex Systems  13 

Limit Cycle 

•  Limit cycle attractor denoted by heavy line •  Trajectory of any state ends up on the limit cycle, or approaching it arbitrarily closely 

•  Basin of attraction the whole space •  Continuous version of a periodic attractor

Page 14: Complex Systems - brains-minds-media.org › ... › tutorial › pdf › htmw_bmm_… · 1 How Minds Work Neurobiological Non linear Complex Systems Stan Franklin Computer Science

Neurobiological Non­linear Complex Systems  14 

Olfactory Perception 

•  Particular to a certain sensory modality, for example, olfaction 

•  Distinguish between the smell of a carrot and the smell of a fox 

•  Of critical importance to a rabbit •  How is it done?

Page 15: Complex Systems - brains-minds-media.org › ... › tutorial › pdf › htmw_bmm_… · 1 How Minds Work Neurobiological Non linear Complex Systems Stan Franklin Computer Science

Neurobiological Non­linear Complex Systems  15 

Anatomy of olfaction 

Receptors 

Bulb 

Cortex 

⌦ 

Limbic & motor systems  ⌦

Page 16: Complex Systems - brains-minds-media.org › ... › tutorial › pdf › htmw_bmm_… · 1 How Minds Work Neurobiological Non linear Complex Systems Stan Franklin Computer Science

Neurobiological Non­linear Complex Systems  16 

Olfactory Receptors •  Receptors are chemoreceptor neurons, each with a docking place for a molecule of complementary shape 

•  Born with receptors keyed to many differently shaped molecules 

•  Receptor cells sensitive to a particular odorant are clustered non­uniformly 

•  Receptors occupy a two dimensional array •  Odor specific data is in spatial and temporal patterns of activity in this array

Page 17: Complex Systems - brains-minds-media.org › ... › tutorial › pdf › htmw_bmm_… · 1 How Minds Work Neurobiological Non linear Complex Systems Stan Franklin Computer Science

Neurobiological Non­linear Complex Systems  17 

Olfaction in Action •  A sniff sucks in molecules of smoke, which dock at some of the receptors 

•  Changes activity on the receptor array •  Signal passed to olfactory bulb •  New pattern recognized as smoke •  Smoke signal passes to olfactory cortex •  Become alarmed and signals to the motor cortex "get me out of here"

Page 18: Complex Systems - brains-minds-media.org › ... › tutorial › pdf › htmw_bmm_… · 1 How Minds Work Neurobiological Non linear Complex Systems Stan Franklin Computer Science

Neurobiological Non­linear Complex Systems  18 

Recognition Problems •  Smoke composed of many types of molecules •  Different fires produce different smoke stimulating very different receptors 

•  Pattern of receptors stimulated depends on the air currents and the geometry of nostrils 

•  Particular pattern stimulated might occur only once in the lifetime of the individual 

•  Each resulting pattern must be recognized as smoke—how?

Page 19: Complex Systems - brains-minds-media.org › ... › tutorial › pdf › htmw_bmm_… · 1 How Minds Work Neurobiological Non linear Complex Systems Stan Franklin Computer Science

Neurobiological Non­linear Complex Systems  19 

The HOW of Recognition •  Meaning comes from pattern of activity over entire olfactory bulb 

•  Every bulb neuron participates in every olfactory discrimination 

•  Same odorant produces distinct patterns •  Intention required for pattern to form •  All patterns change with new learning

Page 20: Complex Systems - brains-minds-media.org › ... › tutorial › pdf › htmw_bmm_… · 1 How Minds Work Neurobiological Non linear Complex Systems Stan Franklin Computer Science

Neurobiological Non­linear Complex Systems  20 

Dynamics of Recognition •  Exhalation – olfactory bulb stabilized in its chaotic attractor 

•  Inhalation – input from the receptor sheet destabilizes the olfactory bulb 

•  If smell is known, the trajectory falls into a limit cycle basin of attraction 

•  The odorant is recognized

Page 21: Complex Systems - brains-minds-media.org › ... › tutorial › pdf › htmw_bmm_… · 1 How Minds Work Neurobiological Non linear Complex Systems Stan Franklin Computer Science

Neurobiological Non­linear Complex Systems  21 

Readings 

•  Freeman, W. J. 1999. How Brains Make Up Their Minds. London: Weidenfeld & Nicolson General. 

•  Franklin, S. 1995. Artificial Minds. Cambridge MA: MIT Press

Page 22: Complex Systems - brains-minds-media.org › ... › tutorial › pdf › htmw_bmm_… · 1 How Minds Work Neurobiological Non linear Complex Systems Stan Franklin Computer Science

Neurobiological Non­linear Complex Systems  22 

Email and Web Addresses •  Stan Franklin 

[email protected] – www.cs.memphis.edu/~franklin 

•  “Conscious” Software Research Group – www. csrg.memphis.edu/