Top Banner
Complex distillation systems. Theory and models. Pio Aguirre INGAR Santa Fe-Argentina
59

Complex distillation systems. Theory and models.cepac.cheme.cmu.edu/pasi2008/slides/aguirre/library/slides/Aguirre-pasi2008.pdf · Reversible distillation. For each feed composition,

Apr 23, 2020

Download

Documents

dariahiddleston
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Complex distillation systems. Theory and models.cepac.cheme.cmu.edu/pasi2008/slides/aguirre/library/slides/Aguirre-pasi2008.pdf · Reversible distillation. For each feed composition,

Complex distillationsystems.

Theory and models.

Pio AguirreINGAR

Santa Fe-Argentina

Page 2: Complex distillation systems. Theory and models.cepac.cheme.cmu.edu/pasi2008/slides/aguirre/library/slides/Aguirre-pasi2008.pdf · Reversible distillation. For each feed composition,

1.- Introduction.

2.- Theory in simple columns design.

3.- Reversible distillation columns and sequences.

4.- Optimal synthesis distillation columns sequences.

Outline

Page 3: Complex distillation systems. Theory and models.cepac.cheme.cmu.edu/pasi2008/slides/aguirre/library/slides/Aguirre-pasi2008.pdf · Reversible distillation. For each feed composition,

1.- Introduction.Mathematical models in Distillation⇒ predict values:

Product composition for F (xF)Minimum energy demand RminMinimum number of stages NminRelationship R/Rmin vs N/Nmin

Mathematical models for:Process optimization, design, synthesis.Process control.Process fault diagnosis.

Interest in Distillation grows because of:Energy intensive process: Petrochemical, Biofuels.New processes.

Complex sequences: energy intensive.Reactive distillation: equipment intensive.Reactive-extractive distillation.

High improvement potentials in distillation processes.

Page 4: Complex distillation systems. Theory and models.cepac.cheme.cmu.edu/pasi2008/slides/aguirre/library/slides/Aguirre-pasi2008.pdf · Reversible distillation. For each feed composition,

1.- Introduction.

Different mathematical models according to their sizes:

Aggregated (reduced): minimal information. Simple analytical formulae.

Short cuts: few equations but require numerical solution.

Rigorous: conservation laws, thermodynamics and constitutive models.

Trade off: size and complexity vs. information.

Limitations:Rigorous models ⇒ general purpose.Simple and reduced models ⇒ especial cases.

Page 5: Complex distillation systems. Theory and models.cepac.cheme.cmu.edu/pasi2008/slides/aguirre/library/slides/Aguirre-pasi2008.pdf · Reversible distillation. For each feed composition,

Fundamental concepts in distillation

Models components:Mass balancesV-L equilibrium Energy balances

Very exact descriptions using rigorous models for distillations

Concepts derived from distillation theory:Pinch pointsResidue curves Distillation points

1.- Introduction

Page 6: Complex distillation systems. Theory and models.cepac.cheme.cmu.edu/pasi2008/slides/aguirre/library/slides/Aguirre-pasi2008.pdf · Reversible distillation. For each feed composition,

2.- Theory in simple columns design.

Thermodynamic aspectsV-L Equilibrium Ideal MixturesT vs X(Y), P=cte. diagram

NCiTPPTyxK =K iii

...,1);(),,,(

==

iii xTKy )(=

Mathematical models.Minimum energy demand.Minimum number of stages.

Page 7: Complex distillation systems. Theory and models.cepac.cheme.cmu.edu/pasi2008/slides/aguirre/library/slides/Aguirre-pasi2008.pdf · Reversible distillation. For each feed composition,

Simple columns. Mathematical models.

Minimum energy demand.Minimum number of stages.

Assumptions:Constant relative volatility andConstant difference in vaporization enthalpy

⇓Constant Molar Overflow (CMO)

⇓Straight operating line, decoupling mass and energy balances

Y vs X diagram

2.- Theory in simple columns design.

Page 8: Complex distillation systems. Theory and models.cepac.cheme.cmu.edu/pasi2008/slides/aguirre/library/slides/Aguirre-pasi2008.pdf · Reversible distillation. For each feed composition,

Computing minimum energy demand.Constant molar overflow ⇒ Operating points belong

to Straight linesTray by tray calculations, equilibrium stages

Page 9: Complex distillation systems. Theory and models.cepac.cheme.cmu.edu/pasi2008/slides/aguirre/library/slides/Aguirre-pasi2008.pdf · Reversible distillation. For each feed composition,

Minimum energy demand.Pinch at Feed tray.The number of stages increases at the feed location.

Page 10: Complex distillation systems. Theory and models.cepac.cheme.cmu.edu/pasi2008/slides/aguirre/library/slides/Aguirre-pasi2008.pdf · Reversible distillation. For each feed composition,

Minimum number of stages. Total reflux = Distillation pointsXk⇒VLE ⇒ Yk

* = Xk+1 ⇒ VLE ⇒ Y*k+1 = Xk+2 …

Page 11: Complex distillation systems. Theory and models.cepac.cheme.cmu.edu/pasi2008/slides/aguirre/library/slides/Aguirre-pasi2008.pdf · Reversible distillation. For each feed composition,

V-L Equilibrium

Non- Ideal Mixtures

X vs Y ; P=cte. diagram

);(),(),,,(

TPTxPTyxK =K

ii

ii

γ=

Constant molar overflow?.

Page 12: Complex distillation systems. Theory and models.cepac.cheme.cmu.edu/pasi2008/slides/aguirre/library/slides/Aguirre-pasi2008.pdf · Reversible distillation. For each feed composition,

Multicomponent systems. Adiabatic Column. Constant pressure. Rigorous simulation.Liquid composition profiles

0 10 20 30 40 50 60 70 80 900,0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

A B C

Feed Stage: 42

Frac

cion

Mol

ar

Stages

Composition profiles (F, i = 0.33/ 0.33/ 0.34 - D, i = 0.7946/ 0.205/ 0 -B, i = 0/0.4184/0.5815 - p = 101.3 Kpa)n-pentane, n-hexane and n-heptane

Pinch points?

Page 13: Complex distillation systems. Theory and models.cepac.cheme.cmu.edu/pasi2008/slides/aguirre/library/slides/Aguirre-pasi2008.pdf · Reversible distillation. For each feed composition,

(1) 

Increasing  Reboil Ratio 

Adiabatic  Stripping Profile 

(2)  (3) B

Ternary systems. Adiabatic Column. Constant pressure. Liquid composition profiles.

Rigorous simulation.Specifying a liquid product composition (B) and the reboil ratio, the succession of liquid composition tray-tray profile can be computed.

The liquid profile approaches a pinch point. The number of stages ⇒ ∞ at eachpoint: 1, 2, …

Page 14: Complex distillation systems. Theory and models.cepac.cheme.cmu.edu/pasi2008/slides/aguirre/library/slides/Aguirre-pasi2008.pdf · Reversible distillation. For each feed composition,

(1) 

Increasing  Reboil Ratio 

Reversible   Profile 

Adiabatic  Stripping Profile (2)  (3) 

B

Ternary systems. Adiabatic Column. Constant pressure. Liquid composition profiles

Specifying:1) liquid product composition (B) 2) reboil ratio value3) equilibrium between L* and V*, a liquid composition can be computed.Changing reboil ratio⇒ different pinch point composition

L* V*

F

*

B

Pinch

Reversible Profile

= Collection of Pinch

Page 15: Complex distillation systems. Theory and models.cepac.cheme.cmu.edu/pasi2008/slides/aguirre/library/slides/Aguirre-pasi2008.pdf · Reversible distillation. For each feed composition,

Reversible path for a bottom: distillative alcoholic mixture.

Reversible ProfileAdiabaticProfiles

Page 16: Complex distillation systems. Theory and models.cepac.cheme.cmu.edu/pasi2008/slides/aguirre/library/slides/Aguirre-pasi2008.pdf · Reversible distillation. For each feed composition,

Energy

Reversible Path

Tem

pera

ture

Reversible path for a bottom: distillative alcoholic mixture.Starting from product D (TD) and increasing reboil ratio, the profile is computed.Temperature and Energy results from the reversible profile.

Page 17: Complex distillation systems. Theory and models.cepac.cheme.cmu.edu/pasi2008/slides/aguirre/library/slides/Aguirre-pasi2008.pdf · Reversible distillation. For each feed composition,

Reversible path for a bottom (B): azeotropic system.

Points computed with newton homotopy.

Ace

tone

Acetone-ChloroformAzeotrope

Chloroform Benzene Benzene

ReversibleProfile

Disjunct Arm

Acetone

Page 18: Complex distillation systems. Theory and models.cepac.cheme.cmu.edu/pasi2008/slides/aguirre/library/slides/Aguirre-pasi2008.pdf · Reversible distillation. For each feed composition,

L*

L V

V*

F

D rev

Q C rev

Q H rev

*

Specifying:1) Feed composition,2) product compositions B and D satisfying total mass balance, 2) reboil and reflux ratios satisfying total energy balance, 3) equilibrium between L* and V* and between L and V,

liquid composition profiles can be computed.

PINCH CURVES, PINCH PATHS, REVERSIBLE PROFILES, REVERSIBLE PATHS, ETC.

NO ASSUMPTION ON V-L EQUILIBRIUM AND ON ENTHALPY MODELS

3.- Reversible distillation columns and sequences.

Page 19: Complex distillation systems. Theory and models.cepac.cheme.cmu.edu/pasi2008/slides/aguirre/library/slides/Aguirre-pasi2008.pdf · Reversible distillation. For each feed composition,

ss V = D + L

sisDisis yV =x D +x L ,,,

sVsDDsLs hV =Qh D +h L ,, +

),,,( ,, sssisiii pTyxK =K

),,( ,,, sssisLsL pTxh =h

),,( , sssiVV pTyh =h

Cs p =p

sisisi xKy ,,, =

Mass balances

Given:XD, YD, P, TD and QDat least one liquid composition can be computed: X,ss ∈ S: set of different kinds of pinches.

NO ASSUMPTION ON V-L EQUILIBRIUM AND ON ENTHALPY MODELS

Equilibrium

Energy balance

Thermodynamic Properties Constant pressure

PINCH EQUATIONS3.- Reversible distillation columns and sequences.

Page 20: Complex distillation systems. Theory and models.cepac.cheme.cmu.edu/pasi2008/slides/aguirre/library/slides/Aguirre-pasi2008.pdf · Reversible distillation. For each feed composition,

Reversible Profile from D

Reversible Profile from B

Pinch profiles for products B and D.

Mass balance line: B-F-D

Pinch points satisfying total energy balance.

NO ASSUMPTION ON V-L EQUILIBRIUM AND ON MOLAR FLOWS

3.- Reversible distillation columns and sequences.

Page 21: Complex distillation systems. Theory and models.cepac.cheme.cmu.edu/pasi2008/slides/aguirre/library/slides/Aguirre-pasi2008.pdf · Reversible distillation. For each feed composition,

Reversible Profile from D

Reversible Profile from B

Pinch profiles for products B and D.

Mass balance line: B-F-D

Moving F : Reversible specification

NO ASSUMPTION ON V-L EQUILIBRIUM AND ON MOLAR FLOWS

Reversible specificationReversible profiles intersect at feed composition

Page 22: Complex distillation systems. Theory and models.cepac.cheme.cmu.edu/pasi2008/slides/aguirre/library/slides/Aguirre-pasi2008.pdf · Reversible distillation. For each feed composition,

Axis – Binary Reversible Profile

AdiabaticProfiles

Reversible Profilefrom Top

Reversible Profilefrom Bottom

Pinch profiles for products B and D. Sharp splits.Adiabatic profiles and pinch profiles.

Pinch points → critical points for the adiabatic profiles

NO ASSUMPTION ON V-L EQUILIBRIUM AND ON MOLAR FLOWS

Stable pinchSaddle pinch

Page 23: Complex distillation systems. Theory and models.cepac.cheme.cmu.edu/pasi2008/slides/aguirre/library/slides/Aguirre-pasi2008.pdf · Reversible distillation. For each feed composition,

Brev, max

(3) (2)

(1)

F

Drev, max

y *

Drev, max

Brev, max

F

UpperSaddle

Pinch Point

LowerSaddle

Pinch Point

DoublePinch Point

Q H, rev

Q C, rev min

Reversible Distillation. (Sharp).

For each feed composition, there exists a special, “preferred” specification.

V-L equilibrium vector (Y*-X*) belongs to Mass balance line: D-F-B.

NO ASSUMPTION ON V-L EQUILIBRIUM AND ON MOLAR FLOWS

Page 24: Complex distillation systems. Theory and models.cepac.cheme.cmu.edu/pasi2008/slides/aguirre/library/slides/Aguirre-pasi2008.pdf · Reversible distillation. For each feed composition,

Reversible distillation.For each feed composition, there exists a special “preferred”product specification set.

Other product specifications ⇒ Non reversible distillation (1 col.)

Are pinch points always “observable” in adiabatic columns profiles?

It depends on feed and product specification and on RR. Non sharp in this figure.

D rev

B rev, maxB rev, max

(3) (2)

(1)

F

D rev

y * F

Lower SaddlePinch Point Q > Q H, rev

Q > Q C, rev

Page 25: Complex distillation systems. Theory and models.cepac.cheme.cmu.edu/pasi2008/slides/aguirre/library/slides/Aguirre-pasi2008.pdf · Reversible distillation. For each feed composition,

Adiabatic profile shape is determined by the pinch point.

AdiabaticProfiles

Reversible distillation.(Y* - X*) � B-F-D ⇒ Reversible specification

“Observable” pinch in adiabatic column.Double feed pinch.

Page 26: Complex distillation systems. Theory and models.cepac.cheme.cmu.edu/pasi2008/slides/aguirre/library/slides/Aguirre-pasi2008.pdf · Reversible distillation. For each feed composition,

Non Reversible distillation.(X* - Y*) ⊈ B-F-DPinch topology. Specifying reflux and reboil ratiosThree pinches for D→ upper triangle Three pinches for B → lower triangle

Minimum reflux⇒ pinch triangles touch each other at Feed composition

Note: some pinches outside: xb<0

Page 27: Complex distillation systems. Theory and models.cepac.cheme.cmu.edu/pasi2008/slides/aguirre/library/slides/Aguirre-pasi2008.pdf · Reversible distillation. For each feed composition,

Residue curves distillation lines

Pinch profiles and Residue curves dominate distillation theory.

Acetone

BenzeneChloroform

Distillation boundary (DB)

Not possible to cross DB at total reflux

Page 28: Complex distillation systems. Theory and models.cepac.cheme.cmu.edu/pasi2008/slides/aguirre/library/slides/Aguirre-pasi2008.pdf · Reversible distillation. For each feed composition,

iii

Vap

iVapi

y =x K

F = dtdV

yF = dt

xVd

−)(

iii

Vap

iiVapi

y =x K

F = dtdV

xyF = dt

xdV

−− )(

Residue curves

V; X; T; P

Fvap; Y; T; P

Page 29: Complex distillation systems. Theory and models.cepac.cheme.cmu.edu/pasi2008/slides/aguirre/library/slides/Aguirre-pasi2008.pdf · Reversible distillation. For each feed composition,

HeptaneBenzene

Acetone Residue curves / distillation lines

Azeotropic system with no distillation boundary

Page 30: Complex distillation systems. Theory and models.cepac.cheme.cmu.edu/pasi2008/slides/aguirre/library/slides/Aguirre-pasi2008.pdf · Reversible distillation. For each feed composition,

Residue curves divide the simplex in two regions.One region may be convex. Adiabatic profiles only cross residue curves to the locally convex side when going from products to feed.

Ternary systems

Page 31: Complex distillation systems. Theory and models.cepac.cheme.cmu.edu/pasi2008/slides/aguirre/library/slides/Aguirre-pasi2008.pdf · Reversible distillation. For each feed composition,

0 100 200 300

1,05

1,10

1,15

1,20

rectifying section stripping section

Red

uce

Tem

pera

ture

T/2

98·K

Cumulative Energy (KJ/s)

Cumulative energy profilesobtained from pinch equations.Ideal three-component mixture

Improving energy distribution in Simple columns. Temperature – Energy Pinch profiles

Page 32: Complex distillation systems. Theory and models.cepac.cheme.cmu.edu/pasi2008/slides/aguirre/library/slides/Aguirre-pasi2008.pdf · Reversible distillation. For each feed composition,

Pinch path for 4-component mixture.# of paths into the simplex: 3

Improving energy distribution in simple columns.

Page 33: Complex distillation systems. Theory and models.cepac.cheme.cmu.edu/pasi2008/slides/aguirre/library/slides/Aguirre-pasi2008.pdf · Reversible distillation. For each feed composition,

Pinch path for 3-component mixture.# of paths into the simplex: 2Which one should be used to approximate reversible profiles?

Improving energy distribution in simple columns.

Page 34: Complex distillation systems. Theory and models.cepac.cheme.cmu.edu/pasi2008/slides/aguirre/library/slides/Aguirre-pasi2008.pdf · Reversible distillation. For each feed composition,

A Pinch path for non ideal mixture.Tangent pinch is possible.

Minimum energy determined by tangent pinch.

Improving energy distribution in simple columns.

Page 35: Complex distillation systems. Theory and models.cepac.cheme.cmu.edu/pasi2008/slides/aguirre/library/slides/Aguirre-pasi2008.pdf · Reversible distillation. For each feed composition,

BenzeneChloroform

Acetone

Benzene

AdiabaticProfiles

ReversibleProfilesA

ceto

ne

Improving energy distribution in simple columns.

Minimum energy determined by feed pinch.

Page 36: Complex distillation systems. Theory and models.cepac.cheme.cmu.edu/pasi2008/slides/aguirre/library/slides/Aguirre-pasi2008.pdf · Reversible distillation. For each feed composition,

BenzeneChloroform

AcetoneAc

eton

e

Benzene

AdiabaticProfiles

DistillateReversible Profile

Improving energy distribution in simple columns.

Minimum energy determined by tangent pinch.

Page 37: Complex distillation systems. Theory and models.cepac.cheme.cmu.edu/pasi2008/slides/aguirre/library/slides/Aguirre-pasi2008.pdf · Reversible distillation. For each feed composition,

Separations involving tangent pinch.

Residue curve with inflexion points.

Improving energy distribution in simple columns.

Chloroform

Acetone

Benzene

Page 38: Complex distillation systems. Theory and models.cepac.cheme.cmu.edu/pasi2008/slides/aguirre/library/slides/Aguirre-pasi2008.pdf · Reversible distillation. For each feed composition,

Reversible Distillation Sequence Model (RDSM)

What is the superstructure that most closely approximates the Reversible Distillation of Multicomponent Mixtures like?

Which is the optimal energy distribution in the RDSM-based sequence?

3.- Reversible distillation columns and sequences.

Page 39: Complex distillation systems. Theory and models.cepac.cheme.cmu.edu/pasi2008/slides/aguirre/library/slides/Aguirre-pasi2008.pdf · Reversible distillation. For each feed composition,

Theoretical model.Infinite number of stages.Continuous heat distribution along column length.Heat to and from the column is transferred at zero temperature difference.No contact of non-equilibrium streams take place in any point of the column.Only one separation task can be performed: the reversible separation.

A Reversible Column

Page 40: Complex distillation systems. Theory and models.cepac.cheme.cmu.edu/pasi2008/slides/aguirre/library/slides/Aguirre-pasi2008.pdf · Reversible distillation. For each feed composition,

F

Drev

Brev

QC rev =Σ QC rev i

QH rev =Σ QH rev i

F

Drev

Brev

QC rev i

QH rev i

i

i

A sufficiently high number of stages must be employed.The same energy is involved in the separation with a different distribution.The same products are achieved but different composition profiles develop within each unit.

RDC Adiabatic Approach

Page 41: Complex distillation systems. Theory and models.cepac.cheme.cmu.edu/pasi2008/slides/aguirre/library/slides/Aguirre-pasi2008.pdf · Reversible distillation. For each feed composition,

RDSM Sequence

A B C D

A B C

B C D

C D

B C

D

CC

BC

B C

A B

BB

A

A B C D

B C D

C D

B CC

A B

D

A

A B C

B C

B

B

C

1

2

6

3

4

5

7

RDSM-based Sequence

Page 42: Complex distillation systems. Theory and models.cepac.cheme.cmu.edu/pasi2008/slides/aguirre/library/slides/Aguirre-pasi2008.pdf · Reversible distillation. For each feed composition,

RDSM-based Synthesis Model

Preprocessing Phase

Single ColumnPreprocessing

Phase

Efficient SequenceSynthesis Model

SequencePreprocessing

Phase

Page 43: Complex distillation systems. Theory and models.cepac.cheme.cmu.edu/pasi2008/slides/aguirre/library/slides/Aguirre-pasi2008.pdf · Reversible distillation. For each feed composition,

Preprocessing Phase

Optimal Energy Distribution foreach single unit.Number of stages for each singlecolumn of the sequence.Objective functions and constraints to approach the reversible separationtask.

Values to initializate variables.Values to bound critical variablesrelated to unit interconnection and

heat loads.Parameters to formulate objective functions.

Sequence Preprocessing

Reversible Products,Saddle Pinch Points and

Reversible Exhausting Pinch Points Calculations

Single ColumnPreprocessing

Adiabatic Approximation to the Reversible Separation

Page 44: Complex distillation systems. Theory and models.cepac.cheme.cmu.edu/pasi2008/slides/aguirre/library/slides/Aguirre-pasi2008.pdf · Reversible distillation. For each feed composition,

Initialization

xtop i ≈ x revi,D

xbot i ≈ x revi,B

QC tot ≈ Q revC,

QH tot ≈ Q revH,

D ≈ Drev

B ≈ B rev

x i, s , x*i, s , y i, s , y*

i, sLs , L*

s , Vs , V*s

Ts , T*s

xxFF ii , , qqFF , , ppCCFeed Flash

Model

Reversible Model

hlF , hvF , yF i , TF

QC rev , QH rev , x revi,D , x rev

i,BhD , hB , Drev , B rev

Single Column Optimization

Model

Saddle Pinch Model

Ls , L*s ,

Vs , V*s

TD , TB

FF

Initialization

Initialization

Single ColumnPreprocessing

Adiabatic Approximation to the Reversible Separation

Page 45: Complex distillation systems. Theory and models.cepac.cheme.cmu.edu/pasi2008/slides/aguirre/library/slides/Aguirre-pasi2008.pdf · Reversible distillation. For each feed composition,

revBV = L +**

revB,i

revi

*i

* xByV =x L +

* *rev revL H V BL h Q = V h B h+ +

revBa

revDc x x =z ,,min +

V = D + L rev

irev

D,irev

i yV =x D +x L

rev revL D C VL h + D h Q = V h+

(RM): *F L =F)q(L −+ 1

*F V =FqV +

( , , , ) 1, ...i i i iK = K x y T p i NC=

( , , )L L ih = h x T p

( , , )V V ih = h y T p

,

Single ColumnPreprocessing

Adiabatic Approximation to the Reversible Separation

Known values from flash calculations at Feed

Page 46: Complex distillation systems. Theory and models.cepac.cheme.cmu.edu/pasi2008/slides/aguirre/library/slides/Aguirre-pasi2008.pdf · Reversible distillation. For each feed composition,

revss BV = L +**

revrevsissis Bi

xByV =x L,,

*,

* +

srev

s V = D + L

sisrevrev

sis yV =x D +x LDi ,, ,

(SPM):

( , , , ) 1, ...i i i iK = K x y T p i NC=

( , , )L L ih = h x T p

( , , )V V ih = h y T p

,

Single ColumnPreprocessing

Adiabatic Approximation to the Reversible Separation

Known values from flash calculations at Feed

* * * *, ,

rev revs L s H s V s BL h Q = V h B h+ +

, ,rev rev

s L s D C s i sL h + D h Q = V h+

, ,0 0NC s NC sx y= =1, 1,

* *0 0s s

x y= =

Page 47: Complex distillation systems. Theory and models.cepac.cheme.cmu.edu/pasi2008/slides/aguirre/library/slides/Aguirre-pasi2008.pdf · Reversible distillation. For each feed composition,

The number of trays is selected by optimizing the condenser, reboiler and/or feed stream locations.

F

D

B

F

B

D

F

B

D

Variable feed and reboiler location

F

D

B

F

B

DF

B

D

Variable feed and condenser location

F

B

D

F

D

B

F

B

DVariable condenser and reboiler location

Page 48: Complex distillation systems. Theory and models.cepac.cheme.cmu.edu/pasi2008/slides/aguirre/library/slides/Aguirre-pasi2008.pdf · Reversible distillation. For each feed composition,

F1

Lv2

Qctot3

PP2

PP1

PP3

F3 = S3

F2 = S2

Ll2

Qhtot3

Qctot2

Qhtot2

Qctot1

Qhtot1j =1

j =3

j =2PLlj

j

j +1

PLvj

Qphase j < 0

Qphase j > 0

PPj

Ternary mixture.

Heat IntegrationSuperstructure

Sequence PreprocessingReversible Products, Saddle Pinch Points and Reversible Exhausting Pinch Points Calculations

Page 49: Complex distillation systems. Theory and models.cepac.cheme.cmu.edu/pasi2008/slides/aguirre/library/slides/Aguirre-pasi2008.pdf · Reversible distillation. For each feed composition,

Less efficient RDSM-based superstructures:

PP3

PP1

PP2F1

1

2

3

PP3

PP1

PP2F1

1

3

2

Fully Thermally Coupled Scheme (Petlyuk Column)

Fully Thermally Coupled Scheme with Heat Integration

Page 50: Complex distillation systems. Theory and models.cepac.cheme.cmu.edu/pasi2008/slides/aguirre/library/slides/Aguirre-pasi2008.pdf · Reversible distillation. For each feed composition,

ABC

ABC

BC

AB

BC

A

B

B

Azeotrop

C

B C

C D

A B

A B C

B C D

A

A B C D

B C

B

C

B

C

D

Zeotropic Mixture Azeotropic Mixture

3.- Reversible distillation columns and sequences.

Page 51: Complex distillation systems. Theory and models.cepac.cheme.cmu.edu/pasi2008/slides/aguirre/library/slides/Aguirre-pasi2008.pdf · Reversible distillation. For each feed composition,

PP3

PP1

PP2

Numerical ExamplesModels implemented and solved in GAMS employing DICOPTCONOPT.

ppl

F1

Qphase

Qh3

Qint

Qc1

Qh1

Qc2

ppv

S3F3

S2F2

L2

PLlj

j

j +1

PLvj

Qphase j < 0

Qphase j > 0

PPj

L2

L3

3.- Reversible distillation columns and sequences.

Page 52: Complex distillation systems. Theory and models.cepac.cheme.cmu.edu/pasi2008/slides/aguirre/library/slides/Aguirre-pasi2008.pdf · Reversible distillation. For each feed composition,

Entering stagenumber for

Theoretical Our ModelTheoretical Our ModelStream

Flow rate (mol/sec) Composition

Feed: n-pentane, n-hexane, n-heptane 0.3/0.5/0.2Stages: col1 30, col2 80, col3 50

F2

F3

S2

S3

L2v

L2l

ppl

ppv

5.34 5.36

8.16 8.08

1.05 1.15

2.45 2.291.88 1.77

2.49 2.4

0.67 0.60

4.33 4.42

0.6355/0.364/0 0.634/0.3652/6e-4

0/0.714/0.286 4e-3/0.71/0.2856

0.6355/0.364/0 0.634/0.3652/6e-4

0.375/0.625/0 0.373/0.6257/9e-4

0/0.864/0.1356 1e-3/0.863/0.1356

0/1/0 2e-3/0.997/7e-4

0/1/0 2e-3/0.997/7e-40/1/0 2e-3/0.997/7e-4

0/1/0 2e-3/0.997/7e-4

40

26

1

30

80

1-

-

3.- Reversible distillation columns and sequences.

Page 53: Complex distillation systems. Theory and models.cepac.cheme.cmu.edu/pasi2008/slides/aguirre/library/slides/Aguirre-pasi2008.pdf · Reversible distillation. For each feed composition,

Theoretical Our ModelHeat DutyEnergy (KJ/sec)

107.21 114.57-16.63 -18.29

-204.3 -203- 1

-50.27 -57.81293.4 313.78

Qctot1Qhtot1Qctot2Qhtot2Qctot3Qhtot3

Flow rate (mol/sec)

CompositionProduct

5.03 5e-3/0.994/3e-42.974 0.99/6e-5/0

1.998 0/1e-4/0.999

PP1PP2PP3

3.- Reversible distillation columns and sequences.

Page 54: Complex distillation systems. Theory and models.cepac.cheme.cmu.edu/pasi2008/slides/aguirre/library/slides/Aguirre-pasi2008.pdf · Reversible distillation. For each feed composition,

Problem specsMixture: N-pentane/ N-hexane/ N-heptaneFeed composition: 0.33/ 0.33/ 0.34Feed: 10 moles/sPressure: 1 atmMax no trays: 15 (each section)Min purity: 98%Ideal thermodynamics

Superestructure

NLP Model

Continuous Variables 3301

Constraints 3230

MILP Model

Continuous Variables 15000

Discrete Variables 96

Constraints 8000

PP1

PP2

F

PP3

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.00.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Mol

e Fr

actio

n n-

pent

ane

Mole Fraction n-hexane

Feed Col 1 Col 2 Col 3

Initialization

4.- Optimal synthesis distillation columns sequences.

Page 55: Complex distillation systems. Theory and models.cepac.cheme.cmu.edu/pasi2008/slides/aguirre/library/slides/Aguirre-pasi2008.pdf · Reversible distillation. For each feed composition,

Optimal Configuration$140,880 /year

Optimal Design

Annual cost ($/year) 140,880

Preprocessing(min) 2.20

Subproblems NLP (min) 6.97

Subproblems MILP (min) 2.29

Iterations 5

Total solution time (min) 11.460.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Mol

e Fr

actio

nn-

pent

ane

Mole Fraction n-hexane

FeedCol 1 (tray 1 to 14)Col 1 (tray 15 to 34)Col 2 (tray 1 al 9)Col 2 (tray 10 al 32)

PP398% n-heptane

36

9

32

PP298% n-hexane

26

19

PP198% n-pentane

F

Qc = 52.4 kW

QH = 298.8 kW

48.8 kW

1

11 12

14

Qc = 271.3 kW

PP398% n-heptane

12

23

PP298% n-hexane

10

PP198% n-pentane

F

1

22

Dc1 = 0.45 m

Dcrect2 = 0.6 m

Dcstrip2 = 0.45 m

1

14

23

1

Dcstrip3 = 0.63 m

Dcrect3 = 0.45 m

4.- Optimal synthesis distillation columns sequences.

Page 56: Complex distillation systems. Theory and models.cepac.cheme.cmu.edu/pasi2008/slides/aguirre/library/slides/Aguirre-pasi2008.pdf · Reversible distillation. For each feed composition,

Optimal Configuration$140,880 /año

Optimal Design

Annual cost ($/year) 140,880

Preprocessing(min) 2.20

Subproblems NLP (min) 6.97

Subproblems MILP (min) 2.29

Iterations 5

Total solution time (min) 11.46

PP398% n-heptane

36

9

32

PP298% n-hexane

26

19

PP198% n-pentane

F

Qc = 52.4 kW

QH = 298.8 kW

48.8 kW

1

11 12

14

Qc = 271.3 kW

PP398% n-heptane

12

23

PP298% n-hexane

10

PP198% n-pentane

F

1

22

Dc1 = 0.45 m

Dcrect2 = 0.6 m

Dcstrip2 = 0.45 m

1

14

23

1

Dcstrip3 = 0.63 m

Dcrect3 = 0.45 m

Side-Rectifier $143,440 /year

Direct Sequence $145,040 /year

4.- Optimal synthesis distillation columns sequences.

Page 57: Complex distillation systems. Theory and models.cepac.cheme.cmu.edu/pasi2008/slides/aguirre/library/slides/Aguirre-pasi2008.pdf · Reversible distillation. For each feed composition,

Problem specifications(Yeomans y Grossmann, 2000)

Mixture: Methanol/ Ethanol/ WaterFeed composition: 0.5/ 0.3/ 0.2Feed flowrate: 10 moles/sPressure: 1 atmInitial trays: 20 (per section)Purity specification: 90%

F

methanol

ethanol

Azeotrope

water

ethanol

Superstructure

NLP Model

Continuous Variables 9025

Constraints 8996

Nonlinear non-zeroes 18230

MILP Model

Continuous Variables 12850

Discrete Variables 96

Constraints 18000

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.00.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Frac

ción

mol

ar m

etan

ol

Fracción molar de etanol

Alimentación Líquido columna 1 Líquido columna 2 Líquido columna 3 Líquido columna 4 Líquido columna 5

Initialization

4.- Optimal synthesis distillation columns sequences.

Page 58: Complex distillation systems. Theory and models.cepac.cheme.cmu.edu/pasi2008/slides/aguirre/library/slides/Aguirre-pasi2008.pdf · Reversible distillation. For each feed composition,

Product Specifications 95%Optimal Configuration

$318,400 /año

Optimal Solution

Annual Cost ($/year) 318,400

Preprocessing (min) 6.05

Subproblems NLP (min) 36.3

Subproblems MILP (min) 3.70

Iteraciones 3

Total Solution Time (min) 46.01

F

PP6 = 1.292 mole/sec95% C

PP1 = 5.158 mole/sec95% A

PP4 = 0.836 mole/sec95% B

39

38

35

PP5 = 2.376 mole/secAzeotrope

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.00.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Mol

e Fr

actio

n M

etha

nol

Mole Fraction Ethanol

Fedd Liq. Col 1 Liq. Col 2 Liq. Col 3

Profiles Optimal Configuration

4.- Optimal synthesis distillation columns sequences.

Page 59: Complex distillation systems. Theory and models.cepac.cheme.cmu.edu/pasi2008/slides/aguirre/library/slides/Aguirre-pasi2008.pdf · Reversible distillation. For each feed composition,

Conclusions

Distillation optimization with rigorous models remains major computational challenge

Optimal feed tray and number of trays problems are solvable

Keys: Initialization, MINLP/GDP models

Synthesis of complex columns remains non-trivialProgress with initialization, GDP, decomposition

Improvements potential in distillation processes