Top Banner
3-1 COMPLETE COMPLETE BUSINESS BUSINESS STATISTICS STATISTICS by by AMIR D. ACZEL AMIR D. ACZEL & & JAYAVEL SOUNDERPANDIAN JAYAVEL SOUNDERPANDIAN 6 6 th th edition. edition.
28

COMPLETE BUSINESS STATISTICS

Jan 25, 2016

Download

Documents

kadeem

COMPLETE BUSINESS STATISTICS. by AMIR D. ACZEL & JAYAVEL SOUNDERPANDIAN 6 th edition. Pertemuan 5 dan 6. Random Variables. Random Variables. 3. Using Statistics Expected Values of Discrete Random Variables Sum and Linear Composite of Random Variables Bernoulli Random Variable - PowerPoint PPT Presentation
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: COMPLETE  BUSINESS  STATISTICS

3-1

COMPLETE COMPLETE BUSINESS BUSINESS

STATISTICSSTATISTICSbyby

AMIR D. ACZELAMIR D. ACZEL

&&

JAYAVEL SOUNDERPANDIANJAYAVEL SOUNDERPANDIAN

66thth edition. edition.

Page 2: COMPLETE  BUSINESS  STATISTICS

3-2Pertemuan 5 dan 6 Pertemuan 5 dan 6

Random VariablesRandom Variables

Page 3: COMPLETE  BUSINESS  STATISTICS

3-3

Using Statistics Expected Values of Discrete Random Variables Sum and Linear Composite of Random Variables Bernoulli Random Variable The Binomial Random Variable The Geometric Distribution The Hypergeometric Distribution The Poisson Distribution Continuous Random Variables Uniform Distribution The Exponential Distribution

Random VariablesRandom Variables33

Page 4: COMPLETE  BUSINESS  STATISTICS

3-4

After studying this chapter you should be able to:After studying this chapter you should be able to: Distinguish between discrete and continuous random variables Explain how a random variable is characterized by its probability

distribution Compute statistics about a random variable Compute statistics about a function of a random variable Compute statistics about the sum or a linear composite of a random

variable Identify which type of distribution a given random variable is most

likely to follow Solve problems involving standard distributions manually using

formulas Solve business problems involving standard distributions using

spreadsheet templates.

LEARNING OBJECTIVESLEARNING OBJECTIVES33

Page 5: COMPLETE  BUSINESS  STATISTICS

3-5

Consider the different possible orderings of boy (B) and girl (G) in four sequential births. There are 2*2*2*2=24 = 16 possibilities, so the sample space is:

BBBB BGBB GBBB GGBB BBBG BGBG GBBG GGBGBBGB BGGB GBGB GGGBBBGG BGGG GBGG GGGG

If girl and boy are each equally likely [P(G) = P(B) = 1/2], and the gender of each child is independent of that of the previous child, then the probability of each of these 16 possibilities is:(1/2)(1/2)(1/2)(1/2) = 1/16.

3-1 Using Statistics3-1 Using Statistics

Page 6: COMPLETE  BUSINESS  STATISTICS

3-6

Now count the number of girls in each set of four sequential births:

BBBB (0) BGBB (1) GBBB (1) GGBB (2)BBBG (1) BGBG (2) GBBG (2) GGBG (3)BBGB (1) BGGB (2) GBGB (2) GGGB (3)BBGG (2) BGGG (3) GBGG (3) GGGG (4)

Notice that:• each possible outcome is assigned a single numeric value,• all outcomes are assigned a numeric value, and• the value assigned varies over the outcomes.

The count of the number of girls is a random variable:

A random variable, X, is a function that assigns a single, but variable, value to each element of a sample space.

Random Variables Random Variables

Page 7: COMPLETE  BUSINESS  STATISTICS

3-7

Random Variables (Continued)Random Variables (Continued)

BBBB BGBB GBBB

BBBG BBGB

GGBB GBBG BGBG

BGGB GBGB BBGG BGGG GBGG

GGGB GGBG

GGGG

0

1

2

3

4

XX

Sample Space

Points on the Real Line

Page 8: COMPLETE  BUSINESS  STATISTICS

3-8

Since the random variable X = 3 when any of the four outcomes BGGG, GBGG, GGBG, or GGGB occurs,

P(X = 3) = P(BGGG) + P(GBGG) + P(GGBG) + P(GGGB) = 4/16

The probability distribution of a random variable is a table that lists the possible values of the random variables and their associated probabilities.

x P(x)0 1/161 4/162 6/163 4/164 1/16 16/16=1

Random Variables (Continued)Random Variables (Continued)

The Graphical Display for this Probability Distributionis shown on the next Slide.

The Graphical Display for this Probability Distributionis shown on the next Slide.

Page 9: COMPLETE  BUSINESS  STATISTICS

3-9

Random Variables (Continued)Random Variables (Continued)

Number of Girls, X

Pro

bability

, P(X

)

43210

0.4

0.3

0.2

0.1

0.0

1/ 16

4/ 16

6/ 16

4/ 16

1/ 16

Probability Distribution of the Number of Girls in Four Births

Number of Girls, X

Pro

bability

, P(X

)

43210

0.4

0.3

0.2

0.1

0.0

1/ 16

4/ 16

6/ 16

4/ 16

1/ 16

Probability Distribution of the Number of Girls in Four Births

Page 10: COMPLETE  BUSINESS  STATISTICS

3-10

Consider the experiment of tossing two six-sided dice. There are 36 possible outcomes. Let the random variable X represent the sum of the numbers on the two dice:

2 3 4 5 6 71,1 1,2 1,3 1,4 1,5 1,6 82,1 2,2 2,3 2,4 2,5 2,6 93,1 3,2 3,3 3,4 3,5 3,6 104,1 4,2 4,3 4,4 4,5 4,6 11

5,1 5,2 5,3 5,4 5,5 5,6 126,1 6,2 6,3 6,4 6,5 6,6

x P(x)*

2 1/363 2/364 3/365 4/366 5/367 6/368 5/369 4/3610 3/3611 2/3612 1/36

1

x P(x)*

2 1/363 2/364 3/365 4/366 5/367 6/368 5/369 4/3610 3/3611 2/3612 1/36

1

12111098765432

0.17

0.12

0.07

0.02

xp

(x)

Probability Distribution of Sum of Two Dice

* ( ) ( ( ) ) / Note that: P x x 6 7 362

Example 3-1Example 3-1

Page 11: COMPLETE  BUSINESS  STATISTICS

3-11

Probability of at least 1 switch: P(X 1) = 1 - P(0) = 1 - 0.1 = .9Probability of at least 1 switch: P(X 1) = 1 - P(0) = 1 - 0.1 = .9

Probability Distribution of the Number of Switches

x P(x)0 0.11 0.22 0.33 0.24 0.15 0.1

1

x P(x)0 0.11 0.22 0.33 0.24 0.15 0.1

1

Probability of more than 2 switches: P(X > 2) = P(3) + P(4) + P(5) = 0.2 + 0.1 + 0.1 = 0.4Probability of more than 2 switches: P(X > 2) = P(3) + P(4) + P(5) = 0.2 + 0.1 + 0.1 = 0.4

543210

0.4

0.3

0.2

0.1

0.0

x

P(x

)

The Probability Distribution of the Number of Switches

Example 3-2Example 3-2

Page 12: COMPLETE  BUSINESS  STATISTICS

3-12

A discrete random variable: has a countable number of possible values has discrete jumps (or gaps) between successive values has measurable probability associated with individual values counts

A discrete random variable: has a countable number of possible values has discrete jumps (or gaps) between successive values has measurable probability associated with individual values counts

A continuous random variable: has an uncountably infinite number of possible values moves continuously from value to value has no measurable probability associated with each value measures (e.g.: height, weight, speed, value, duration, length)

A continuous random variable: has an uncountably infinite number of possible values moves continuously from value to value has no measurable probability associated with each value measures (e.g.: height, weight, speed, value, duration, length)

Discrete and Continuous Random Discrete and Continuous Random VariablesVariables

Page 13: COMPLETE  BUSINESS  STATISTICS

3-13

1 0

1

0 1

. for all values of x.

2.

Corollary:

all x

P x

P x

P X

( )

( )

( )

The probability distribution of a discrete random variable X must satisfy the following two conditions.

Rules of Discrete Probability Rules of Discrete Probability DistributionsDistributions

Page 14: COMPLETE  BUSINESS  STATISTICS

3-14

F x P X x P iall i x

( ) ( ) ( )

The cumulative distribution function, F(x), of a discrete random variable X is:

x P(x) F(x)0 0.1 0.11 0.2 0.32 0.3 0.63 0.2 0.84 0.1 0.95 0.1 1.0

1.00

x P(x) F(x)0 0.1 0.11 0.2 0.32 0.3 0.63 0.2 0.84 0.1 0.95 0.1 1.0

1.00 543210

1 .0

0 .9

0 .8

0 .7

0 .6

0 .5

0 .4

0 .3

0 .2

0 .1

0 .0

x

F(x

)

Cumulative Probability Distribution of the Number of Switches

Cumulative Distribution FunctionCumulative Distribution Function

Page 15: COMPLETE  BUSINESS  STATISTICS

3-15

x P(x) F(x)0 0.1 0.11 0.2 0.32 0.3 0.63 0.2 0.84 0.1 0.95 0.1 1.0

1

x P(x) F(x)0 0.1 0.11 0.2 0.32 0.3 0.63 0.2 0.84 0.1 0.95 0.1 1.0

1

The probability that at most three switches will occur:

Cumulative Distribution FunctionCumulative Distribution Function

Note:Note: P(X < 3) = F(3) = 0.8 = P(0) + P(1) + P(2) + P(3)

Page 16: COMPLETE  BUSINESS  STATISTICS

3-16

x P(x) F(x)0 0.1 0.11 0.2 0.32 0.3 0.63 0.2 0.84 0.1 0.95 0.1 1.0

1

The probability that more than one switch will occur:

Using Cumulative Probability Using Cumulative Probability Distributions (Figure 3-8)Distributions (Figure 3-8)

Note:Note: P(X > 1) = P(X > 2) = 1 – P(X < 1) = 1 – F(1) = 1 – 0.3 = 0.7

Page 17: COMPLETE  BUSINESS  STATISTICS

3-17

x P(x) F(x)0 0.1 0.11 0.2 0.32 0.3 0.63 0.2 0.84 0.1 0.95 0.1 1.0

1

The probability that anywhere from one to three switches will occur:

Using Cumulative Probability Using Cumulative Probability Distributions (Figure 3-9)Distributions (Figure 3-9)

Note:Note: P(1 < X < 3) = P(X < 3) – P(X < 0) = F(3) – F(0) = 0.8 – 0.1 = 0.7

Page 18: COMPLETE  BUSINESS  STATISTICS

3-18

The mean of a probability distribution is a measure of its centrality or location, as is the mean or average of a frequency distribution. It is a weighted average, with the values of the random variable weighted by their probabilities.

The mean is also known as the expected value (or expectation) of a random variable, because it is the value that is expected to occur, on average.

The expected value of a discrete random variable X is equal to the sum of each value of the random variable multiplied by its probability.

E X xP xall x

( ) ( )

x P(x) xP(x)0 0.1 0.01 0.2 0.22 0.3 0.63 0.2 0.64 0.1 0.45 0.1 0.5 1.0 2.3 = E(X) =

543210

2.3

3-2 Expected Values of Discrete 3-2 Expected Values of Discrete Random VariablesRandom Variables

Page 19: COMPLETE  BUSINESS  STATISTICS

3-19

Suppose you are playing a coin toss game in which you are paid $1 if the coin turns up heads and you lose $1 when the coin turns up tails. The expected value of this game is E(X) = 0. A game of chance with an expected payoff of 0 is called a fair game.

Suppose you are playing a coin toss game in which you are paid $1 if the coin turns up heads and you lose $1 when the coin turns up tails. The expected value of this game is E(X) = 0. A game of chance with an expected payoff of 0 is called a fair game.

x P(x) xP(x)-1 0.5 -0.50 1 0.5 0.50 1.0 0.00 =

E(X)=

-1 1 0

A Fair GameA Fair Game

Page 20: COMPLETE  BUSINESS  STATISTICS

3-20

Number of items, x P(x) xP(x) h(x) h(x)P(x) 5000 0.2 1000 2000 400 6000 0.3 1800 4000 1200 7000 0.2 1400 6000 1200 8000 0.2 1600 8000 1600 9000 0.1 900 10000 1000

1.0 6700 5400

Example 3-3Example 3-3: Monthly sales of a certain product are believed to follow the given probability distribution. Suppose the company has a fixed monthly production cost of $8000 and that each item brings $2. Find the expected monthly profit h(X), from product sales.

E h X h x P xall x

[ ( )] ( ) ( ) 5400

The expected value of a function of a discrete random variable X is:

E h X h x P xall x

[ ( )] ( ) ( )

The expected value of a linear function of a random variable is: E(aX+b)=aE(X)+b

In this case: E(2X-8000)=2E(X)-8000=(2)(6700)-8000=5400In this case: E(2X-8000)=2E(X)-8000=(2)(6700)-8000=5400

Expected Value of a Function of a Expected Value of a Function of a Discrete Random VariablesDiscrete Random Variables

Note: h (X) = 2X – 8000 where X = # of items sold

Page 21: COMPLETE  BUSINESS  STATISTICS

3-21

The variancevariance of a random variable is the expected squared deviation from the mean:

2 2 2

2 2 2

2

V X E X x P x

E X E X x P x xP x

all x

all x all x

( ) [( ) ] ( ) ( )

( ) [ ( )] ( ) ( )

The standard deviationstandard deviation of a random variable is the square root of its variance: SD X V X( ) ( )

Variance and Standard Deviation of a Variance and Standard Deviation of a Random VariableRandom Variable

Page 22: COMPLETE  BUSINESS  STATISTICS

3-22

Number ofSwitches, x P(x) xP(x) (x-) (x-)2 P(x-)2 x2P(x)

0 0.1 0.0 -2.3 5.29 0.529 0.01 0.2 0.2 -1.3 1.69 0.338 0.22 0.3 0.6 -0.3 0.09 0.027 1.23 0.2 0.6 0.7 0.49 0.098 1.84 0.1 0.4 1.7 2.89 0.289 1.65 0.1 0.5 2.7 7.29 0.729 2.5

2.3 2.010 7.3

Number ofSwitches, x P(x) xP(x) (x-) (x-)2 P(x-)2 x2P(x)

0 0.1 0.0 -2.3 5.29 0.529 0.01 0.2 0.2 -1.3 1.69 0.338 0.22 0.3 0.6 -0.3 0.09 0.027 1.23 0.2 0.6 0.7 0.49 0.098 1.84 0.1 0.4 1.7 2.89 0.289 1.65 0.1 0.5 2.7 7.29 0.729 2.5

2.3 2.010 7.3

2 2

2 201

2 2

22

73 232 201

V X E X

xall x

P x

E X E X

xall x

P x xP xall x

( ) [( ) ]

( ) ( ) .

( ) [ ( )]

( ) ( )

. . .

Table 3-8

Variance and Standard Deviation of a Variance and Standard Deviation of a Random Variable – using Example 3-2Random Variable – using Example 3-2

Recall: = 2.3.

Page 23: COMPLETE  BUSINESS  STATISTICS

3-23

The variance of a linear function of a random variable is:

V a X b a V X a( ) ( ) 2 2 2

Number of items, x P(x) xP(x) x2 P(x) 5000 0.2 1000 5000000 6000 0.3 1800 10800000 7000 0.2 1400 9800000 8000 0.2 1600 12800000 9000 0.1 900 8100000

1.0 6700 46500000

Example 3-Example 3-3:3:

2

2 2

2

2

2

2

2 8000

46500000 6700 1610000

1610000 1268 862 8000 2

4 1610000 6440000

2 80002 2 1268 86 2537 72

V X

E X E X

x P x xP x

SD XV X V X

SD x

all x all x

x

x

( )

( ) [ ( )]

( ) ( )

( )

( ) .( ) ( ) ( )

( )( )

( )( )( . ) .

( )

Variance of a Linear Function of a Variance of a Linear Function of a Random VariableRandom Variable

Page 24: COMPLETE  BUSINESS  STATISTICS

3-24

The mean or expected value of the sum of random variables is the sum of their means or expected values:

( ) ( ) ( ) ( )X Y X YE X Y E X E Y

For example: E(X) = $350 and E(Y) = $200

E(X+Y) = $350 + $200 = $550

The variance of the sum of mutually independent random variables is the sum of their variances:

2 2 2( ) ( ) ( ) ( )X Y X YV X Y V X V Y

if and only if X and Y are independent.

For example: V(X) = 84 and V(Y) = 60 V(X+Y) = 144

Some Properties of Means and Some Properties of Means and Variances of Random VariablesVariances of Random Variables

Page 25: COMPLETE  BUSINESS  STATISTICS

3-25

The variance of the sum of k mutually independent random variables is the sum of their variances:

Some Properties of Means and Some Properties of Means and Variances of Random VariablesVariances of Random Variables

NOTE:NOTE: )(...)2()1()...21( kXEXEXEkXXXE )(...)2()1()...21( kXEXEXEkXXXE

)(...)2(2)1(1)...2211( kXEkaXEaXEakXkaXaXaE )(...)2(2)1(1)...2211( kXEkaXEaXEakXkaXaXaE

)(...)2()1()...21( kXVXVXVkXXXV

)(2...)2(22

)1(21

)...2211( kXVk

aXVaXVakXkaXaXaV

andand

Page 26: COMPLETE  BUSINESS  STATISTICS

3-26

Chebyshev’s Theorem applies to probability distributions just as it applies to frequency distributions.

For a random variable X with mean standard deviation , and for any number k > 1:

P X kk

( ) 11

2

11

21

14

34

75%

11

31

19

89

89%

11

41

116

1516

94%

2

2

2

At least

Lie within

Standarddeviationsof the mean

2

3

4

Chebyshev’s Theorem Applied to Chebyshev’s Theorem Applied to Probability DistributionsProbability Distributions

Page 27: COMPLETE  BUSINESS  STATISTICS

3-27

Using the Template to Calculate Using the Template to Calculate statistics of statistics of h(x)h(x)

Page 28: COMPLETE  BUSINESS  STATISTICS

3-28

Using the Template to Calculate Mean and Variance Using the Template to Calculate Mean and Variance for the Sum of Independent Random Variablesfor the Sum of Independent Random Variables

Output for Example 3-4Output for Example 3-4