Top Banner
Comparisons of Quadratic Mating Methods Slices, Medusas and Clusters, Thurston Equivalence and Shared Matings Chris King A quadratic mating consists of a quadratic rational function, whose Julia sets contain two complementary components, each of which is the Julia set of a quadratic polynomial located on complimentary hemispheres of the Riemann sphere. Two approaches can be used. In the first, one of the rational function’s critical points is given a fixed period and the other is allowed to vary, forming a parameter plane of matings. In the second, including Medusa, a sequence of coefficients is combinatorially generated from external angles, using theory of Thurston and others developed by John Hubbard. Included are observations of Julia set matings utilizing Medusa (Boyd & Henriksen 2012) and Perk(0) moduli space slices (Devaney et al. 2013) in Dark Heart (King 2016) and Per3(0) in Mandel (Jung 2014), also including Chéritat’s (2015) and Sharland’s (2012) mating examples. Fig 1: Left: Periodic moduli space slices and Julia set matings using rational functions (Devaney et al. 2013), which are also general for mating a global array of Julia sets with low period cases. Right: Medusa matings, complement those created by the slice method, mating Julia sets defined by any two external angles, using coefficients produced by the Medusa algorithm. The Perk(0) generating functions are: f 1 ( z ) = z 2 + c , f 2 ( z ) = c /( z 2 + 2 z ), f 3 ( z ) = ( z 1)( z c / (2 c)) / z 2 and f 4 ( z ) = ( z 4c / (10c + 1))( z (1 + 2c) / (1 + 6c)) / z 2 . Medusa matings are of the form f ( z ) = (az 2 + 1 a)/(bz 2 + 1 b) . The Medusa method favours Julia sets identified by external angles as shown in fig 3, but the slice method can readily find matings with irrational flows, provided they are mated with low period attractors as in fig 2 right. Fig 2: Left: Medusa [1/7,1/3] [9/31,1/3] and [1/1,1/15]. Right: Per4(0) matings with a Siegel disc and a pd 5 parabolic set. Although Medusa can diverge, or remain unstable for some values, it does give comparable results for many examples of periodic domains with odd external angles, where the methods appear to be homologous. For example (3,2) (5,2) and (1,4) above have homologous Medusa Julia matings [1/7,1/3] [9/31,1/3] and [1/1,1/15] shown in fig 2, implying the functions, while different, have conjugate dynamics. However, it is more challenging
6

Comparisons of Quadratic Mating Methods Slices, Medusas ...dhushara.com/DarkHeart/Matings.pdfSlices, Medusas and Clusters, Thurston Equivalence and Shared Matings Chris King A quadratic

Jul 14, 2020

Download

Documents

dariahiddleston
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Comparisons of Quadratic Mating Methods Slices, Medusas ...dhushara.com/DarkHeart/Matings.pdfSlices, Medusas and Clusters, Thurston Equivalence and Shared Matings Chris King A quadratic

ComparisonsofQuadraticMatingMethodsSlices,MedusasandClusters,ThurstonEquivalenceandSharedMatings

ChrisKingAquadraticmatingconsistsofaquadraticrationalfunction,whoseJuliasetscontaintwocomplementarycomponents,eachofwhichistheJuliasetofaquadraticpolynomiallocatedoncomplimentaryhemispheresoftheRiemannsphere.Twoapproachescanbeused.Inthefirst,oneoftherationalfunction’scriticalpointsisgivenafixedperiodandtheotherisallowedtovary,formingaparameterplaneofmatings.Inthesecond,includingMedusa,asequenceofcoefficientsiscombinatoriallygeneratedfromexternalangles,usingtheoryofThurstonandothersdevelopedbyJohnHubbard.IncludedareobservationsofJuliasetmatingsutilizingMedusa(Boyd&Henriksen2012)andPerk(0)modulispaceslices(Devaneyetal.2013)inDarkHeart(King2016)andPer3(0)inMandel(Jung2014),alsoincludingChéritat’s(2015)andSharland’s(2012)matingexamples.

Fig1:Left:PeriodicmodulispaceslicesandJuliasetmatingsusingrationalfunctions(Devaneyetal.2013),whicharealso

generalformatingaglobalarrayofJuliasetswithlowperiodcases.Right:Medusamatings,complementthosecreatedbytheslicemethod,matingJuliasetsdefinedbyanytwoexternalangles,usingcoefficientsproducedbytheMedusaalgorithm.

ThePerk(0)generatingfunctionsare: f1(z) = z2 + c,  f2 (z) = c / (z

2 + 2z),  f3(z) = (z−1)(z− c / (2− c)) / z2 and

f4 (z) = (z− 4c / (10c+1))(z− (1+ 2c) / (1+ 6c)) / z2 .Medusamatingsareoftheform f (z) = (az2 +1− a) / (bz2 +1− b) .

TheMedusamethodfavoursJuliasetsidentifiedbyexternalanglesasshowninfig3,buttheslicemethodcanreadilyfindmatingswithirrationalflows,providedtheyarematedwithlowperiodattractorsasinfig2right.

Fig2:Left:Medusa[1/7,1/3][9/31,1/3]and[1/1,1/15].Right:Per4(0)matingswithaSiegeldiscandapd5parabolicset.

AlthoughMedusacandiverge,orremainunstableforsomevalues,itdoesgivecomparableresultsformanyexamplesofperiodicdomainswithoddexternalangles,wherethemethodsappeartobehomologous.Forexample(3,2)(5,2)and(1,4)abovehavehomologousMedusaJuliamatings[1/7,1/3][9/31,1/3]and[1/1,1/15]showninfig2,implyingthefunctions,whiledifferent,haveconjugatedynamics.However,itismorechallenging

Page 2: Comparisons of Quadratic Mating Methods Slices, Medusas ...dhushara.com/DarkHeart/Matings.pdfSlices, Medusas and Clusters, Thurston Equivalence and Shared Matings Chris King A quadratic

tofindcorrespondencesinsomeothercases,althoughbothapproachesappeartogivevalidmatings.Compareforexample[1/71/15]infig3with(3,4)aboveandtheexamplefromthesmallerperiod3bulbfig3right,withlocationshownat(a).Allthreearetopologicallydistinctmatings.

Fig3:[1/71/15]matingperiods3and4andthekeyPer4(0)period3matingat(a)indicatesdifferences,whichmaybedue

tothegeneratingfunctionoftheparameterplanePer4(0)sincetheright-handimageisasymmetric,asinfigs7,8.

Neitherdoesthe[1/71/7]self-matinginfig4appeartobehomologoustoanyofthoseofPer3(0),possiblyduetoitssuppressionofpd3,althoughitdoesappearhomologoustothatofArnaudChéritat’sThurstonalgorithm.

Fig4:[1/71/7]whichdoesn’tappearinPer3(0)andanequivalentmatingbyArnaudChéritat(2015).

Medusacorrectlyportraysboth[1/7,1/5]and[1/5,1/7]matingtheperiod3bulbtoitsperiod4dendriticMandelbrot,asshowninfig1,anditcanportraytwodendriticMandelbrotsatelliteJuliasonthesamesideofthex-axisasshownbelowfor[5/311/5]and[1/55/31],shownbelowleftandcentre.Butthe[1/5,1/5]and[5/31,5/31]self-matings,shownatrighthavedistinctappearances.Significantlythecoefficientsof[1/5,1/5]arecomplexconjugates.Thesecondshowsitsstructuretobeacomplementaryfractalinthedetailright.

Fig5:Medusamatings[5/311/5]and[1/55/31],and[1/5,1/5]and[5/31,5/31]mainbodybetweenperiodbulb

JuliasanddendriticMandelbrotJuliasets.AsituationwheresomethingprovocativehappensistheMedusamatingbetweentheperiod3bulbJuliaset(Rabbit)withtheJuliasetoftheperiod3Mandelbrotonthenegativexdendrite(Airplane).TheMedusaalgorithmfor[1/7,3/7]and[3/7,1/7]don’tlookatfacevaluelikeamatingbetweenabulbandadendriticMandelbrotJulia,aswesawin[1/5,1/7]andtheyareapparentlyhomologoustooneanotherasshowninfig6.

Fig6:[1/7,3/7]and[3/7,1/7]comparedwithTomSharland’sandArnaudChéritat’sversions.

Page 3: Comparisons of Quadratic Mating Methods Slices, Medusas ...dhushara.com/DarkHeart/Matings.pdfSlices, Medusas and Clusters, Thurston Equivalence and Shared Matings Chris King A quadratic

Thesamesituationasinfig6applissalsoto[1/511,255/511](fig1),whichisalsoamatingbetweenaperiod9bulbandaperiod9dendriticMandelbrotonthenegativex-axis.WolfJunghaspointedoutthattheseaspectscanbeexplainedbysharedmatings-‘differentpairsofpolynomialsmaygivethesamerationalmap.OneofthesimplestexamplesisthatthematingofRabbitandAirplaneisthesameasthematingofAirplaneandRabbit,uptoarescaling.Infactthemapcanberescaledsuchthatitisinvariantunderinversion1/z,althoughitisnotaself-mating.Moreover,thefactthatsixFatoucomponentsmeetatasinglepoint,canbeexplainedintermsofrayconnections’.ThisexampleisconfirmedagaintheimagerightfromTomSharland’s(2012)Harvardlecture.ThurstonequivalencemeansthatJuliasetsofmatingsareuniqueuptoconjugacyclassesviaMobiustransformations.Infig7weexplorethismatingusingtwoversionsofPer3(0).Theperiod3dendriticMandelbrot(a)hasamatinglookingaswewouldexpect,inbothDarkHeart(upperrow)andMandel(lowerrow)–veryobviouslytheAirplaneandRabbit.Theotherperiod3regionsintheparameterplanesare(b)whichisnothomologoustofig6and(c),whichdiffersinDarkHeart,butisidenticaltofig6inMandel,raisingaquestionabouttherelationshipbetweenthemandwhethertheJuliasetsformhomologousmatingsunderaMobiustransformation.

Fig7:DarkHeartandMandelversionsof(3,3)Per3(0)matingsshowsubtledifferencesoftopology.

Thetwoparameterplanesillustratedinfig8appearatfirstsighttobeidenticalbuthavesubtledifferencesintheirtopologytotherightofthecentralbasinwhichramifiesintotheJuliasets.TherationalfunctioninMandelis f3

M (z) = (z2 + c3 − c−1) / (z2 − c2 ) withperiod3criticalorbit∞→1→−c andcriticalpoint0,whiletheoneinDarkHeart(Devaneyetal.2013)is f3

D (z) = (z−1)(z− c / (2− c)) / z2with∞→1→ 0 andcriticalpointc.Bothappeartogivevalidmatingsdespitetheasymmetry,sopresumablymustdifferbyaMobiustransformation.

Fig8:RunninginDarkHeart,thetwoPer3(0)parameterplanesandtheirJuliasetshavesubtledifferences.

Toseekaresolutionfortheperiod4caseweneedtogenerateasymmetricJuliaspectrumbyconfiningthezeroandinfinitecriticalpointstozeroandinfinityasisthecasefortheperiod3versioninMandel:

Page 4: Comparisons of Quadratic Mating Methods Slices, Medusas ...dhushara.com/DarkHeart/Matings.pdfSlices, Medusas and Clusters, Thurston Equivalence and Shared Matings Chris King A quadratic

f (z) = z2 + pz2 + q

, ∞→1→−c,  ⇒1+ p = −c(1+ q),  g = −c2, p = −c(1− c2 )−1= c3 − c−1,   f (z) = (z2 + c3 − c−1) / (z2 − c2 )

Wenowneedtoassignanarbitrarypointatoretainthecorrectdegreesoffreedomasshownbelow.

f (z) = z2 + pz2 + q

, ∞→1→ a→−c,  1→ a⇒1+ p = a(1+ q),  a→−c⇒ a2 + p = −c(a2 + q),  −c→∞⇒ g = −c2,  

p = a(1− c2 )−1,  a2 + a(1− c2 )−1= −ca2 + c3, a2 + a((1− c)− (c2 − c+1) = 0, a = (c−1)± (c−1± 5c2 − 6c+ 5) / 2,  

f (z) = (z2 + (c−1± 5c2 − 6c+ 5)(1− c2 ) / 2−1) / (z2 − c2 )

Becausethisgeneratingfunctionnowinvolvesafractionalpowerofc,thecomplexparameterplanebecomessplit,resultingintwo“fermionic”parameterplanesconnectedbytheellipticsplitillustrated(right)infig9below.ComparisonofthesewiththeMedusamatingsforthe6periodfourlocationsinthequadraticMandelbrotset(left)oftheseshowsthatthetwoplanesprovideafullrepresentationofthematings,withallthesecasesandconfirmstheconsistencyofthetwomatingmethods.

Fig9:GlobalcorrespondencebetweenMedusamatingsforalltheperiod4typesandthe“fermionic”Per4(0).

WenowexploresharedorequivalentmatingsfurtherinMedusa.ThetwodendriticMandelbrotmatings[3/7,1/5]and[1/5,3/7]toprowfig10appeartobeequivalentto[1/7,6/15]and[6/15,1/7]ontheperiod3and2x2bulbs,againsuggestingsharedmatings.

Fig10:[1/53/7]givesthesameMedusamatingas[1/76/15]

Page 5: Comparisons of Quadratic Mating Methods Slices, Medusas ...dhushara.com/DarkHeart/Matings.pdfSlices, Medusas and Clusters, Thurston Equivalence and Shared Matings Chris King A quadratic

TomSharland(2012)notesthatthetwomatingsinfig11areknowntobeequivalent.IndeedMedusanotonlygivesidenticalcoefficientsforboth,buttheinversemating[7/151/5]ishomologoustotheoriginal,eventhoughtheFatoubasinsofzero(black)andinfinity(shadedorange)havebeenexchanged.

Fig11:Equivalentmatings[1/57/15]and[4/56/15]withtheirJuliasetandthatoftheinversematings.

ClusteringistheconditionwherethecriticalorbitFatoucomponentsgrouptogethertoformaperiodiccycle.Tomcommentsthatthematingsrightinfig11allhaveperiod3clustercycleswiththesameintrinsicdata.Buttheycertainlydon’talllookthesame!Insimplecases,(periods1&2)thecombinatorialdataofaclustercompletelydefinesarationalmap,butinperiod3theexperimentalpicturessuggestnot.

Fig12:Equivalentperiod3clustermatingscorrespondtoTomSharlnd’simages,providedyoupickthe

appropriatepairofratiosintheleft-handfigures.Someappeartobetopologicallydistinct.Nowlet’sturntoevendenominatorswherewehaveraystoMisiurewiczpointsonthedendrites.Thereisnoproblemwiththefirstdenominatorbeingevenas[1/4,1/7]showsusbelowleft,and[1/4,1/511]atright,butifwechoose[1/7,1/4],wegettheinfiniteJuliasetshowncentre.NotingthatMedusahasplacedtheJuliasetoverinfinityinsteadofzero-thecorrectthingtodoas[1/4]hasnointeriorbasinsoitshouldsitoninfinity,wecan

maketheMobiustransformation az2 +1− abz2 +1− b

→(1− b)z2 + b(1− a)z2 + a

andwehaveaniceJuliasetwhosecoefficientsare

distinctfromthoseof[1/4,1/7]whichisotherwisehomologousto[1/4,1/7].

Page 6: Comparisons of Quadratic Mating Methods Slices, Medusas ...dhushara.com/DarkHeart/Matings.pdfSlices, Medusas and Clusters, Thurston Equivalence and Shared Matings Chris King A quadratic

Fig13:Left:[1/6,1/7]withdendritictreedetail.Centre:[1/7,1/6]anditsMobiusinversion.Right:[1/4,1/511]

[1/4,1/6]and[1/4,1/2]alsolooktobeplausiblebecausetheyarematingachaoticdendriticJuliasettoanotherone,sothewholeplaneisclosetoJulia…butisthisthecaseifoneshouldhavecomplimentaryshading?

Fig14:Starryskywithsymmetries.MedusamatingoftwodendriticJuliasets[1/4,1/2]

ArnaudChéritat’sThurstonalgorithmdoesgiveclearevolutionaryportraitsofmatingsofdendriticJuliasetsincluding[1/65/14],infig15.HenotesthataccordingtoShishikuraandMilnor,thisgivesaLattèsmap.

Fig15:ThreestagesinArnaudChéritat’s(2015)movieofdendriticJuliasetmating[1/65/14]appearstosolvethis.

Medusaiterationsremainedunstableforthesevalues.ManymoreavailableatArnaud’slinkbelow.

References

1. BoydSuzanne,HenriksenChristian(2012)TheMedusaAlgorithmForPolynomialMatingsConformalGeometryandDynamics16,161-183arXiv:1102.5047.Download:http://www.math.cornell.edu/~dynamics/Matings/

2. ChéritatArnaud(2015)PolynomialmatingsontheRiemannspherehttps://www.math.univ-toulouse.fr/~cheritat/MatMovies/

3. DevaneyR,FagellaN,GarijoA,JarqueX(2013)SierpinskicurveJuliasetsforquadraticrationalmapsarXiv:1109.0368.4. JungWolf(2014)Mandelhttp://mndynamics.com/indexp.html5. KingChris(2016)DarkHeartPackage2.0http://dhushara.com/DarkHeart/6. SharlandThomas(2012)PolynomialMatingsandRationalMapswithClusterCycles

www.math.uri.edu/~tsharland/Harvard.pdf