Top Banner

of 3

Comparison of Two Adaptive Identification Hemods for Iio)(Itoriffi and Diagnosis of An

Jun 02, 2018

Download

Documents

faramarzsamani
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
  • 8/10/2019 Comparison of Two Adaptive Identification Hemods for Iio)(Itoriffi and Diagnosis of An

    1/3

    m 4

    CWARISON OF TWO ADAPTIVE DENTIFICATION

    HEMO S

    FOR IIO)(ITORIffi ND D I A G N O S I S OF

    N

    EXPERIMENTALNUCLEAR REACTOR

    6. Zwingelstein

    C m is s a r ia t Ene rg ie Atomique

    C.E.N. S A C L A Y

    Serv ice Des App l i ca t i on s Ind us t r i e l l es

    BP N o 2 91190 6 i f Sur Yvet te

    France

    Abstract

    This paper deals

    wh

    t h e c m p a r i s o n o f two

    adaptive methods based upon se ns i t iv i ty eq ua tio ns

    fo r use i n the surv e i l lanc e and d iagnosis o f an

    experimentalnuclear eactor.

    The sur vei l lan ce and diagn osis are obtained

    by a real- t ime comparison o f referenceparameters

    and the act ua l parametersgivenby headaptive

    a lgo r i t tm .

    descent nethod Resu l tsob ta inedwi th h i sa lgo -

    rithm

    usingexperimentaldata from a reactor are

    g iven us ing two d i f f e r e n t c r i t e r i a .

    The f i r s t a l g o r i t h u ses an o n - li ne , s te e pe s t

    The second algor i Ura uses both s e n s i t i v i t y

    equations and a re cu rs iv e eas t squares method.

    An example i s given using heexperimental model

    o f h e same reac to r .B o tha lgo r i thmdescr ibed

    i n t h i s paper are ea si l y implementab le on a

    mini

    computer and ar e no t se ns i t i ve o a pr io r i know-

    le dg e o f t h e . s t a t i s t i c a 1 p r o p e r t i e s o f t h e n oi se .

    These a lgo r i t hm a re a l so su i ta b le o r he su r -

    ve i l la nc e o f non l in ear processes.

    1 . In t roduc t i on

    The m onitor ing and diagn osis of a nucl ear

    power p lan t a re ve ry mpo r tan t too l s to use i

    a c h i e v i n g n c r e a s e d r e l i a b i l i t y .

    adap ta t i ve den t i f i ca t i on a lgo r i thm may he lp the

    nuc lea r p lan t ope ra to rs o de tec t and iden t i f y a

    m a lf u nc t io n i n t h e e a c to r . The p r i n c i p l e o f

    t h i smo nit or i ng system i s shown

    i n

    Fig. 1. A

    math ematic al, model where parameters have phy sic al

    meanings i s implementedon a min i computer and i s

    fed by the same i npu ts as the nuc lea r p lan t .

    The adapt ive a l go r i thmo d i f i es he param-

    eters i n order o min imize he nstantaneous errOP

    o f a un c t i on a l o f he e r ro r be tween the reac to r

    and model outputs.

    I f

    a malfunction o cc ur s i n t h e p l a n t , t h e

    su rve i l l ance i s ach ieved by check ing he e r ro r

    value. The diagnos is i s provided by theadap t i ve

    algor i thm which wi detenninewhichparameter has

    s h i f t e d from i t s nominal va lue.

    Th is work i s an a t tempt t o demonstrate how an

    P .

    Blanc

    C m i s s a r i a t E ne rg ie A t mi qu e

    C.E.N. S A C L A Y

    Servi ce Des App l i ca t i o ns nd us t r i e l l es

    BP

    NO2 91190

    Gif

    Sur Yvette

    France

    Since measurements i n nuc lea r p lan ts a re

    a lways no isy, a l l t h e parametersobtained by the

    adapt ivea lgor i thmsarea lsono isy.For hese

    reasons, i t s necessary t o use decis ion h eory

    i n o r de r t o g i v e h e a p p r o p ri a t e m a l f u n c t io n

    a1 anns.

    averyaccuratephysical Rodel, an acc ura te refe r-

    ence parameter s e t and ada pt i ve a lg or i thm which

    are ndependent o f a p r io r i knowledge and imple-

    rnentableon a mini cosputer.

    This paper compares two adaptivea lgor i thms

    f o r use i n moni tor ing an exper imenta lnuclear

    reactor core .

    To

    be

    re l i ab l e , h i s mo n i to r i ng sys tem needs

    2 . D e s c r i p t i o no f the NuclearReactor Core

    Fig.2shorn heblockd iag ram o f he nuc lea r

    core and ind ica tes he ran sfe r un ct i on between

    r e a c t i v i t y n s e r t e d by th e c o n t r o l r o d a nd t h e

    power level .

    eauations

    The open loop i s g iven by th e k in et ic s

    dCi Bi

    = P

    -

    aici

    where P i s

    parer

    l e v e l

    p k i n e t i c s e a c t i v i t y :kmmn

    constants

    , B i ,B,P a r e

    C, i t h d el ay edneutron

    ' group

    The feedback loo p ncl uck s he feedback re a c ti v i t y

    e f fec ts due to he power l eve l and the n le t

    cool ant temperature.

    These two feedback e f fec ts are npor ta nt s ince

    they de tenn ine the nuc lea r p lan t s tab i l i t y and th e i r

    magni tudes are d i r ec t ly e la t ed o ph ys ica l param-

    e te r s o f t h e c or e.

    For hese reasons, ada ptiv e algo rith ms were

    tes ted i n o rde r to moni o r these feedback e f f ec t s .

    The mathematical models were developed and

    experim ents consis t ing o f s tep responses where

    achieved a t he p l an t . The opt imizat ion echn iques

    were used on the plan t data o obta in he ol low -

    ing models:

    436

  • 8/10/2019 Comparison of Two Adaptive Identification Hemods for Iio)(Itoriffi and Diagnosis of An

    2/3

    *

    Power Feedback Effect

    akP( t ) = a k d t ) + akp2( t )

    6kp1(t)= a1 P ( t )

    6kp2( t ) + a26kp2(t) = a3 P ( t ) (neasured)

    *Temperature Feedback E ff e c t

    akT( t )

    =

    akTl(t)

    +

    skT2( t )

    6kTO( t )

    +

    a5 bkT2(t)

    =

    a6T( t )ature (measured)

    P ( t )

    Power

    Level

    a k T l ( t ) = a 4 T ( t ) T ( t )n l e t t e n p e r -

    3. A l go r i th m and Resul ts

    The fol lowin g algo r i thm s are based upon sensi-

    t i v i t y e qu at io ns . I n o r d e r t o de mo ns tr at e t h e

    d e te n ni na ti on o f s e n s i t i v i t y c o e f f i c i e n t s , e t us

    cons ider a first o r d e r d i f f e r e n t i a l e q u a t i o n

    S+alS

    =

    a2e wi thS ( o u t p u t ) ,e n p u t

    he

    p a r t i a l d e r i v a t i v e s

    aal

    =

    - as

    sal' *a2

    -

    a re c a l l e d t h e p ar am et er s e n s i t i v i t i e s o f t h e

    f i r s t o r d e r and i f we assune t h a t a t

    t=Op O)=S O)

    = 0,

    t he approx imate sens i t i v i t y equa t i ons

    [l]

    re

    given by

    i lalaal = - S 'Jal(0) = 0

    aa2 + azoa2 e

    with

    ua2(0)

    = 0

    F i

    s t A 1 g o r i hm

    d ' t b e i n s t a n t a T u s squared e r r o r C l ( t ) = d ( t ) =

    IS

    t) - S,,, t)] between the

    neasured

    process out-

    puand th e nodeloutput.Let A r ep resen t he

    parameter ve ct or AT=[a1 .

    a 6 ( T

    denotes

    t r anspos i t i on ) .

    The f i r s t a l go r i t t n n tends t o m in im ize f o r each

    The gradient

    9

    s g i ven by

    m

    i

    -1

    a6

    Thisvector , &; i s o b ta in e d by i n t e g r a t i o n o f h e

    sen s i t i v i ty eq uat ion s assuming tha t between two

    sampling ins tan ts he parametervalues are cons tant.

    The adap t ive a lgor i thm

    w s

    t h e o l l o w i n g

    4kH) L ( k ) + ATK (AT sampl ingime)

    ( K p o s i t i v eo n s t a n t ) .

    Fig. 3ashows the ad ap t ion of one parameter f o r a

    s im u la t ed 10% chang e i n a l l o f t h e p ar am ete r i n

    the model obtained by fitti t h e e s tdata (K=1

    was u s e d i n h i s c a l c u l a t i o y . n o r d e r o

    damp os c i l l a t i o ns n he adap t i on , he o l low ing

    c r i t e r i o n was chosen:

    Second A1 g o r i

    tho

    be

    th

    process

    ou tpu t , h ( A . t ) be

    t h e

    m

    utput.

    I f

    ALA,

    then

    SP(A,t):S&t) + ( -a cT[A,t]

    To desc r ibe he second algor i thm, l e t Sp(A,t)

    The vector

    (4-3

    s ob ta ined by so l v i ng an

    Us ing the r ecur s l ye eas t square a l go r i t hm

    overdetermined l inear system.

    t h e s ti m a te o f

    A-AJ

    when (k) measurements

    a r e a v ai la b le i s given by

    Thea1

    r i t h

    s

    no

    s e n s i t i v e

    t o

    t h e n i t i a l v a lu e

    o f P ( 0 Y a n d h i s a l g o r i t h m s s t i l l e f f i c i e n t even

    F ig.4 epresen ts he same parameter, but

    wh

    a

    change o f -20 on a l l t h e parameters and us ing

    simulated nputs.

    It seems

    th at he response of

    t h i s a l g o r i t h m i s f a s t e r t h a n t h e p r e v i o u s one.

    p r o p e r t i e s i s a v a i la b l e,

    i t

    s p o s s i b l e o i n d

    t h e s t a t i s t i c a l p r o p e r t i e s o f h e e s t i m a t e s n

    order t o improve the dec i s i on r u l e .

    Concl us

    i

    ns

    equa t i onsareuse fu l oo l s o r he surve i l l ance

    and the d iagnos is o f nuc lear p lants .

    l edge o f no i s e p ro per t i es and a re no t sens i t i ve

    t o a choice o f parameters.

    f o r r e a l t i m e a n a l y s is . o n a d n i c oa pu te r w i t h

    small m r y 4-8k words).

    =k0.5A and never d iverged dur ing severa l tes ts .

    Moreover, i f a p r i o r i kn ow le dge o f n o i s e

    These two a l g o r l t h r r b a s e d upon s e n s i t i v i t y

    N e i t h e r a l g o r i t h m

    requi res

    a pr ior i know-

    M oreover, t he se a t g o r i m a re s pl et ne n ta b le

    5. References

    1.Eykhoff, System Id e n t i f i ca t i o n , Wi ley, 1974.

    2. P. C. Young. "ADDlYinq Parameter Es tim at ion

    t o Dynami i-Sys tem,"ControlEngineer ing,

    Novenber 1969.

    - -

    Fig. 3bshows the ad ap tion o f t h e same parameter

    us ing he C c r i t e r i o n . Then a lgo r it hmsare ens i -

    t i v e t o K c2oice and even diverge i f the gain, K,

    i s to ohigh.

  • 8/10/2019 Comparison of Two Adaptive Identification Hemods for Iio)(Itoriffi and Diagnosis of An

    3/3

    -

    inputs

    PROCESS

    I&

    1

    I

    MODEL

    I

    ADAPTIVE

    I

    --

    ALWRITHM r

    f ig

    1

    P

    1

    80 00 160 00 zGo.oo s)

    f ig

    4

    fig

    2