Top Banner
Common Variable Types in Elasticity Elasticity theory is a mathematical model of material deformation. Using principles of continuum mechanics, it is formulated in terms of many different types of field variables specified at spatial points in the body under study. Some examples include: Scalars - Single magnitude mass density , temperature T, modulus of elasticity E, . . . Vectors – Three components in three dimensions displacement vector Matrices – Nine components in three dimensions stress matrix Other – Variables with more than nine components Chapter 1 Mathematical Preliminaries , e 1 , e 2 , e 3 are unit basis vectors sticity Theory, Applications and Numerics Sadd , University of Rhode Island 3 2 1 e e e u w v u z zy zx yz y yx xz xy x ] [
19

Common Variable Types in Elasticity

Feb 25, 2016

Download

Documents

Common Variable Types in Elasticity. Chapter 1 Mathematical Preliminaries. - PowerPoint PPT Presentation
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Common Variable Types in Elasticity

Common Variable Types in ElasticityElasticity theory is a mathematical model of material deformation. Using principles of continuum mechanics, it is formulated in terms of many different types of field variables specified at spatial points in the body under study. Some examples include:

Scalars - Single magnitude mass density , temperature T, modulus of elasticity E, . . .

Vectors – Three components in three dimensions displacement vector

Matrices – Nine components in three dimensions stress matrix

Other – Variables with more than nine components

Chapter 1 Mathematical Preliminaries

321 eeeu wvu

zzyzx

yzyyx

xzxyx

][

, e1, e2, e3 are unit basis vectors

Elasticity Theory, Applications and NumericsM.H. Sadd , University of Rhode Island

Page 2: Common Variable Types in Elasticity

Index/Tensor NotationWith the wide variety of variables, elasticity formulation makes use of a tensor formalism using index notation. This enables efficient representation of all variables and governing equations using a single standardized method.

Index notation is a shorthand scheme whereby a whole set of numbers or components can be represented by a single symbol with subscripts

333231

232221

131211

3

2

1

,aaaaaaaaa

aaaa

a iji

In general a symbol aij…k with N distinct indices represents 3N distinct numbersAddition, subtraction, multiplication and equality of index symbols are defined in the normal fashion; e.g.

333332323131

232322222121

131312121111

33

22

11

,bababababababababa

babababa

ba ijijii

333231

232221

131211

3

2

1

,aaaaaaaaa

aaaa

a iji

332313

322212

312111

bababababababababa

ba ji

Elasticity Theory, Applications and NumericsM.H. Sadd , University of Rhode Island

Page 3: Common Variable Types in Elasticity

Notation Rules and DefinitionsSummation Convention - if a subscript appears twice in the same term, summation over that subscript from one to three is implied; for example

332211

3

1

332211

3

1

bababababa

aaaaa

iiij

jijjij

iiiii

A symbol aij…m…n…k is said to be symmetric with respect to index pair mn if

kmnijknmij aa ..................

A symbol aij…m…n…k is said to be antisymmetric with respect to index pair mn if

kmnijknmij aa ..................

Useful Identity ][)()(21)(

21

ijijjiijjiijij aaaaaaa

)(21

)( jiijij aaa )(21

][ jiijij aaa . . . symmetric . . . antisymmetric

Elasticity Theory, Applications and NumericsM.H. Sadd , University of Rhode Island

Page 4: Common Variable Types in Elasticity

042

,212340021

iij ba

][)( ,,,,,,,, ijijjiiijiijjijjkijijijii aabbbbbbabaaaaaa

The matrix aij and vector bi are specified by

Determine the following quantities:

Indicate whether they are a scalar, vector or matrix.

Following the standard definitions given in section 1.2,

(matrix)0000168084

(scalar)200164

(scalar)84

(vector)8

1610

(matrix)7106

181966101(scalar)394149160041

(scalar)7

332211

1221311321121111

332211

332211

333332323131232322222121131312121111

332211

ji

ii

jiij

iiijij

kikikijkij

ijij

ii

bb

bbbbbbbb

bbabbabbabbabba

babababa

aaaaaaaa

aaaaaaaaaaaaaaaaaaaaaaaa

(matrix)011101110

230142201

21

212340021

21

21

(matrix)221241111

230142201

21

212340021

21

21

][

)(

jiijij

jiijij

aaa

aaa

Example 1-1: Index Notation Examples

Elasticity Theory, Applications and NumericsM.H. Sadd , University of Rhode Island

Page 5: Common Variable Types in Elasticity

Special Index Symbols

Kronecker Delta

100010001

,0)(,1

jiifsumnojiif

ij

3,

,

,

1,3

ijijiiijij

ijikjkikjkij

jiijijij

iiii

jiij

aa

aaaa

aaaaProperties:

Alternating or Permutation Symbol

otherwise,0

3,2,1ofnpermutatiooddanisif,13,2,1ofnpermutatioevenanisif,1

ijkijk

ijk

123 = 231 = 312 = 1, 321 = 132 = 213 = -1, 112 = 131 = 222 = . . . = 0

Useful in evaluating determinants and vector cross-products 321321

333231

232221

131211

||]det[ kjiijkkjiijkijij aaaaaaaaaaaaaaa

aa

Elasticity Theory, Applications and NumericsM.H. Sadd , University of Rhode Island

Page 6: Common Variable Types in Elasticity

Coordinate Transformations

v

e

1

e

3e

2

e3

e2e1

x3

x1

x2

x1

x2

x3 To express elasticity variables in different coordinate systems requires development of transformation rules for scalar, vector, matrix and higher order variables – a concept connected with basic definitions of tensor variables. The two Cartesian frames (x1,x2,x3) and differ only by orientation),,( 321 xxx

),cos( jiij xxQ Using Rotation Matrix

3332321313

3232221212

3132121111

eeeeeeee

eeee

QQQQQQQQQ

jiji Q ee

jjii Q ee

ii

ii

vvvvvvvv

eeeeeeeev

332211

332211 jiji vQv

jjii vQv

transformation laws for Cartesian vector components

Elasticity Theory, Applications and NumericsM.H. Sadd , University of Rhode Island

Page 7: Common Variable Types in Elasticity

Cartesian TensorsGeneral Transformation Laws

Scalars, vectors, matrices, and higher order quantities can be represented by an index notational scheme, and thus all quantities may then be referred to as tensors of different orders. The transformation properties of a vector can be used to establish the general transformation properties of these tensors. Restricting the transformations to those only between Cartesian coordinate systems, the general set of transformation relations for various orders are:

order general

order fourth,

orderthird,

(matrix)ordersecond,

(vector)orderfirst,(scalar)orderzero,

...... tpqrmtkrjqipmijk

pqrslskrjqipijkl

pqrkrjqipijk

pqjqipij

pipi

aQQQQa

aQQQQa

aQQQa

aQQa

aQaaa

Elasticity Theory, Applications and NumericsM.H. Sadd , University of Rhode Island

Page 8: Common Variable Types in Elasticity

Example 1-2 Transformation ExamplesThe components of a first and second order tensor in a particular coordinate frame are given by

423220301

,241

iji aa

Determine the components of each tensor in a new coordinate system found through a rotation of 60o (/6 radians) about the x3-axis. Choose a counterclockwise rotation when viewing down the negative x3-axis, see Figure 1-2.

The original and primed coordinate systems are shown in Figure 1-2. The solution starts by determining the rotation matrix for this case

10002/12/302/32/1

0cos90cos90cos90cos60cos150cos90cos30cos60cos

ijQ

The transformation for the vector quantity follows from equation (1.5.1)2

22/32322/1

241

10002/12/302/32/1

jiji aQa

and the second order tensor (matrix) transforms according to (1.5.1)3

42/33132/32/3314/54/332/34/34/7

10002/12/302/32/1

423220301

10002/12/302/32/1

T

pqjqipij aQQa

x3

x1

x2

x1

x2

x3

60o

Elasticity Theory, Applications and NumericsM.H. Sadd , University of Rhode Island

Page 9: Common Variable Types in Elasticity

Principal Values and Directions for Symmetric Second Order Tensors

ijij nna

The direction determined by unit vector n is said to be a principal direction or eigenvector of the symmetric second order tensor aij if there exists a parameter (principal value or eigenvalue) such that

0)( jijij na

Relation is a homogeneous system of three linear algebraic equations in the unknowns n1, n2, n3. The system possesses nontrivial solution if and only if determinant of coefficient matrix vanishes

0]det[ 23 aaaijij IIIIIIa

]det[

)(21

3331

1311

3332

2322

2221

1211

332211

ija

ijijjjiia

iia

aIIIaaaa

aaaa

aaaa

aaaaII

aaaaI

scalars Ia, IIa and IIIa are called the fundamental invariants of the tensor aij

Elasticity Theory, Applications and NumericsM.H. Sadd , University of Rhode Island

Page 10: Common Variable Types in Elasticity

Principal Axes of Second Order Tensors

3

2

1

000000

ija

It is always possible to identify a right-handed Cartesian coordinate system such that each axes lie along principal directions of any given symmetric second order tensor. Such axes are called the principal axes of the tensor, and the basis vectors are the principal directions {n(1), n(2) , n(3)}

333231

232221

131211

aaaaaaaaa

aij

x3

x1

x2

Principal Axes Original Given Axes

n(1)

x1

x2

x3

n(3) n(2)

Elasticity Theory, Applications and NumericsM.H. Sadd , University of Rhode Island

Page 11: Common Variable Types in Elasticity

Example 1-3 Principal Value Problem

Determine the invariants, and principal values and directions of

First determine the principal invariants

340430002

ija

50)169(2340

430002

25625630

0234

433002

,2332

a

aiia

III

IIaI

The characteristic equation then becomes

5,2,5

0)25)(2(050252]det[

321

223

ijija

Thus for this case all principal values are distinct For the 1 = 5 root, equation (1.6.1) gives the system

084

042

03

)1(3

)1(2

)1(3

)1(2

)1(1

nn

nn

n

which gives a normalized solution )2(5

132

)1( een

In similar fashion the other two principal directions are found to be 1)2( en )2(

51

32)3( een

It is easily verified that these directions are mutually orthogonal. Note for this case, the transformation matrix Qij defined by (1.4.1) becomes

5/25/10001

5/15/20

ijQ

500020005

ija

Elasticity Theory, Applications and NumericsM.H. Sadd , University of Rhode Island

Page 12: Common Variable Types in Elasticity

Vector, Matrix and Tensor Algebra

iibabababa 332211ba

ikjijk babbbaaa eeee

ba

321

321

321

iijijiT

ijjjij

aAAa

AaaA

][}{

}]{[

AaAa

aAAaT

ijij

jiij

jkji

kjij

jkij

BAtrtr

BAtr

BA

BA

BA

)()(

)(

]][[

BAAB

AB

BA

AB

BAAB

TT

T

T

Scalar or Dot Product

Vector or Cross Product

Common Matrix Products

TQaQa

pqjqipij aQQaLaw tionTransforma

OrderSecond

Elasticity Theory, Applications and NumericsM.H. Sadd , University of Rhode Island

Page 13: Common Variable Types in Elasticity

Calculus of Cartesian TensorsField concept for tensor components

)()(),,()()(),,(

)()(),,(

321

321

321

xx

x

ijiijijij

iiiii

i

axaxxxaaaxaxxxaa

axaxxxaa

Comma notation for partial differentiation ,,, ,,, ijk

kijij

jii

i ax

aax

aax

a

3

3

2

3

1

3

3

2

2

2

1

2

3

1

2

1

1

1

,

xa

xa

xa

xa

xa

xa

xa

xa

xa

a ji

If differentiation index is distinct, order of the tensor will be increased by one; e.g. derivative operation on a vector produces a second order tensor or matrix

Elasticity Theory, Applications and NumericsM.H. Sadd , University of Rhode Island

Page 14: Common Variable Types in Elasticity

Vector Differential Operations

Directional Derivative of Scalar Field fdsdz

zf

dsdy

yf

dsdx

xf

dsdf

n

321 eeendsdz

dsdy

dsdxs of direction in vector normal unit

zyx

321 eee operator aldifferenti vector

zf

yf

xffff

321 eeegrad function scalar of gradient

Common Differential Operations

i,2

i,

,

,2

ji,

i

eu

eu

u

eeue,

kki

jkijk

ii

ii

ji

i

uVectoraofLaplacian

uVectoraofCurl

uVectoraofDivergence

ScalaraofLaplacian

uVectoraofGradientScalaraofGradient

Elasticity Theory, Applications and NumericsM.H. Sadd , University of Rhode Island

Page 15: Common Variable Types in Elasticity

Example 1-4: Scalar/Vector Field ExampleScalar and vector field functions are given by 22 yx 321 eeeu xyyzx 32

Calculate the following expressions, , 2, ∙ u, u, u.

Using the basic relations:

21

321

21

eeeee

ee

yyxxyyzxzyx

xyyzu

zz

yx

ji

)3(32

///

033000232032

02222

,

2

∙ u

u

u

Gradient Vector Distribution

-10 -5 0 5 10-10

-8

-6

-4

-2

0

2

4

6

8

10

Contours =constant and vector distributions of vector field is orthogonal to -contours (ture in general )

x

y

- (satisfies Laplace equation)

Elasticity Theory, Applications and NumericsM.H. Sadd , University of Rhode Island

Page 16: Common Variable Types in Elasticity

Vector/Tensor Integral Calculus

Divergence Theorem

Stokes Theorem

Green’s Theorem in the Plane

Zero-Value Theorem

dVdSS V u nu dVadSna

S V kkijkkij ,......

S

dS nudruC

)( S rskijrsttkij dSnadxa

C ,......

VfdVf kijV kij 00 ......

CSgdyfdxdxdy

yf

xg )(

C ySC xSdsfndxdy

yfdsgndxdy

xg ,

Elasticity Theory, Applications and NumericsM.H. Sadd , University of Rhode Island

Page 17: Common Variable Types in Elasticity

Orthogonal Curvilinear Coordinate Systems

Cylindrical Coordinate System (r,,z) Spherical Coordinate System (R,,)

e3

e2 e1

x3

x1

x2

r

z

re

zee

,tan

cos

cos,sinsin,sincos

1

21

23

22

21

31

23

22

21

321

xx

xxx

x

xxxR

RxRxRx

31

2122

21

321

,tan,

,sin,cos

xzxxxxr

zxrxrx

e3

e2e1

x3

x1

x2

R

Re

e

e

Elasticity Theory, Applications and NumericsM.H. Sadd , University of Rhode Island

Page 18: Common Variable Types in Elasticity

General Curvilinear Coordinate Systems

233

222

211

2 )()()()( dhdhdhds

iii hhhh

1ˆ1ˆ1ˆ1ˆ3

332

221

11 ieeee

iii

fh

fh

fh

fh

f

1ˆ1ˆ1ˆ1ˆ3

332

221

11 ieeee

i

ii

i uhhhh

hhh321

321

1u

i

ii

i hhhh

hhh 2321

321

2

)(1

i

ij k

kkjkj

ijk huhh

eu ˆ)(

i jji

j

i

uu

h ij

ji

ee

eu

ˆˆ

ˆ

j kjk

j

kii

i

uu

hh kj

jki e

eee

ˆˆˆ2

),,(,),,( 321321 mmmm xxxxx

e3

e2 e1

x3

x1

x2

1

1e

3e

2e

3

2

Common Differential Forms

Elasticity Theory, Applications and NumericsM.H. Sadd , University of Rhode Island

Page 19: Common Variable Types in Elasticity

Example 1-5: Polar Coordinates

rhhrddrds 21222 ,1)()()(

From relations (1.9.5) or simply using the geometry shown in Figure

21

21

cossinˆsincosˆ

eeeeee

r0

ˆˆ,ˆ

ˆ,ˆ

ˆ

rrr

rr ee

ee

ee

The basic vector differential operations then follow to be

eeu

eeeeeeeeu

eu

u

ee

ee

r

rrrr

2

ˆ2ˆ2

ˆˆ1ˆˆ1ˆˆˆˆ

ˆ1)(1

11

1)(1

1ˆˆ

1ˆˆ

222

2222

2

2

2

ruu

ru

ruu

ru

uu

ru

urr

uru

ur

rurr

rrr

rr

ur

rurr

rr

rr

rrr

rrr

zr

r

r

r

θrzθr eeeeeu ˆˆˆ,ˆˆ where uur

e2

e1 x1

x2

r

e

re

Elasticity Theory, Applications and NumericsM.H. Sadd , University of Rhode Island