Top Banner

of 22

com Skkn Ung Dung May Tinh Casio 2011

Jul 11, 2015

Download

Documents

galoi14
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript

1 S GIO DC-O TO BN TRE TRNG THPT CHUYN BN TRE ----------

www.VNMATH.com 2 TrongnhiunmquaBGiodcvotocchtrngamytnh Casio v Vinacal vo ging dy trong chng trnh THPT. Hng nm u c t chc cc cuc thi gii ton trn my tnh Casio v Vinacal t cp tnh n cp Quc gia, tuy nhin vic hng dn cho hc sinh vn dng cc loi my tnh b ti mt cch sngtotrongqutrnhhctpbmntonniringvccmntnhinni chungvncnhnch.Nhnchunghcsinhchsdngmytnhmcthc hin cc php tnh n gin m cha ng dng my tnh mc cao hn nh d on kt qu, t duy ton hc da trn cng c my tnh... Quaqutrnhgingdytitchlycmtskinhnghimchonidung ny. Cc vn trnh by trong sng kin kinh nghim l cc chuyn c ng dngtronggingdyvcphbinnngnghiptrongcclnhingh chuynmndoSGDtchctrongccnmhcqua.Bnthntinhnc nhiukinphnhikhchltccngnghiptrongvngoitnh.Sngkin kinhnghimnylstngktcchnlcccchuyncabnthnvitra trong thc tin ging dy cng vi s ng gp nhit tnh ca ng nghip. L do chn ti ca ti xut pht t nhng l do sau: *GipchohcsinhtrungbnhbitcchkimtraktqubngmytnhCasio hoc Vinacal. V d kim tra kt qu ca cc bi tontnh gii hn, o hm, tch phn... iu ny rt c ch khi HS lm cc bi thi TN v H. Nu khng hng dn cho HS nhng th thut ny th cc em s mt nhiu thi gian khi kim tra li ton b qu trnh tnh ton ca mnh. *GipchoHSkh,giicsuynghdngmytnhdonktqu.Vd dngmytnhCasionhmnghimgiiphngtrnhlnggic,pdngtnh chtcahmslintckthpvimytnhgiibtphngtrnh,dngmy tnh tm quy lut dy s... * Gip cho cc bn ng nghip c mt ti liu tham kho trong qu trnh ging dy b mn ton ca mnh. Qua chuyn ny ti hy vng cc bn ng nghip s yuthchhnccngdngmmytnhCasio,Vinacalemlichochngtav truyn s say m ny n cc HS ca mnh. Thc t mt s Thy C khng thch s dng my tnh Casio bi v kt qu ca n a phn l kt qu gn ng, nhng trong chuyn ny cc bn s thy ta c th dng ci gn ng i tm ci ng ( ng dng my tnh Casio hoc Vinacal trong vic gii cc bt phng trnh ) - tinycthpdngrngrichottcgiovindytoncctrng trunghcphthngthamkhovccemhcsinhlp12nthiTtnghipvCao ng - i hc. - Phm vi nghin cu ca ti ny bao gm:www.VNMATH.com 3* Khng trnh by cc vn c bn v my tnh Casio, Vinacal (v cc vn c bn ny c trnh by trong nhiu ti liu ) m ch minh ha cc ng dng c th v c tnh mi trong gii ton. *ngdngmytnhCasio,Vinacaldonnghimgiiphngtrnhlng gic. * ng dng my tnh Casio, Vinacal trong gii cc bt phng trnh phc tp. * ng dng my tnh Casio, Vinacal kim tra kt qu v trong cc dng ton khc. Bn thn nghin cu ti ny nhm mc ch: * Chia s vi ng nghip v cc em hc sinh kinh nghim v ng dng my tnh Casio, Vinacal trong dy v hc mn ton. * Bn thn rn luyn chuyn mn nhm nng cao nghip v s phm. *HngngphongtrovitSKKNcatrngTHPTchuynBnTrevca Cng on ngnh Gio dc pht ng. * SKKN ny khng trnh by li cc chc nng ca my tnh Casio v Vinacal v cc vn ny c ni n trong nhiu ti liu. * SKKN ny cp n mt s vn trong dy v hc b mn ton THPT c tnh chuyn su di dng cc chuyn .* SKKN ny t ra mt vn mi cc bn ng nghip tip tc nghin cu lphthuytiakhnngcamytnhCasiovVinacalmtcchsngto trong vic dy v hc b mn ton THPT. *CcchuynvngdngmytnhCasio,Vinacaltronggiiphngtrnh lnggicvchuynvicgiibtphngtrnhvvicgiiphngtrnhlcc chuyn mi cha c trnh by trn bt k ti liu no v vn ng dng my tnh b ti trong gii ton. www.VNMATH.com 4 Phng php nghin cu SKKN ny da trn c s: * Cc kin thc c bn v my tnh Casio, Vinacal. * Cc kin thc ton hc c bn trongchng trnh THPT. * Mt s k thut bin i i s v ng dng ca my tnh cm tay. Cngvisphttrincacngnghthngtin,ccphnmmtonhcngy cnghtrclcchogiovinvhcsinhtrongvicdyvhcmnton,tuy nhin khng phi hc sinh no cng c iu kin to cho mnh mt my vi tnh v ci t cc phn mm thch hp hc tp b mn ton, hn th na theo quy ch hc sinh khng c em my vi tnh vo phng thi... Trong khi mi hc sinh u c my tnh Casio hoc Vinacal, do vic rn luyn cho hc sinh s dng cc loi my tnh cm tay ny mt cch thnh tho l mt vic lm cn thit. Thc trng hin nay cho thy k nng s dng my tnh cm tay ca hc sinh cn rt yu, a s ch bit dng my tnh thc hin cc php tnh cng, tr, nhn, chia, khai cn v tnh gi tr ca cc hm s lng gic m thi. Do SKKN ny cp n mt vn milgiphcsinhkhaithctiaccchcnngcamytnhCasiov Vinacal trong t duy gii ton. Nu lm tt cng vic ny th cht lng dy v hc mn ton s c nng ln. NGDNGMYTNHCASIOVVINACALDONNGHIMGII PHNG TRNH LNG GIC A. t vn : Khigiiccphngtrnh athctathng dng cch nhmnghimbini phngtrnhyvdngphngtrnhtch.Vyvicgiiphngtrnhbccaoc chuyn v vic gii phng trnh bc thp hn. Trong chuyn ny s minh ha cho vic ng dng t tng ny vo vic gii mt s dng phng trnh lng gic vi s tr gip ca my tnh cm tay. B. Ni dung phng php: giiphngtrnhlnggicbngphngphpny,tastinhnhtheocc bc sau: Bc 1:Tin hnh php th tm mt nghim c bit. Ta th vi cc gi tr c bit sau: 2 3 50; ; ; ; ; ; ; ;6 4 3 2 3 4 6t t t t t t tt . www.VNMATH.com 5Bc 2:Gi s bc 1 tm c nghim 6xt= . Ta tip tc th vi cc gi tr c bit tng ng lin kt vi nghim y. C th: + Th vi gi tr i ca n: 6xt= , nu tha mn phng trnh th ta d on phng trnh c nghim x sao cho 3cos2x = , hay phng trnh c a v dng tch vi mt tha s l(2cos 3) x + Th vi gi tr b vi n : 56xt= , nu tha mn th ta d on phng trnh c nghim x sao cho 1sin2x = , hay phng trnh c a v dng tch vi mt tha s l inx (2s 1) . + Th vi mt gi tr hn ( km ) n t , th vi 76 6xttt + = =( hay th vi 56 6xttt = =) Nu gi tr ny tha mn th ta d on phng trnh c nghim x : 3t anx3= . Hay c th bin i phng trnh v phng trnh tch vi mt tha s( 3 t anx 1) . C. Phng tin dng nhm nghim: C th dng my tnh Casio fx 570 ES tin hnh nhm nghim theo mt trong hai cch sau: Cch 1: Dng chc nngCALC . Chc nng ny c cng dng l tnh gi tr ca mt hm s ti mt im. - Chuyn phng trnh v dng f(x) = 0. Gi s cn th vi gi tr 6xt= , ta thc hin nh sau: - Nhp vo my hm s f(x), nhnphmCALC , my hi x ? ta nhp vo 6t v nhn phm= . th vi cc gi tr khc, ta tip tc nhn phmCALC Cch 2: DngchcnngSOLVE .Chcnngnyccngdngltmnghimca phng trnh trong mt ln cn ca x ch ra. Ta thc hin theo cc bc sau y: - Chuyn my tnh v n v . - Nhp vo phng trnh f(x) = 0. www.VNMATH.com 6-NhnphmSOLVE ,myhinthx?tanhpvogitrmtadonl nghim,chnghn30(300),mysdtmmtnghimtronglncnca300. Tip tc nhn phmSOLVE kim tra nghim khc D. Cc v d minh ha: Gii phng trnh:3cos2 5sin cos sin2 4 x x x x + + = . Gii Phn tch: Thc hin php th, thu c 2 nghim 5,6 6x xt t= = . Do d on phng trnh s c nghim x : 1sinx2= . Vy li gii c trnh by theo hai cch sau: Cch 1 tsinx( 1) t t = s . Ta vit phng trnh cho thnh phng trnh vi n s t: 23(1 2 ) 5 cos 2 cos 4 t t x t x + + =26 (2cos 5) (1 cos ) 0 t x t x + + = (*) Theo d on trn th phng trnh (*) c nghim 112t = . p dng nh l Viet: 1 2 25 2cos 1 cos6 3x xt t t + = =Vy phng trnh cho 1sinx23sin cos 1 x x

=

+ = n y ta d dng ch ra tp nghim ca phng trnh. Cch 2 Phn tch Do d on c 1sinx2=, do nu bin i phng trnh v dng phng trnh tch th s c mt tha s l(2sin 1) x . Vy nn kt hp hai s hng no vi nhau c tha s(2sin 1) x ? Ta c th thy ngay nn kt hp nh sau : cos sin2 cos (1 2sin ) x x x x = .Cn tng(3cos2 5sin 4)? x x + Mt iu chc chn rng c th phn tch tng ny thnh tha s m c mt nhn t l(2sin 1) x . Tht vy : 2 2(3cos 2 5sin 4) 3(1 2sin ) 5sin 4 6sin 5sin 1 x x x x x x + = + = + (2sin 1)(3sin 1) x x = * Vy li gii c trnh by ngn gn nh sau : (cos sin2 ) (3cos2 5sin 4) PT x x x x + + 2cos (1 2sin ) ( 6sin 5sin 1) 0 x x x x + + =cos (1 2sin ) (1 2sin )(3sin 1) 0 x x x x + =(1 2sin )(cos 3sin 1) 0 x x x + =www.VNMATH.com 7Vy phng trnh cho 1sinx23sin cos 1 x x

=

+ = n y ta d dng ch ra tp nghim ca phng trnh. Gii phng trnh:cos3 cos 2 sin2 sin 5cos 3 (1) x x x x x + + + =Phn tch Thc hin php th ta tm c 2 nghim: 23xt= . Vy ta d on phng trnh c nghim x : 1cos2x= . Cch 1 tcos ( 1) t x t = s . Phng trnh (1) tr thnh: 3 2(4 3 ) (2 1) 2 sin sinx 5 3 t t t t x t + + + =3 24 2 (2sin 8) (sin 4) 0 (2) t t x t x + + + =Do th nghim trn nn ta bit PT(2) c nghim 12t = . Thc hin php chia v tri ca (2) cho 1( )2t +. ta c: 21(2) ( ) 4 (2sin 8) 02PT t t x( + + = Vy 2 21 1cos cos(1) 2 24cos 2sin 8 0 2sin sin 2 0x xPTx x x x = = + = + = 1 2cos 2 , ( )2 3x x k ktt = = + eVy phng trnh c nghim : 22 , ( )3x k ktt = + eCch 2 ( Bin i phng trnh v dng phng trnh tch ) Do d on trn nn khi bin i phng trnh v dng phng trnh tch th phi c mt nhn t(2cos 1) x .Vy ta nn kt hp hai s hng no c nhn t(2cos 1) x ? -C th thy ngay , nn kt hpsin2 sinx x + . -(1) (sin2 sinx) (cos3 cos2 5cos 3) 0 PT x x x x + + + = 3 2(sin2 sinx) (4cos 2cos 8cos 4) 0 x x x x + + + =sin2 sin sin (2cos 1) A x x x x = + = +3 24cos 2cos 8cos 4 B x x x = + www.VNMATH.com 8Cng t d on trn nn ta suy ra B c th phn tch thnh nhn t v chc chn c mt tha s l(2cos 1) x . Do ta thc hin php chia B cho(2cos 1) x , ta s c: 2(2cos 1)(2cos 4) B x x = . Vy 2(1) (2cos 1)(sinx 2cos 4) 0 PT x x + + =

2(2cos 1)( 2sin sin 2) 0 x x x + + =

1 2cos 2 , ( )2 3x x k ktt = = + eVy phng trnh c nghim : 22 , ( )3x k ktt = + e Gii phng trnh:2 21 8 12cos cos ( ) sin2 3cos sin (1)3 3 2 3x x x x xtt| | |\ .+ + = + + + +Gii Thaycos( ) cos x x t + = vcos( ) sinx2xt+ = . (1) 6cos cos2 3sin2 9sin 8 0 (2) PT x x x x + + =Nhn thy22x ktt = +l nghim ca phng trnh. Vy ta c sinx = 1. Cch 1 tsinx( 1) t t = s . Ta vit phng trnh (2) thnh phng trnh vi n s t: 22 (9 6cos ) (6cos 7) 0 t x t x + + =Phng trnh bc hai ny c A + B + C = 0. Vy : sin 1(2)6cos 7sin2xPTC xxA=

= = sin 12sin 6cos 7xx x=

+ = M phng trnh :2sin 6cos 7 x x + = v nghim. Vy phng trnh cho c nghim :2 , ( )2x k ktt = + e . Cch 2 ( Bin i phng trnh v phng trnh tch ) (1) (6cos 3sin2 ) (cos 2 9sin 8) 0 PT x x x x + + =26cos (1 sin ) ( 2sin 9sin 7) 0 x x x x + + =76cos (1 sin ) 2(sin 1)(sin ) 02x x x x =(1 sin )(6cos 2sin 7) 0 x x x + =sin 1sin 1 26cos 2sin 7 2xx x kx xtt=

= = +

+ = Vy phng trnh cho c nghim :2 , ( )2x k ktt = + e . www.VNMATH.com 9 Gii phng trnh:sin3 6sin2 9sin cos3 9cos 8 (1) x x x x x + + =Gii -Nhn thy22x ktt = +l nghim phng trnh. Vy ta c sinx = 1. -tsinx ( 1 ) t t = s . Thay : 3 3sin3 3sin 4sin , os3 4cos 3cos x x x c x x x = = . -Phng trnh (1) tr thnh: 3 24 4(cos ) (12 12cos ) (8cos 8) 0 (2) t x t x t x + + + =-Thc hin php chia VT(2) cho ( t 1 ), Ta c : 21(2)4 (4cos 4) 8 8cos 0 (3)tPTt x t x

= + + = Ta c: 2(3) 4sin (4cos 4).sinx 8 8cos 0 (4) x x x + + =Nhn thy2 x k t =l nghim ca (4), vy PT(4) c nghim x sao cho cosx = 1. - t u = cosx, PT(4) tr thnh : 24(1 ) (4 4)sinx 8 8 0 u u u + + =24 (4sin 8) (4 4sin ) 0 u x u x + + = 24 (4sin 8) (4 4sin ) 0 1 1 sinx u x u x u u + + = = v = cos 1 sinx cos 1 x x = v + = . Vy phng trnh c 2 h nghim: 2 , 2 ( )2x k x k ktt t = = + e Gii phng trnh:sin2 sin cos8 cos6 cos7 (1) x x x x x + = + +Nhn xt:Thc hin php th, ta c 23xt= l nghim. Vy nn nhm cc s hng sao cho xut hin tha s chung ( 2cosx + 1). Bi ny khng nn quy v phng trnh vi n s t = cosx v s c phng trnh bc cao. Do ta phi dng phng php phn tch thnh nhn t vi nh hng lm xut hin tha s ( 2cosx + 1). Gii (1) sin (2cos 1) 2cos7 .cos cos7 PT x x x x x + = +sin (2cos 1) cos7 (2cos 1) (2cos 1)(sin cos7 ) x x x x x x x + = + + T y suy ra phng trnh c cc h nghim: 22 , , ( )3 6 4 12 3k kk x x k xt t t t tt + = + = + e = Gii phng trnh:4sin cos 3sin .tan 3tan 3 (1) x x x x x + + =Gii iu kin:cos 0 x =-Thc hin php th c hai nghim 4xt= v 34xt= . Vy cn nhm cc s hng xut hin tha s(t anx 1) + . -(1) (sinx cos ) (3sin 3sin .tan ) 3(tan 1) PT x x x x x + + + = +cos (tan 1) 3sin (tan 1) 3(tan 1) x x x x x + + + = +www.VNMATH.com 10(1 tan )(cos 3sin 3) 0 x x x + + =tan 1cos 3sin 3xx x=

+ =( n y cc em HS c th gii tip c) Gii phng trnh:2(sin2 cos2 ) tan 1 (1) x x x = +Gii iu kin:cos 0 x =Thc hin php th c cp nghim 4xt=v 34xt= . Vy ta d on phng trnh c nghim x sao cho tanx = 1 Cch 1 t t = tanx, phng trnh (1) tr thnh: 22 22 111 12t ttt t| | = + |+ +\ . 3 23 3 0 t t t + = Vy:3 t anx 1 t anx = v = . Kt qu: phng trnh c cc h nghim: 4 3, ( ) k k x x kt tt t + + = = eCch 2 Ta nhm cc s hng xut hin tha s: ( tanx 1) (1) 2sin2 2cos2 2 tan 1 PT x x x = 2tan 1 4sin cos 4cos x x x x = 2tan 11) 01cos 22(tan 1)(4cosxxxx=

=

= Kt qu: phng trnh c cc h nghim: 4 3, ( ) k k x x kt tt t + + = = eE. Bi tp rn luyn: Gii cc phng trnh: 1)sin2 3sin 2cos 3 x x x + =2)sin5 sin2 cos6 cos4 cos x x x x x + + = +3)1 cos cos2 sin2 sin3 sin4 x x x x x + + = + +4)sin cos2 sin cos 1 0 x x x x + + + + =5)cos2 cos cos4 sin3 sin2 x x x x x + = +6)sin2 10cos sin 5 x x x + =7) 4sin cos 1 tan 3sin .tan x x x x x + = + www.VNMATH.com 11 NG DNG MY TNH CASIO V VINACAL GII BT PHNG TRNH. A. t vn : Nhm mc ch trang b cho hc sinh cc phng php gii ton hu hiu gii quyt tt cc dng ton ca thi tuyn sinh i hc, qua qu trnh ging dy nhiu nm cclpcuicpchngticktcmtskinhnghimvvichngdn hc sinh gii quyt cc bi ton v bt phng trnh. Chng ti thy rng vic gii mt bt phng trnh c dng f(x) > 0 ( f(x) > 0, f(x) < 0, f(x)s 0) th phc tp hn nhiu so vi vic gii phng trnh f(x) = 0. Thc cht ca bi ton gii bt phng trnh l quy vvicxtducabiuthcf(x)trnminxcnhDcan.Dovynidungca chuyn ny l quy vic gii cc bt phng trnh v vic gii phng trnh f(x) = 0, sau lp bng xt du ca f(x) v t suy ra tp hp nghim ca bt phng trnh. B. Ni dung phng php: Ni dung ca phng php ny da trn tnh cht sau y: Tnh cht: Gi s hm s f(x) lin tc trn min K ( K c th l (a ; b ) ; [a;b];(a;b];[a;b);(-;a);(-;a];(a;+);[a;+);R).Nu phng trnh f(x) = 0 v nghim trn min K th f(x) khng i du trn K. Phng php gii bt phng trnh: Da trn tnh cht trn ta suy ra phng php gii bt phng trnh dng f(x) > 0 ( f(x) < 0, f(x) > 0, f(x) < 0, f(x) > 0) nh sau : * Tm tp xc nh D ca hm s f(x). * Gii phng trnh f(x) = 0. * Lp bng xt du ca f(x) ( xc nh du ca f(x) trn cc khong con K ca D m f(x) v nghim, ta ch cn xc nh du ca f(x0) vi x0 l mt phn t bt k ca K). Ch : tnh gi tr ca hm s ti mt im mt cch nhanh chng ta c th dng my tnhCasio hay Vinacal. Cch tnh : dng chc nng CALC c minh ha qua v d sau: V d: Tnh gi tr ca hm s y = x2 +3x -12 vi x = 7, x = 8 thc hin nh sau : * Nhp biu thc n : 23 12 ALPHA YALPHA X X ALPHAX = + * Lu biu thc n: CALC* Tnh gi tr ca y vi x = 7 n :7=* Tnh gi tr ca y vi x = 8 n :8 CALC =* Tnh gi tr ca y vi x = 23 n : /2 3b cCALC a =Ni chung khi nhp biu thc y vo xong th ta c th tnh gi tr ca y ti cc im x1, x2, .. y vn m ta quan tm l du ca y ti cc im x1, x2, .. ( cc gi tr ca y ti cc im ny c th l cc gi tr gn ng. iu ny khng nh hng g kt qu nghim ca bt phng trnh). www.VNMATH.com 12C. Cc v d minh ha: a)Gii cc bt phng trnh v t. Gii bt phng trnh : 22401616x xx+ + s+(1) Cch 1: (Phng php c bn) BPT (1) 2 2 2 216 16 40 16 24 (2) x x x x x x + + + s + s Xt cc trng hp sau y : a) Nu x = 0 th BPT(2) lun tha mn. b) Nu x < 0 th BPT(2) 22222222 2 2 2242 6 002 6242416162 60 2 6240( 16) (24 )xxxxxxxxxxxxxx x xx s

| | + > + > < | \ . < <

>+ > 2 22 6 0 2 6 02 6 2 602 6 2 630 2 6 0 2 63 64 24x xx xxx xxx xx x s < s < >> < < < > < < < < > > . Kt hp vi x < 0 ta c x < 0. c) Nu x > 0 thi BPT(2) 2222222 2240 2 6 2 62416 0 30 2 6 0 2 624163 3 64 24xx xxxx xx xxxxx xx > < < + s < s < 0 Quabngxtducaf(x),tasuyraBPT f(x) s 0 c nghim x s 3. Gii phng trnh : 23 2 1 (1)3 2xx xx > Cch 1 iu kin x > 23.BPT(1) 2(3 2) (1 ) 3 2 ( 1)( 2) ( 1) 3 2 0 x x x x x x x x > + > 22112 02 01 0(3 2) (2 )3 2 22( 1)( 2 3 2) 011 032 03 2 23 2 (2 )xxV xxxx xx xx x xxxxx xx x >> >

s > >

>

+ > < s

s

> s s

22221 21 22 1 67 6 21 2231223 113317 6 06xxxxx xx xx xxxxxx xx > >

s s

s s

> s s

+ s s >s s s s s s s

+ > > . Tm li BPT c nghim x > 23. Cch 2: iu kin x > 23. BPT(1) f(x) = 23 2 1 03 2xx xx + > PT f(x) = 0 22 0( 1)( 2 3 2) 0 1 3 2 2 13 2 (2 )xx x x x V x x x Vx x > + = = = = = x = 1 V 2221 37 6 0xxx x< s= + = www.VNMATH.com 14+10xf (x)23++ * Hm s f(x) lin tc v v nghim trn cc khong : (23; 1); (1 ; + ) nn trn tng khong ny f(x) khng i du.Ta c f(56) = 0,108 > 0 ,f(2) = 1 > 0 Qua bng xt du ca f(x), ta suy raBPT f(x) > 0 c nghim x >23 . Gii bt phng trnh :1 1 (1) x x x + >Cch 1 iu kin : -1 sx s 1. BPT(1) 21 0( )1 ( 1 )1 11 0( )1 0x xAx x xx x xxBx x + >

+ > + + > + + >

+ s 1) Xt h (A) : 21 01 ( 1 )x xx x x + >+ > + 2200 10 11 01 01 0 1 0 1 1 101 5 1 51 01 2 2xxxxxx x x x x xxx xxx x s s s s s

+ > s s

s s + > > s s

> +

+ ss s > H (A) 2 21 1 1 11 1 2 1 2 1 2 (2)x xx x x x x x x x x s s s s + > + + s + Nu x = 0 th (2) ng + Nu x < 0 th (2) 2 22 1 2 4(1 ) (2 ) 0 x x x x x > > sv nghim trn [-1 ; 0 ). + Nu x > 0 th (2) 2 22 1 2 4(1 ) (2 ) 0 x x x x x s s >ng trn (0 ; 1]. Vy h (A) c nghim 0 s x s 1. 2) Xt h (B) : 1 01 0xx x+ > + s221 01 11 51 1 1 0021 0 111 52xxx xxxx x x xx xx s s s s

s s s s s

>

+ > s s +>

v nghim Tm li: BPT c nghim 0 s x s 1. Cch 2: iu kin : -1 sx s 1. Xt hm s f(x) =1 1 x x x + vi x e [-1 ; 1 ]. BPT(1) f(x) > 0. www.VNMATH.com 15PT : f(x) = 0 2 2 21 1 1 ( 1 ) 1 1 2 1 2 1 2 x x x x x x x x x x x x x x x + = + + = + + = + + = 20 2 1 2 0 4(1 ) (2 ) 0. x V x x x V x x x = = = = =Th li thy x = 0 l nghim ca phng trnh f(x) = 0. Bng xt du ca f(x) _00xf (x)-11+ *Hmsf(x)lintcvvnghim trncckhong:[-1;0);(0;1]nn trntngnakhongnyf(x)khng i du.Ta c f(12) = - 0,017 < 0 ,f(12) = 0,017 > 0 Qua bng xt du ca f(x), ta suy raBPT f(x) > 0 c nghim 0 s x s 1. b) Gii cc BPT m, logarit Gii BPT : 2 2 1 x 1 x x(x x 1) (x x 1) + + + > + + (*) Cch 1 iu kin : 1 x 01 x 0 > + > -1 s x s 1 (1) * Ta c x2 +x +1 > 0 , x e R. Ta xt 3 trng hp : a) Trng hp : x2 +x +1 = 1 x2 + x = 0 x = 0 V x = -1 tha mn BPT (*). b) Trng hp : x2 +x +1 > 1 x2 + x > 0 x < -1 V x > 0, kt hp vi k (1) ta c0 < x s 1 (2) BPT(*) 21 x 1 x x x 1 x 1 x x (1 x) 2x 1 x 1 x > + + > + + + > +2 22 1 x 2 x 0 4(1 x) x 4x 4 x 0 x 0 loai (do k (2) ). > > > + s = c) Trng hp x2 + x+ 1 < 1 x2 + x < 0 -1 < x < 0 (3) BPT(*) 21 x 1 x x 1 x (1 x) x 2x 1 x x 2 2 1 x 0 (do x < 0) s + s + + + + + s2 22 1 x x 2 4(1 x) x 4x 4 x 0 x 0 loai ( do k (3) ) + > + + > + + s = Tm li: bt phng trnh c nghim x = 0; x = -1. Cch 2: iu kin 1 s x s 1. Xt hm s : 2 2 1 x 1 x xf (x) (x x 1) (x x 1) + = + + + +BPT(*) BPT f(x) > 0 . By gi ta gii PT f(x) = 0. Ta c : 222x x 1 11 x 1 x 0 Vx 1 x 0 Vx 1x 0x ( 1;1] \ {0} x ( 1;1] \ {0}f (x) 0x x 1 1x 11 x 1 x x 2x 1 x 2 1 x x 2 1 x 11 x 1 x x + + = s s = = = = =

e e = + + =

=

= + + + + = + s s

= + www.VNMATH.com 16Th li ta thy PT f(x) = 0 c nghim x = 0 ; x = -1. Hm s f(x) lin tc v v nghim trn cc khong(-1; 0) v (0 ; 1] nn trn cc khong ny f(x) khng i du. Ta c 1f ( )2~- 0,0035 < 0 v1f ( )2 ~ - 0,0147 < 0 T suy ra BPT(*) c nghim x = -1; x = 0. Gii bt phng trnh: 211331 1(1)log (x 1)log 2x 3x 1 >+ + Cch 1 : iu kin : 20 2x 3x 1 1 1 3 3x ( 1 ; 0) (0 ; ) (1 ; ) ( ; ) (2)2 2 2 0 x 1 1 < + =e + < + = Khi BPT(1) 2 23 33 31 1 1 1(3)log (x 1) log (x 1)log 2x 3x 1 log 2x 3x 1> < + + + + Xt 4 trng hp sau : a) Trng hp 1 : -1 < x < 0 . Khi : 2 2332x 3x 1 1 log 2x 3x 1 0x 1 1log (x 1) 0 + > + > + + > Suy ra BPT(3) nghim ng vi mi x : 10 x2< < . c) Trng hp 3: 31 x2< < . Khi : 2 2332x 3x 1 x(2x 3) 1 1 log 2x 3x 1 0x 1 1log (x 1) 0 + = + < + < + >+ > Suy ra BPT(3) nghim ng vi mi x : 31 x2< < . d) Trng hp 4: 3x2> . Khi : 2 2332x 3x 1 1 log 2x 3x 1 0x 1 1log (x 1) 0 + > + > + >+ > BPT(3) 2 2 2 23 3log 2x 3x 1 log (x 1) 2x 3x 1 x 1 2x 3x 1 x 2x 1 + > + + > + + > + + x(x-5)> 0 x > 5. Suy ta BPT c tp nghim : 1 3T (0 ; ) (1 ; ) (5 ; ).2 2= + Cch 2iu kin : 20 2x 3x 1 1 1 3 3x ( 1 ; 0) (0 ; ) (1 ; ) ( ; ) (2)2 2 2 0 x 1 1 < + =e + < + = Xt hm s2 211331 1ln( ) ln( )1 13 3f (x)log (x 1) ln(x 1)log 2x 3x 1 ln 2x 3x 1= = + + + + Vi k (2) th f(x) = 0 2 2 2 2ln 2x 3x 1 ln(x 1) 2x 3x 1 (x 1) 2x 3x 1 x 2x 1 + = + + = + + = + + x2 5x = 0 x = 0 V x = 5 . So vi k (2) th f(x) = 0 x = 5. www.VNMATH.com 17* Hm s f(x) lin tc v v nghim trn cc khong : (-1 ; 0); (0 ; 12);(1 ; 32); (32; 5);(5 ;+ ) nn trntng na khong ny f(x) khng i du.Ta c f(12) = -3,584 < 0 ;f(14) = 7,163 > 0 ; 5f ( )4 =3,594 > 0 ; f(2) = -1 < 0 ;f(6) = 0,016 > 0 +_+5+3212_00xf (x)-11+ Qua bng xt du ca f(x), ta suy raBPT f(x) > 0 c tp nghim 1 3T (0 ; ) (1 ; ) (5 ; ).2 2= + Gii bt phng trnh : 26sincos23 log 2005 03xx| |+ > |\ . Nhn xt: Nu dng my tnh ta s c : 6log 2005 4, 243537... ~D thy :201sincos2 23 3 43 3xx| | | |+ s + = ||\ . \ . T y suy ra bt phng trnh cho v nghim. Nu khng dng my tnh th vic gii phng trnh ny s gp kh khn. BSUNGTHMMTSVNGIITONVISTRGIPCA MY TNH CASIO V VINACAL 1)Dng my tnh chng minh phng trnh bc 3 c 3 nghim phn bit. V d: Cho hm s : 2 46 4 6 y x x x = + + . Chng minh rng hm s c 3 cc tr. Ta c :3' 4 12 4 y x x = + . Ta ch cn chng minh PT y = 0 c 3 nghim phn bit. Dng my tnh ta bit c 3 nghim : 1 2 31,8 ; 0, 3 ; 1, 5 x x x ~ ~ ~ . Sau p dng nh l v hm s lin tc cho hm s g(x) = 34 12 4 x x +trn cc on: [-2 ; -1], [0 ; 1], [1 ; 2] ta c iu phi chng minh. 2) Dng my tnh dy bi nhn dng tam gic. Trong tit hc v nhn dng tam gic cho hc sinh bi ton : Tm gi tr ln nht ca biu thc www.VNMATH.com 18T = cosA + cosB + cosC vi A, B, C l cc gc ca mt tam gic. Yu cu mi em hy tnh gi tr ca T ng vi mt tam gic c th v vit cc kt qu ln bng, t rt ra kt lun :T 32ssau dng l lun chng minh pht hin ny. * Mt th d khc xt bi ton : Nhn dng tam gic ABC bit: Gio vin c th yu cu hc sinh thay vo ng thc trn cc gi tr ca A, B, C c th t rt ra kt lun : 3 3sin sin sin2A B C + + s . Sau dng l lun chng minh bt ng thc ny v ch ra ng thc xy ra khi v ch khi tam gic ABC u. 3)Dng my tnh gii cc dng ton v phng trnh c nghim duy nht. V d: Gii phng trnh: 2 81 2 4 3 2 1 141xx x xx += + + + + Gii iu kin:1 x >Xt cc hm s : 2 8( ) ,1[1; )xfx xx += e++( ) 1 2 4 3 2 1 14, [1; ) g x x x x x = + + + e +Dng o hm, d dng chng minh c trn min [1; ) + hm s f(x) nghch bin v hm s g(x) ng bin. Do phng trnh cho c nhiu nht mt nghim. Dng chc nngSOLVEta tm c nghim x = 5. Vy phng trnh cho c nghim duy nht x = 5. Nhn xt: NukhngrnluynchohcsinhsdngmytnhCasio,Vinacalmtcch thnh tho th th cc em s gp kh khn khi tm ra nghim x = 5. Trong bi ton trn nu ta thay x bi 3x 55 th ta s c phng trnh:

Bng cch l lun nh trn, ta cng chng minh c phng trnh c nhiu nht mt nghim. Sau ta phi nhm mt nghim kt thc bi ton, nu khng s dng my tnh thnh tho th kh m tm c nghim ny!( PT ny c nghim duy nht x = 20 4)Dng my tnh Casio, Vinacal kim tra li kt qu gii hn ca hm s. My tnh Casio v Vinacal khng c chc nng tnh gii hn ca hm s, tuy nhin ta c th d on kt qu ca gii hn qua tng sau: Gi s cn tnh( ) limx a fx, ta dng chc nngCALC tnh gi tr ca hm s f(x) ti cc gi tr ca x rt gn a. Sau y l cc v d minh ha: www.VNMATH.com 19V d 1: Tnh 3227 253 2limxx xx x+ + + Bng phng php gi s hng vng, ta vit: 3 32 22 27 25 ( 7 3) ( 25 3)3 2 3 2lim limx xx x x xx x x x + + + + = + + 32 22 2( 7 3) ( 25 3)3 2 3 2lim limx xx xx x x x + + = + + T y ta d dng tm c gi tr ca gii hn cho l 754. Sau ta dng my tnh kim tra li kt qu, bng cch tnh gi tr ca hm s 327 25( )3 2x xfxx x+ += + ti gi tr ca x rt gn vi s 2, chng hn tnh: f(1,99999999), ta s c kt qu l 0.1300000, y cng chnh l gi tr gn ng ca 754. 5)Dng my tnh Casio, Vinacal kim tra li kt qu ca tch phn. Gistnhtchphn:( )bafx dx},tacktqulm.GVnnhngdnHS dng my tnh kim tra li kt qu sau: -Nhp vo my tnh :( )bafx dx m }, nu my tnh hin th kt qu rt gn vi s 0 th gi tr ca tch phn l m. iu ny gip cho hc sinh t tin hn khi lm bi thi i hc. Nhnthynubitkthpvicdyvhcmntonvistrgipcamy tnh b ti mt cch linh hot th hiu qu thu c s rt tt. Chng ti thc nghim phng php trn cc lp12 n thi i hc, Vi cc bi tp v gii bt phng trnh , ccdngtonvphngtrnhlnggiccnghimcbittngtnhccvd nu trn, nu dng phng php truyn thng th khng n 30% hc sinh cho li gii ng, nhng nu ng phng php trong cc chuyn trn th a s cc em gii c ddng.Quavicngdngphngphpnycngiphcsinhvndngkinthc gii tch soi sng mt dng ton i s, rn k nng s dng thnh tho my tnh b ti, y cng l mt yu cu c B gio dc ra. Cn rt nhiu dng ton m nu gii bng phng php bnh thng s gp nhiu kh khn. Bit khai thc nhng th mnh m my tnh em li s gip cho hc sinh d dng nh hng v lm cho cng vic hc ton bt nng n hn. Cng vi cc phng phptruynthngvgiibtphngtrnh,phngtrnhlnggicmhcsinh bit, hy vng vic b sung thm cc chuyn ny s lm phong ph thm kinh nghim giitonchohcsinh,gpphnhnhthnhlngamm,yuthchbmn,t hng cc em vo vic nghin cu tm ra nhng ng dng mi, khng hi lng vi www.VNMATH.com 20nhngkinthcbitmlunlunctinhthntmtisngtotmnhtmra kin thc mi. Qua thc t ging dy chng ti thy rng vn no m gio vin quan tm v truyn th cho hc sinh bng lng say m v nhit tnh ca mnh th s cun ht cc em vo con ng nghin cu. a my tnh cm tay vo ging dy trong chng trnhphthngkhngphilvnmi,nhngthctchothycnnhiuThy C cha quan tm ng mc v vn ny. Vi SKKN ny hy vng gp phn thc hinttchocaBGDlamytnhvothctgingdyphthngvbi dng hng nm c nhiu hc sinh t gii cao trong cc k thi hc sinh gii v gii ton trn my tnh Casio, Vinacal cp tnh v khu vc. Ti vit SKKN ny nhm mc ch chia s vi ng nghip v cc em hc sinh nhng kinh nghim m bn thn tch ly c trong qu trnh ging dy. Cc chuyn c trnh by trong SKKN ny th hin cc tng mi, mong mun khai thc vsdngmytnhcmtaymtcchththiuqutrongcngvicgingdyv hc tp b mn ton. Nhng vn c trnh by trong SKKN ny l nhng gi , hy vng rng qu ng nghip s tip tc nghin cu a ra ngy cng nhiu cc ththutngdngmytnhcmtaysaochoththiuqu.Nulmttcngvic ny s gip cho vic hc ton ca hc sinh c nh nhng hn v gip cho cc em t kt qu tt trong cc k thi tt nghip v i hc. SKKN ny c th trin khai ng dng nh chuyn bi dng cho cc hc sinh lp 10, 11, 12, cc hc sinh n tp thi tt nghip v i hc. Trong iu kin hin naymihcsinhucmytnhcmtaynnvicrnluynchohcsinhctduy gii ton vi s tr gip ca my tnh l mt vic lm kh thi. t c hiu qu cao trong cng vic th gio vin cn phi c tinh thn nghin cu v sng to, c nh vy gio vin mi pht hin ra cc vn mi trong ng dng v y chnh l yu t quan trng thu ht s quan tm ca hc sinh. QuaSKKNnytimunchiasviccbnngnghipmtskinhnghim mtitchlyctrongqutrnhgingdymntonvbidngchoi tuyn Quc gia v gii ton trn my tnh Casio, Vinacal. Hy vng qu Thy C s lng ghp ni dung v k thut gii ton vi s tr gip ca my tnh cm tay vo bi ging ca mnh. Chng ti mong nhn c s trao i, gp cho chuyn t cc anh ch ng nghipvccemhcsinh.HyvngSKKNnysgpphnnngcaochtlng dy v hc ton trng THPT. www.VNMATH.com 21 Thnh ph Bn Tre, ngy 20 thng 3 nm 2011. Ngi vit Nguyn Vn Qu www.VNMATH.com 22 Trang Phn m u 2 Phn ni dung 4 CHUYN 1: NG DNG MY TNH CASIO V VINACAL D ON NGHIM GII PHNG TRNH LNG GIC 4 CHUYN 2: NG DNG MY TNH CASIO V VINACAL GII BT PHNG TRNH 11 CHUYN 3: B SUNG THM MT S VN GII TON VI S TR GIP CA MY TNH CASIO V VINACAL 17 Phn kt lun 20 1) Cc ti liu hng dn s dng my tnh Casio ca BGD 2) Sch gio khoa 3) Tp ch Ton hc v tui tr

www.VNMATH.com