Top Banner
151

Collaborators: Ulrich Brose Carol Blanchette Jennifer Dunne Sonia Kefi Neo Martinez Bruce Menge

Jan 13, 2016

Download

Documents

kalil

Collaborators: Ulrich Brose Carol Blanchette Jennifer Dunne Sonia Kefi Neo Martinez Bruce Menge Sergio Navarrete Owen Petchey Philip Stark Rich Williams …. Predictability. Predict. Biodiversity. Biodiversity. Prediction. Changes in Focal Species. - PowerPoint PPT Presentation
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Collaborators: Ulrich Brose Carol Blanchette Jennifer Dunne Sonia Kefi Neo Martinez Bruce Menge
Page 2: Collaborators: Ulrich Brose Carol Blanchette Jennifer Dunne Sonia Kefi Neo Martinez Bruce Menge

Collaborators:

Ulrich BroseCarol BlanchetteJennifer Dunne

Sonia KefiNeo MartinezBruce Menge

Sergio NavarreteOwen Petchey

Philip StarkRich Williams

Page 3: Collaborators: Ulrich Brose Carol Blanchette Jennifer Dunne Sonia Kefi Neo Martinez Bruce Menge

Predictability

Page 4: Collaborators: Ulrich Brose Carol Blanchette Jennifer Dunne Sonia Kefi Neo Martinez Bruce Menge

Predict

Biodiversity

Page 5: Collaborators: Ulrich Brose Carol Blanchette Jennifer Dunne Sonia Kefi Neo Martinez Bruce Menge

Prediction

Biodiversity

Changes in Focal Species

Page 6: Collaborators: Ulrich Brose Carol Blanchette Jennifer Dunne Sonia Kefi Neo Martinez Bruce Menge

….add bit about yosemite toad or mt yellow legged frog

Page 7: Collaborators: Ulrich Brose Carol Blanchette Jennifer Dunne Sonia Kefi Neo Martinez Bruce Menge
Page 8: Collaborators: Ulrich Brose Carol Blanchette Jennifer Dunne Sonia Kefi Neo Martinez Bruce Menge

How can we predict the consequences of species loss in complex ecosystems?

Little Rock Lake Food Web (Martinez 1991)

Page 9: Collaborators: Ulrich Brose Carol Blanchette Jennifer Dunne Sonia Kefi Neo Martinez Bruce Menge

1 degree

How can we predict the consequences of species loss in complex ecosystems?

Little Rock Lake Food Web (Martinez 1991)

Page 10: Collaborators: Ulrich Brose Carol Blanchette Jennifer Dunne Sonia Kefi Neo Martinez Bruce Menge

2 degrees

How can we predict the consequences of species loss in complex ecosystems?

Little Rock Lake Food Web (Martinez 1991)

Page 11: Collaborators: Ulrich Brose Carol Blanchette Jennifer Dunne Sonia Kefi Neo Martinez Bruce Menge

3 degrees

Williams et al. PNAS 2002

How can we predict the consequences of species loss in complex ecosystems?

Little Rock Lake Food Web (Martinez 1991)

Page 12: Collaborators: Ulrich Brose Carol Blanchette Jennifer Dunne Sonia Kefi Neo Martinez Bruce Menge

Complex

Page 13: Collaborators: Ulrich Brose Carol Blanchette Jennifer Dunne Sonia Kefi Neo Martinez Bruce Menge

Complicated

Page 14: Collaborators: Ulrich Brose Carol Blanchette Jennifer Dunne Sonia Kefi Neo Martinez Bruce Menge

some hope

Page 15: Collaborators: Ulrich Brose Carol Blanchette Jennifer Dunne Sonia Kefi Neo Martinez Bruce Menge

metabolism

Page 16: Collaborators: Ulrich Brose Carol Blanchette Jennifer Dunne Sonia Kefi Neo Martinez Bruce Menge

<1>

everything needs energy to stay alive

Page 17: Collaborators: Ulrich Brose Carol Blanchette Jennifer Dunne Sonia Kefi Neo Martinez Bruce Menge

<2>

BIG things need more energy than small things

Page 18: Collaborators: Ulrich Brose Carol Blanchette Jennifer Dunne Sonia Kefi Neo Martinez Bruce Menge

<2>

BIG things need more energy than small things( )3/4

allometric scaling of metabolism with body size

Page 19: Collaborators: Ulrich Brose Carol Blanchette Jennifer Dunne Sonia Kefi Neo Martinez Bruce Menge

Feeding is Universal

Page 20: Collaborators: Ulrich Brose Carol Blanchette Jennifer Dunne Sonia Kefi Neo Martinez Bruce Menge

Food Webs are the foundation of Ecological Networks

Page 21: Collaborators: Ulrich Brose Carol Blanchette Jennifer Dunne Sonia Kefi Neo Martinez Bruce Menge

Body Size should predict the strength of interactions in food webs

Page 22: Collaborators: Ulrich Brose Carol Blanchette Jennifer Dunne Sonia Kefi Neo Martinez Bruce Menge
Page 23: Collaborators: Ulrich Brose Carol Blanchette Jennifer Dunne Sonia Kefi Neo Martinez Bruce Menge

Feeding is Universal

Page 24: Collaborators: Ulrich Brose Carol Blanchette Jennifer Dunne Sonia Kefi Neo Martinez Bruce Menge

Universal ≠ The Only Thing

Page 25: Collaborators: Ulrich Brose Carol Blanchette Jennifer Dunne Sonia Kefi Neo Martinez Bruce Menge

Ubiquitous≠ The Only Thing

Page 26: Collaborators: Ulrich Brose Carol Blanchette Jennifer Dunne Sonia Kefi Neo Martinez Bruce Menge

non-metabolic interactions

R. Donovan

Page 27: Collaborators: Ulrich Brose Carol Blanchette Jennifer Dunne Sonia Kefi Neo Martinez Bruce Menge

Question

Page 28: Collaborators: Ulrich Brose Carol Blanchette Jennifer Dunne Sonia Kefi Neo Martinez Bruce Menge

can we explain with body size (metabolism)?

ALL interaction strengths

Page 29: Collaborators: Ulrich Brose Carol Blanchette Jennifer Dunne Sonia Kefi Neo Martinez Bruce Menge

can we explain with body size (metabolism)?

ALL interaction strengths

Page 30: Collaborators: Ulrich Brose Carol Blanchette Jennifer Dunne Sonia Kefi Neo Martinez Bruce Menge

can we explain with body size (metabolism)?

WHAT

Page 31: Collaborators: Ulrich Brose Carol Blanchette Jennifer Dunne Sonia Kefi Neo Martinez Bruce Menge

can we explain with body size (metabolism)?

WHAT NOT

Page 32: Collaborators: Ulrich Brose Carol Blanchette Jennifer Dunne Sonia Kefi Neo Martinez Bruce Menge

.

Page 33: Collaborators: Ulrich Brose Carol Blanchette Jennifer Dunne Sonia Kefi Neo Martinez Bruce Menge

repeat it

Page 34: Collaborators: Ulrich Brose Carol Blanchette Jennifer Dunne Sonia Kefi Neo Martinez Bruce Menge

can we explain with body size (metabolism)?

ALL interaction strengths

Page 35: Collaborators: Ulrich Brose Carol Blanchette Jennifer Dunne Sonia Kefi Neo Martinez Bruce Menge

can we explain with body size (metabolism)?

WHAT

Page 36: Collaborators: Ulrich Brose Carol Blanchette Jennifer Dunne Sonia Kefi Neo Martinez Bruce Menge

can we explain with body size (metabolism)?

WHAT NOT

Page 37: Collaborators: Ulrich Brose Carol Blanchette Jennifer Dunne Sonia Kefi Neo Martinez Bruce Menge

abun

danc

e,in

tera

ction

str

engt

h,et

c.

?

Page 38: Collaborators: Ulrich Brose Carol Blanchette Jennifer Dunne Sonia Kefi Neo Martinez Bruce Menge

abun

danc

e,in

tera

ction

str

engt

h,et

c.

feeding,body size,

metabolism,etc.

Page 39: Collaborators: Ulrich Brose Carol Blanchette Jennifer Dunne Sonia Kefi Neo Martinez Bruce Menge

abun

danc

e,in

tera

ction

str

engt

h,et

c.

feeding,body size,

metabolism,etc.

Page 40: Collaborators: Ulrich Brose Carol Blanchette Jennifer Dunne Sonia Kefi Neo Martinez Bruce Menge

can wedescribe a metabolic baseline of interactions

in complex networks?

Page 41: Collaborators: Ulrich Brose Carol Blanchette Jennifer Dunne Sonia Kefi Neo Martinez Bruce Menge

can wedetrend metabolism

in complex networks?

Page 42: Collaborators: Ulrich Brose Carol Blanchette Jennifer Dunne Sonia Kefi Neo Martinez Bruce Menge

Brose et al. 2005 EcologyBrose et al. 2006 EcologyPetchey et al. 2008 PNAS

Body Size also influences Food Web Structure

Page 43: Collaborators: Ulrich Brose Carol Blanchette Jennifer Dunne Sonia Kefi Neo Martinez Bruce Menge

if each link obeys allometric rulesare those rules preserved at the network scale?

Page 44: Collaborators: Ulrich Brose Carol Blanchette Jennifer Dunne Sonia Kefi Neo Martinez Bruce Menge

if each link obeys allometric ruleswill body size predict

the effect of species loss in the network?

Page 45: Collaborators: Ulrich Brose Carol Blanchette Jennifer Dunne Sonia Kefi Neo Martinez Bruce Menge

does more complex = more complicated?

Page 46: Collaborators: Ulrich Brose Carol Blanchette Jennifer Dunne Sonia Kefi Neo Martinez Bruce Menge

Approach

Page 47: Collaborators: Ulrich Brose Carol Blanchette Jennifer Dunne Sonia Kefi Neo Martinez Bruce Menge

Simulation Results

Page 48: Collaborators: Ulrich Brose Carol Blanchette Jennifer Dunne Sonia Kefi Neo Martinez Bruce Menge

Real World

Page 49: Collaborators: Ulrich Brose Carol Blanchette Jennifer Dunne Sonia Kefi Neo Martinez Bruce Menge
Page 50: Collaborators: Ulrich Brose Carol Blanchette Jennifer Dunne Sonia Kefi Neo Martinez Bruce Menge
Page 51: Collaborators: Ulrich Brose Carol Blanchette Jennifer Dunne Sonia Kefi Neo Martinez Bruce Menge

Approach:

<1>

Simulate species dynamics in a wide variety of networks

stochastic variation instructural and dynamic

parameters

Page 52: Collaborators: Ulrich Brose Carol Blanchette Jennifer Dunne Sonia Kefi Neo Martinez Bruce Menge

Approach:

<2>

all feeding links governed by (body size)¾

Page 53: Collaborators: Ulrich Brose Carol Blanchette Jennifer Dunne Sonia Kefi Neo Martinez Bruce Menge

Approach:

<3>

delete each species and measure effects on all others

Page 54: Collaborators: Ulrich Brose Carol Blanchette Jennifer Dunne Sonia Kefi Neo Martinez Bruce Menge

Approach:

<4>

Track variation for each simulation

interaction strengthsnetwork level structureneighborhood structure

species attributeslink attributes

Page 55: Collaborators: Ulrich Brose Carol Blanchette Jennifer Dunne Sonia Kefi Neo Martinez Bruce Menge

Approach:

<5>

mine the variability for what best explains interaction strengths

Page 56: Collaborators: Ulrich Brose Carol Blanchette Jennifer Dunne Sonia Kefi Neo Martinez Bruce Menge

The Model

Page 57: Collaborators: Ulrich Brose Carol Blanchette Jennifer Dunne Sonia Kefi Neo Martinez Bruce Menge

The Modelscoupled

Page 58: Collaborators: Ulrich Brose Carol Blanchette Jennifer Dunne Sonia Kefi Neo Martinez Bruce Menge

<1> Food Web Structure: Niche Model

(Williams and Martinez 2000)

<2> Predator-Prey Interactions: Bio-energetic Model

(Yodzis and Innes 1992, Brose et al. 2005, 2006 Eco Letts)

<3> Plant population dynamics: Plant-Nutrient Model

(Tilman 1982, Huisman and Weissing 1999)

Page 59: Collaborators: Ulrich Brose Carol Blanchette Jennifer Dunne Sonia Kefi Neo Martinez Bruce Menge

consumersj

jijijjresourcesj

ijiiiii eFyBxFyBxBxB /'

Bioenergetic Predator-Prey Dynamics

Biomassi at time t

Biomass of each species (i) at time (t) is balance of1. gain from consuming prey species 2. loss to being consumed by other species 3. loss to metabolism

Page 60: Collaborators: Ulrich Brose Carol Blanchette Jennifer Dunne Sonia Kefi Neo Martinez Bruce Menge

mass-specific metabolic rate

max metabolic-specific ingestion rate

Functional Response

assimilationefficiency

Bioenergetic Predator-Prey Dynamics

consumersj

jijijjresourcesj

ijiiiii eFyBxFyBxBxB /'

xi, yi scale with body size(body size correlated with web structure)

# Prey

Cons

umpti

on

Page 61: Collaborators: Ulrich Brose Carol Blanchette Jennifer Dunne Sonia Kefi Neo Martinez Bruce Menge

Nutrient-DependentGrowth of Plants

Bioenergetic Predator-Prey Dynamics(Plants)

consumersj

jijijjiiiiii eFyBxBxBGrB /'

mass-specificgrowth rate metabolic loss loss to herbivores

ri, xj, y scale with body size

Page 62: Collaborators: Ulrich Brose Carol Blanchette Jennifer Dunne Sonia Kefi Neo Martinez Bruce Menge

Nutrient-Dependent Growth of Plants

Growth determined by most limiting Nutrient

plantgrowth rate

Concentration of Nutrientsdetermined by

SupplyTurnover

Consumption

Half saturation conc. for uptake of that Nutrient

)(,)(22

2

11

1 tBNK

N

NK

NMINNG i

iii

Page 63: Collaborators: Ulrich Brose Carol Blanchette Jennifer Dunne Sonia Kefi Neo Martinez Bruce Menge

Generate a food web (Niche Model)

Calculate trophic level for each species

Apply plant-nutrient model to plants, predator-prey model to rest.

Assign body sizes based on trophic level (mean pred: prey ratio = 10)

Run simulation with each species deleted individually to generate a complete removal matrix

Repeat for all species and for 600 Niche Model webs

Page 64: Collaborators: Ulrich Brose Carol Blanchette Jennifer Dunne Sonia Kefi Neo Martinez Bruce Menge
Page 65: Collaborators: Ulrich Brose Carol Blanchette Jennifer Dunne Sonia Kefi Neo Martinez Bruce Menge

R

T

Removed Species

Target Species

Page 66: Collaborators: Ulrich Brose Carol Blanchette Jennifer Dunne Sonia Kefi Neo Martinez Bruce Menge

R

T

X+

Page 67: Collaborators: Ulrich Brose Carol Blanchette Jennifer Dunne Sonia Kefi Neo Martinez Bruce Menge

R

T

Page 68: Collaborators: Ulrich Brose Carol Blanchette Jennifer Dunne Sonia Kefi Neo Martinez Bruce Menge

R

T

X-

per capita I= (BT+ - BT-)/NR

population I= BT+ - BT-

Page 69: Collaborators: Ulrich Brose Carol Blanchette Jennifer Dunne Sonia Kefi Neo Martinez Bruce Menge

R

T

X-

per capita I= (BT+ - BT-)/NR

population I= BT+ - BT-

Page 70: Collaborators: Ulrich Brose Carol Blanchette Jennifer Dunne Sonia Kefi Neo Martinez Bruce Menge

R

T

X-

per capita I= (BT+ - BT-)/NR

population I= BT+ - BT-

Page 71: Collaborators: Ulrich Brose Carol Blanchette Jennifer Dunne Sonia Kefi Neo Martinez Bruce Menge

R

T

X-

per capita I= (BT+ - BT-)/NR

population I= BT+ - BT-

Page 72: Collaborators: Ulrich Brose Carol Blanchette Jennifer Dunne Sonia Kefi Neo Martinez Bruce Menge

R

T

X ?

T

per capita I= (BT+ - BT-)/NR

population I= BT+ - BT-

Page 73: Collaborators: Ulrich Brose Carol Blanchette Jennifer Dunne Sonia Kefi Neo Martinez Bruce Menge

R

T

X 1° Consumers

2° Consumers

3° Consumers

1° Prey

2° Prey

3° Prey

?

T

per capita I= (BT+ - BT-)/NR

population I= BT+ - BT-

Page 74: Collaborators: Ulrich Brose Carol Blanchette Jennifer Dunne Sonia Kefi Neo Martinez Bruce Menge

R

T

X 1° Consumers

2° Consumers

3° Consumers

1° Prey

2° Prey

3° Prey

?

T

per capita I= (BT+ - BT-)/NR

population I= BT+ - BT-

Page 75: Collaborators: Ulrich Brose Carol Blanchette Jennifer Dunne Sonia Kefi Neo Martinez Bruce Menge

K

D S1

NK1

K = Keystone consumerNK = Non-Keystone consumer

D = Dominant basal speciesS = Subordinate basal species

R = ResourceR1 R2

Page 76: Collaborators: Ulrich Brose Carol Blanchette Jennifer Dunne Sonia Kefi Neo Martinez Bruce Menge

S1

S2

K

D S1

NK1

+

Keystone Present

R1 R2

Consumption

Resource competition

Indirect Facilitation

Page 77: Collaborators: Ulrich Brose Carol Blanchette Jennifer Dunne Sonia Kefi Neo Martinez Bruce Menge

S1

S2

K

D S1

NK1

+

Keystone Present

R1 R2Increased Resources

Consumption

Resource competition

Indirect Facilitation

Page 78: Collaborators: Ulrich Brose Carol Blanchette Jennifer Dunne Sonia Kefi Neo Martinez Bruce Menge

S1

S2

K

D S1

NK1

Sn

Other Competitors

+

Keystone Present

R1 R2

Consumption

Resource competition

Indirect Facilitation

Page 79: Collaborators: Ulrich Brose Carol Blanchette Jennifer Dunne Sonia Kefi Neo Martinez Bruce Menge

S1

K

D S1

NK1

Secondary Consumers

+

R1 R2

NK2n

Consumption

Resource competition

Indirect Facilitation

Page 80: Collaborators: Ulrich Brose Carol Blanchette Jennifer Dunne Sonia Kefi Neo Martinez Bruce Menge

S1

S2

K

D S1

NK1

NK3nTertiary Consumers

+

Secondary Consumers

R1 R2

NK2n

Consumption

Resource competition

Indirect Facilitation

Page 81: Collaborators: Ulrich Brose Carol Blanchette Jennifer Dunne Sonia Kefi Neo Martinez Bruce Menge

S1

S2

K

D S1

NK1

NK2n

NK3nTertiary Consumers

+

Secondary Consumers

R1 R2

and so on… NK4n

Page 82: Collaborators: Ulrich Brose Carol Blanchette Jennifer Dunne Sonia Kefi Neo Martinez Bruce Menge

S1

K

D S1

+

S2

Bottom up

Top down

Horizontal

Page 83: Collaborators: Ulrich Brose Carol Blanchette Jennifer Dunne Sonia Kefi Neo Martinez Bruce Menge

add noise

Page 84: Collaborators: Ulrich Brose Carol Blanchette Jennifer Dunne Sonia Kefi Neo Martinez Bruce Menge

track the consequences of that noise

Page 85: Collaborators: Ulrich Brose Carol Blanchette Jennifer Dunne Sonia Kefi Neo Martinez Bruce Menge

add noise:

<1>

Web Structuresize, connectance, architecture

Page 86: Collaborators: Ulrich Brose Carol Blanchette Jennifer Dunne Sonia Kefi Neo Martinez Bruce Menge

add noise:

<2>

Animal Attributes metabolic and max consumption rate,

pred-prey body size ratiofunctional response type

predator interference

Page 87: Collaborators: Ulrich Brose Carol Blanchette Jennifer Dunne Sonia Kefi Neo Martinez Bruce Menge

add noise:

<3>

Plant Attributesgrowth rate

half saturation concentrations

Page 88: Collaborators: Ulrich Brose Carol Blanchette Jennifer Dunne Sonia Kefi Neo Martinez Bruce Menge

track:

90 predictors to explain

variation in the strengths of

254,032 interactions among

12,116 species in

600 webs

Page 89: Collaborators: Ulrich Brose Carol Blanchette Jennifer Dunne Sonia Kefi Neo Martinez Bruce Menge

track:

<1>Global network structure

<2>Species attributes of R and T

<3>Local network structure around each R and T

<4>Attributes of the interaction

Page 90: Collaborators: Ulrich Brose Carol Blanchette Jennifer Dunne Sonia Kefi Neo Martinez Bruce Menge

prey predatorpredator prey

+

-

R

T

R T

attributes of the interaction+-

Page 91: Collaborators: Ulrich Brose Carol Blanchette Jennifer Dunne Sonia Kefi Neo Martinez Bruce Menge

shortest path = 2 degrees

2 degree paths: +, +, -prey predator

predator prey

+

-

R

T

R T+-

attributes of the interaction

Page 92: Collaborators: Ulrich Brose Carol Blanchette Jennifer Dunne Sonia Kefi Neo Martinez Bruce Menge

shortest path = 2 degrees

2 degree paths: +, +, -3 degree paths: +, +, +, -prey predator

predator prey

+

-

R

T

R T+-

attributes of the interaction

Page 93: Collaborators: Ulrich Brose Carol Blanchette Jennifer Dunne Sonia Kefi Neo Martinez Bruce Menge

shortest path = 2 degrees

2 degree paths: +, +, -3 degree paths: +, +, +, -4 degree paths: -

prey predatorpredator prey

+

-

R

T

R T+-

sign shortest path = +1sign next shortest path = +2un-weighted sum (shortest + next shortest) = +3weighted sum (shortest + (next shortest / 2)) = +2

attributes of the interaction

Page 94: Collaborators: Ulrich Brose Carol Blanchette Jennifer Dunne Sonia Kefi Neo Martinez Bruce Menge
Page 95: Collaborators: Ulrich Brose Carol Blanchette Jennifer Dunne Sonia Kefi Neo Martinez Bruce Menge
Page 96: Collaborators: Ulrich Brose Carol Blanchette Jennifer Dunne Sonia Kefi Neo Martinez Bruce Menge

-2

0

2

4

6

8

Log

(Bod

y M

ass)

1 2 3 4 5 6 7 8

Trophic Level

Body Size and Food Web Structure

Page 97: Collaborators: Ulrich Brose Carol Blanchette Jennifer Dunne Sonia Kefi Neo Martinez Bruce Menge

R2 = 0.90Slope = 0.74

Lo

g (

per

ca

pit

a co

nsu

mp

tio

n)

-12

-9

-6

-3

0

3

6

9

PC

Lin

IS)

-4 -2 0 2 4 6 8 10log (SR mass)

Log (R body mass)

Each Feeding Interaction Scales with (Body Size)3/4

R

T

Page 98: Collaborators: Ulrich Brose Carol Blanchette Jennifer Dunne Sonia Kefi Neo Martinez Bruce Menge

R2 = 0.90Slope = 0.74

Lo

g (

per

ca

pit

a co

nsu

mp

tio

n)

Per Capita Linear Interaction Strength

-12

-9

-6

-3

0

3

6

9

PC

Lin

IS)

-4 -2 0 2 4 6 8 10log (SR mass)

Log (R body mass)

R

T

= Per Capita Removal Interaction Strength?

Page 99: Collaborators: Ulrich Brose Carol Blanchette Jennifer Dunne Sonia Kefi Neo Martinez Bruce Menge

-12

-9

-6

-3

0

3

6

9

log

(|D

iff P

C|)

-4 -2 0 2 4 6 8 10log (SR mass)

Lo

g |

per

ca

pit

a I|

R2 = 0.32Slope = 0.74

Log (R body mass)

Per Capita Removal Interaction Strength

R

T

Page 100: Collaborators: Ulrich Brose Carol Blanchette Jennifer Dunne Sonia Kefi Neo Martinez Bruce Menge

-12

-9

-6

-3

0

3

6

9

log

(|D

iff P

C|)

-4 -2 0 2 4 6 8 10log (SR mass)

Lo

g |

per

ca

pit

a I|

R2 = 0.14Slope = 1.3

Log (R body mass)

Per Capita Removal Interaction Strength

R

T

Page 101: Collaborators: Ulrich Brose Carol Blanchette Jennifer Dunne Sonia Kefi Neo Martinez Bruce Menge

-12

-9

-6

-3

0

3

6

9

log

(|D

iff P

C|)

-4 -2 0 2 4 6 8 10log (SR mass)

Log (R body mass)

Lo

g |

per

ca

pit

a I|

R2 = 0.45Slope = 1.4

Per Capita Removal Interaction Strength

R

T

Page 102: Collaborators: Ulrich Brose Carol Blanchette Jennifer Dunne Sonia Kefi Neo Martinez Bruce Menge

-6

-3

0

3

6

Res

idua

ls

log

(abs

PC

)

-15 -12 -9 -6 -3 0log (TS biom)

-12

-9

-6

-3

0

3

6

9

log

(|D

iff P

C|)

-4 -2 0 2 4 6 8 10log (SR mass)

Log (R body mass)

Lo

g |

per

ca

pit

a I|

Per Capita Interaction Strength

Low R BiomassHigh R Biomass

Res

idu

als

Log (T biomass)

Per Capita Removal Interaction Strength

R

T

Page 103: Collaborators: Ulrich Brose Carol Blanchette Jennifer Dunne Sonia Kefi Neo Martinez Bruce Menge

Predicted by:Log (T biomass) +Log (R biomass) +Log (R body mass)

Lo

g |

per

ca

pit

a I|

Per Capita Interaction Strength

-12

-9

-6

-3

0

3

6

9

log

(|D

iff P

C|)

-10 -8 -6 -4 -2 0 2 4 6 8Pred Formula log (|Diff PC|)

R2 = 0.88

R

T

Page 104: Collaborators: Ulrich Brose Carol Blanchette Jennifer Dunne Sonia Kefi Neo Martinez Bruce Menge

population I

(population interaction strength)

Page 105: Collaborators: Ulrich Brose Carol Blanchette Jennifer Dunne Sonia Kefi Neo Martinez Bruce Menge

population I

(total effect on T of removing R)

Page 106: Collaborators: Ulrich Brose Carol Blanchette Jennifer Dunne Sonia Kefi Neo Martinez Bruce Menge

Classification and Regression Trees (CART)on log transformed |Interaction Strengths|

best predictors of absolute magnitude of log(population I)

T biomassR biomass

(Degrees Separated)

of the 90 variables tracked

R2 = 0.65

Page 107: Collaborators: Ulrich Brose Carol Blanchette Jennifer Dunne Sonia Kefi Neo Martinez Bruce Menge

-12

-9

-6

-3

0

log

(|D

iff T

E|)

-12 -9 -6 -3 0log (TS biom)

Lo

g |

po

pu

lati

on

I|

Log (T biomass)

Page 108: Collaborators: Ulrich Brose Carol Blanchette Jennifer Dunne Sonia Kefi Neo Martinez Bruce Menge

-12

-9

-6

-3

0

log

(|D

iff T

E|)

-12 -9 -6 -3 0log (TS biom)

Low R BiomassHigh R Biomass

Log (T biomass)

Lo

g |

po

pu

lati

on

I|

R2 = 0.65

Page 109: Collaborators: Ulrich Brose Carol Blanchette Jennifer Dunne Sonia Kefi Neo Martinez Bruce Menge

Sign (strong interactions)

0.00

0.25

0.50

0.75

1.00

-1 0 1

-1

1

≤ -1 ≥ 1

Weighted Sum Path Signs

Pro

po

rtio

n O

bse

rved

0.00

0.25

0.50

0.75

1.00

-1 0 1

-1

1

Sign (weak interactions)

≤ -1 ≥ 1

Weighted Sum Path Signs

positive

negative

Page 110: Collaborators: Ulrich Brose Carol Blanchette Jennifer Dunne Sonia Kefi Neo Martinez Bruce Menge

-18

-15

-12

-9

-6

-3

0

log

(abs

TE

)

-15 -12 -9 -6 -3 0log (TS biom)

-6

-3

0

3

6

Res

idua

ls

log

(abs

PC

)-15 -12 -9 -6 -3 0

log (TS biom)

-15

-12

-9

-6

-3

0

log

(abs

TE

)

-4 -2 0 2 4 6 8 10log (SR mass)

-12

-8

-4

0

4

8

12

log

(abs

PC

)

-4 -2 0 2 4 6 8 10log (SR mass)

Lo

g (

|per

cap

ita

I|)L

og

(|p

op

ula

tio

n I|

)

Res

idu

als

fro

m (

a)

Log (T biomass)Log (R Body Mass)

Lo

g (

|po

pu

lati

on

I|)

(a)

2. strongest per capita I:large bodied, low biomass R

effects on high biomass TR2 = 0.88

3. strongest population I:high biomass R

effects on high biomass TR2 = 0.65

Summary:

1. 3/4 scaling disappears in complex networks

Low R BiomassHigh R Biomass

-2

0

2

4

6

-4 -2 0 2 4 6 8 10log (SR mass)

Lo

g (

per

cap

ita

linea

r I)

Page 111: Collaborators: Ulrich Brose Carol Blanchette Jennifer Dunne Sonia Kefi Neo Martinez Bruce Menge

Strong Strong per capita per capita effectseffects

Page 112: Collaborators: Ulrich Brose Carol Blanchette Jennifer Dunne Sonia Kefi Neo Martinez Bruce Menge

Strong population effects

Page 113: Collaborators: Ulrich Brose Carol Blanchette Jennifer Dunne Sonia Kefi Neo Martinez Bruce Menge

How can it be so simple?

Page 114: Collaborators: Ulrich Brose Carol Blanchette Jennifer Dunne Sonia Kefi Neo Martinez Bruce Menge

Is it circular?

-15

-12

-9

-6

-3

0

log

(|D

iff T

E|)

-15 -12 -9 -6 -3 0

log (TS biom)Log (T biomass)

Lo

g (

|po

pu

lati

on

I|)

predicting: (BT+ - BT-)using: BT+

Log (BT+)

BT+ = T biomass (R present)BT- = T biomass (R removed)

Page 115: Collaborators: Ulrich Brose Carol Blanchette Jennifer Dunne Sonia Kefi Neo Martinez Bruce Menge

Is it circular?

-15

-12

-9

-6

-3

0

TE

shu

ff|)

-15 -12 -9 -6 -3 0log (TS biom)

-15

-12

-9

-6

-3

0

log

(|D

iff T

E|)

-15 -12 -9 -6 -3 0

log (TS biom)Log (T biomass)

Lo

g (

|po

pu

lati

on

I|)

predicting: (BT+ - BT-) 2° extinction of T

Log (T biomass)

reshuffled interactions

using: BT+

Log (BT+) Log (BT+)

R2 = 0.59 R2 = 0.19

Page 116: Collaborators: Ulrich Brose Carol Blanchette Jennifer Dunne Sonia Kefi Neo Martinez Bruce Menge

-6

-4

-2

0

2

Diff

TE

1 2 3 4 5 6 7degrees_separated

po

pu

lati

on

I

Degrees Separated

Chains of interactions tend to dampen with distance

Page 117: Collaborators: Ulrich Brose Carol Blanchette Jennifer Dunne Sonia Kefi Neo Martinez Bruce Menge

Species Richness

10 15 20 25 30

R2

0.75

0.80

0.85

0.90

0.95

Species Richness

10 15 20 25 30

R2

0.45

0.50

0.55

0.60

0.65

0.70

Prop

ortio

n of

Var

iatio

n Ex

plai

ned

R2 = 0.88

Number of Species

R2 = 0.73

More Complex is More Simple

per capita I population I

Page 118: Collaborators: Ulrich Brose Carol Blanchette Jennifer Dunne Sonia Kefi Neo Martinez Bruce Menge
Page 119: Collaborators: Ulrich Brose Carol Blanchette Jennifer Dunne Sonia Kefi Neo Martinez Bruce Menge
Page 120: Collaborators: Ulrich Brose Carol Blanchette Jennifer Dunne Sonia Kefi Neo Martinez Bruce Menge

What about the real world?

Page 121: Collaborators: Ulrich Brose Carol Blanchette Jennifer Dunne Sonia Kefi Neo Martinez Bruce Menge

Predictions:

<1> Purely metabolic interactions

should be well predicted by simple attributes of R and T.

Page 122: Collaborators: Ulrich Brose Carol Blanchette Jennifer Dunne Sonia Kefi Neo Martinez Bruce Menge

Predictions:

<2>Deviations from simple metabolic predictions

should point to strong non-metabolic influences.

Page 123: Collaborators: Ulrich Brose Carol Blanchette Jennifer Dunne Sonia Kefi Neo Martinez Bruce Menge

Goal:

De-trend the "metabolic baseline" of complex systems to gain insight into other important ecological processes.

Page 124: Collaborators: Ulrich Brose Carol Blanchette Jennifer Dunne Sonia Kefi Neo Martinez Bruce Menge

SuccessfullyPredict

Page 125: Collaborators: Ulrich Brose Carol Blanchette Jennifer Dunne Sonia Kefi Neo Martinez Bruce Menge

FailPredictably

Page 126: Collaborators: Ulrich Brose Carol Blanchette Jennifer Dunne Sonia Kefi Neo Martinez Bruce Menge

Berlow 1999 Nature 398:330

Page 127: Collaborators: Ulrich Brose Carol Blanchette Jennifer Dunne Sonia Kefi Neo Martinez Bruce Menge

R

T

Whelks

MusselsBarnacles

Space

Page 128: Collaborators: Ulrich Brose Carol Blanchette Jennifer Dunne Sonia Kefi Neo Martinez Bruce Menge

R

T

Whelks

MusselsBarnacles

Space

Field Experiment Conditions

Page 129: Collaborators: Ulrich Brose Carol Blanchette Jennifer Dunne Sonia Kefi Neo Martinez Bruce Menge

R

T

Whelks

MusselsBarnacles

Space

Page 130: Collaborators: Ulrich Brose Carol Blanchette Jennifer Dunne Sonia Kefi Neo Martinez Bruce Menge

R

T

Whelks

MusselsBarnacles

Space

+-

+- -

- -

Metabolic

Page 131: Collaborators: Ulrich Brose Carol Blanchette Jennifer Dunne Sonia Kefi Neo Martinez Bruce Menge

R

T

Whelks

MusselsBarnacles

Space

+-

+- -

- -

Metabolic+

Non-Metabolic

Page 132: Collaborators: Ulrich Brose Carol Blanchette Jennifer Dunne Sonia Kefi Neo Martinez Bruce Menge

R

T

WhelksMussels

Barnacles

+-

Metabolic+

Non-Metabolic

R

T

R

T+-

+- -

T+-

+- -

R

T

R

T

-

T

-Metabolic

Experimental Design

WhelksExcluded

Low WhelkBiomass

High WhelkBiomass

Natural Variationin Mussels

and Barnacles

4 blocks x 3 start datesx 1-3 yrs

Page 133: Collaborators: Ulrich Brose Carol Blanchette Jennifer Dunne Sonia Kefi Neo Martinez Bruce Menge

-18

-15

-12

-9

-6

-3

0

log

(abs

TE

)

-15 -12 -9 -6 -3 0log (TS biom)

-6

-3

0

3

6R

esid

uals

log

(abs

PC

)

-15 -12 -9 -6 -3 0log (TS biom)

Lo

g (

|per

ca

pit

a I|

)

Log (T biomass)

Lo

g (

|po

pu

lati

on

I|)

Simulation ResultsLow R BiomassHigh R Biomass

Page 134: Collaborators: Ulrich Brose Carol Blanchette Jennifer Dunne Sonia Kefi Neo Martinez Bruce Menge

Log (Mussel Biomass)

-1 0 1 2 3

Lo

g (|p

op

ulatio

n

I|)

-3

-2

-1

0

1

-1 0 1 2 3

Lo

g (

| per

cap

ita

I|)

-4

-3

-2

-1

0

Log (Mussel biomass)

Low Whelk BiomassHigh Whelk Biomass

Central TendencyPredicted by Simulations

predicted

Lo

g (

|per

ca

pit

a I|

)L

og

(|p

op

ula

tio

n I

|)

Page 135: Collaborators: Ulrich Brose Carol Blanchette Jennifer Dunne Sonia Kefi Neo Martinez Bruce Menge

-1 0 1 2 3

Lo

g (

| per

cap

ita

I|)

-4

-3

-2

-1

0

Log (Mussel Biomass)

-1 0 1 2 3

Lo

g (

|po

pu

lati

on

I|)

-3

-2

-1

0

1

R

T

-Metabolic predicted

Log (Mussel biomass)

Lo

g (

|per

ca

pit

a I|

)L

og

(|p

op

ula

tio

n I

|)

Low Whelk BiomassHigh Whelk Biomass

Page 136: Collaborators: Ulrich Brose Carol Blanchette Jennifer Dunne Sonia Kefi Neo Martinez Bruce Menge

-1 0 1 2 3

Lo

g (

| per

cap

ita

I|)

-4

-3

-2

-1

0

-1 0 1 2 3

Log (Mussel Biomass)

-1 0 1 2 3

Lo

g (

|po

pu

lati

on

I|)

-3

-2

-1

0

1

Log (Mussel Biomass)

-1 0 1 2 3

R

T

R

T+

+- --

R2 = 0.49

R2 = 0.43

Metabolic predicted

observed

Log (Mussel biomass)

Lo

g (

|per

ca

pit

a I|

)L

og

(|p

op

ula

tio

n I

|)

Low Whelk BiomassHigh Whelk Biomass

Low Whelk BiomassHigh Whelk Biomass

Page 137: Collaborators: Ulrich Brose Carol Blanchette Jennifer Dunne Sonia Kefi Neo Martinez Bruce Menge

-1 0 1 2 3

Lo

g (

| per

cap

ita

I|)

-4

-3

-2

-1

0

-1 0 1 2 3

Log (Mussel Biomass)

-1 0 1 2 3

Lo

g (

|po

pu

lati

on

I|)

-3

-2

-1

0

1

Log (Mussel Biomass)

-1 0 1 2 3

R

T

R

T+

+- --

R2 = 0.49

R2 = 0.43

Metabolic Metabolic+

Non-Metabolic

Log (Mussel biomass) Log (Mussel biomass)

predicted

observed

Lo

g (

|per

ca

pit

a I|

)L

og

(|p

op

ula

tio

n I

|)

Page 138: Collaborators: Ulrich Brose Carol Blanchette Jennifer Dunne Sonia Kefi Neo Martinez Bruce Menge

Summary<1>

¾ power law signal disappears andnew simple patterns emerge in a network context.

<2>magnitude of per capita and population I

explained by 2-3 simple species attributes (of 90)

<3>effects dampen with distancemore complex = more simple

<4>predictable fit and lack-of-fit in field experiment

Page 139: Collaborators: Ulrich Brose Carol Blanchette Jennifer Dunne Sonia Kefi Neo Martinez Bruce Menge

Conclusions

<1>metabolic "webbiness" of life not necessarily a big source of uncertainty.

Page 140: Collaborators: Ulrich Brose Carol Blanchette Jennifer Dunne Sonia Kefi Neo Martinez Bruce Menge

Conclusions

<2>“module” approaches may work best

when embedded in complexity

Page 141: Collaborators: Ulrich Brose Carol Blanchette Jennifer Dunne Sonia Kefi Neo Martinez Bruce Menge

Conclusions

<3>metabolic "null model" may describe

a universal baseline of species interactions in a complex network.

Page 142: Collaborators: Ulrich Brose Carol Blanchette Jennifer Dunne Sonia Kefi Neo Martinez Bruce Menge

Conclusions

<4>"de-trend" metabolism in ecological networks

to better understand non-metabolic interactions and processes

Page 143: Collaborators: Ulrich Brose Carol Blanchette Jennifer Dunne Sonia Kefi Neo Martinez Bruce Menge

"I would not give a fig for simplicity on this side of complexity, but I'd give my life for the simplicity on the other side of complexity"

Oliver Wendell Holmes, Jr.

Page 144: Collaborators: Ulrich Brose Carol Blanchette Jennifer Dunne Sonia Kefi Neo Martinez Bruce Menge

Acknowledgements

Alexander von Humboldt Foundation

Page 145: Collaborators: Ulrich Brose Carol Blanchette Jennifer Dunne Sonia Kefi Neo Martinez Bruce Menge
Page 146: Collaborators: Ulrich Brose Carol Blanchette Jennifer Dunne Sonia Kefi Neo Martinez Bruce Menge
Page 147: Collaborators: Ulrich Brose Carol Blanchette Jennifer Dunne Sonia Kefi Neo Martinez Bruce Menge
Page 148: Collaborators: Ulrich Brose Carol Blanchette Jennifer Dunne Sonia Kefi Neo Martinez Bruce Menge

-14

-12

-10

-8

-6

-4

-2

0

2

4L

og

(P

op

ula

tio

n D

ensi

ty)

-6 -4 -2 0 2 4 6 8 10 12

Log (Body Mass)

R2 = 0.96 slope = -1.05High Biomass

R2 = 0.36 slope = -1.17Low Biomass

R2 = 0.59slope = -1.4All Points

Page 149: Collaborators: Ulrich Brose Carol Blanchette Jennifer Dunne Sonia Kefi Neo Martinez Bruce Menge

0.05

0.10

0.15

Pro

babi

lity

-16 -14 -12 -10 -8 -6 -4 -2 0 1

0.05

0.10

0.15

-16 -14 -12 -10 -8 -6 -4 -2 0 1

PositiveEffects

NegativeEffects

Pro

bab

ility

0.10

0.05

0.15

0.10

0.05

0.15

Log (|population I|)

Page 150: Collaborators: Ulrich Brose Carol Blanchette Jennifer Dunne Sonia Kefi Neo Martinez Bruce Menge

n = 5 random subsamplesof 10,000 interactions

trophic

leve

l

1dgr p

rey

biom

log (b

ody m

ass)

#1 d

gr pre

d

% o

f E

xpla

ined

Var

iati

on

0

10

20

30

40

50

R presentR removed

(a)+

+

-

-

Page 151: Collaborators: Ulrich Brose Carol Blanchette Jennifer Dunne Sonia Kefi Neo Martinez Bruce Menge

Degrees Separated1 2 3 4 5 6 7

Ma

x L

og

(|p

er c

apit

a I|

)

2

4

6

8

10

Ma

x L

og

(|p

op

ula

tio

n I

|)

-1.6

-1.2

-0.8

-0.4

Chains of interactions tend to dampen with distance