Top Banner
Coherence and entanglement dynamics of exciton qubits Martijn Wubs, NBI/DTU AMOLF, Oct. 26, 2009 x 1 x 2 x 3 x Qb 1 Qb 2 Qb 3 in collaboration with R. Doll, S. Kohler, and P. Hänggi (Augsburg)
27

Coherence and entanglement dynamics of exciton qubits

Mar 19, 2022

Download

Documents

dariahiddleston
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Coherence and entanglement dynamics of exciton qubits

Coherence and entanglement dynamicsof exciton qubits

Martijn Wubs, NBI/DTU

AMOLF, Oct. 26, 2009

x1 x2 x3

x

Qb 1 Qb 2 Qb 3

in collaboration withR. Doll, S. Kohler, and P. Hänggi (Augsburg)

Page 2: Coherence and entanglement dynamics of exciton qubits

intro: quantum coherence

wave function for isolated systems

|ψ⟩ = |0⟩+ |1⟩p2

density matrix for open quantum systems

ρ(0) = |ψ⟩⟨ψ| = 1

2|0⟩⟨0|+ 1

2|1⟩⟨1|+ 1

2|0⟩⟨1|+ 1

2|1⟩⟨0|

|0>

|1>

relaxation

pure dephasing

Page 3: Coherence and entanglement dynamics of exciton qubits

intro: search for quantum coherence

Light harvesting Quantum information processing

Page 4: Coherence and entanglement dynamics of exciton qubits

Outline

recent experiments:exciton spectra in 3D and on 1D substrates

1 qubit:coherence dynamics under dephasing (in 1D, 3D)

2 qubits:entanglement dynamics, finite separation (in 1D, 3D)

N qubits:benchmarking master equations with exact results

conclusions

Page 5: Coherence and entanglement dynamics of exciton qubits

Quantum dots and substrates

from: group Rosenauer, Bremen

quantum dots = artificial atoms

self-assembled, eg.InGaAs on GaAs

size 2−10nm0D: discrete energy levels

long-lived optical excitations

useful as:

single-photon sources

quantum memory? Coherence?

Page 6: Coherence and entanglement dynamics of exciton qubits

Qubit in a quantum dot

two-level system |0⟩, |X⟩: exciton confined to q-dot

Zrenner et al., Nature (2002).

Page 7: Coherence and entanglement dynamics of exciton qubits

experiments: exciton qubits in carbon nanotubes

1

2

31300 4000 6700

cts/sec

1 2 3 4 5

1

2

3

(a)

200 nm

0 500 1000 15000

10

N

Length (nm)

(b)

<L> = 520 nm

units: nm

77 K

em= 885 nm

0

em= 872 nm

X - translation (µm)

Y-

transla

tion

m)

(c)

= 15 nm

3000 6000

0 250 5000.0

0.4

0.8

Heig

ht

0

Högele et al., PRL (2008)

Page 8: Coherence and entanglement dynamics of exciton qubits

experiments: excitons in nanotubes as single-photon emitters

0

10

20

0

20

40

G(2

) ()

-30 -20 -10 0 10 20 30

0

30

60

Time delay, (ns)

0

100

200

0

30

60

PL

Inte

nsity (

cts

/se

c)

850 860 870 880

0

30

60

Wavelength (nm)

4.2 K

10 K

25 K 0.15

0.03

0.03

= 4.4 meV

9.1 meV

9.5 meV

Energy (eV)

1.459 1.4091.433(a) (b)

Högele et al., PRL (2008)

“. . . intrinsic phonon-induced pure dephasing is 2 orders of magnitude larger

than the lifetime broadening . . .”, (Galland et al. (2008))

Page 9: Coherence and entanglement dynamics of exciton qubits

1 qubit: modeling pure dephasing due to substrate

qubit-bath Hamiltonian

H =ħΩσz +∑

kħωkb†

kbk +Hq−b

interaction

Hq−b =ħσz∑

k

(gkbk +g∗

k b†k

)initial state

R(0) = ρq(0)⊗ρeq.b

reduced qubit state

ρq(t) = Trb[R(t)] =(

p0 ρ01(0)c(t)ρ∗

01(0)c∗(t) 1−p0

),

1-qubit coherence function c(t)

Page 10: Coherence and entanglement dynamics of exciton qubits

1 qubit: interaction with substrate

deformation-potential coupling to acoustic phonons, gk ∝pk

bath spectral density J(ω) =∑k |gk|2δ(ω−ωk)

linear substrate (1D) → J(ω) ∝ω1 ohmicbulk substrate (3D) → J(ω) ∝ω3 superohmic

model spectral density with cutoff ωc = vphon/`dot

J(ω) =αωc (ω/ωc)d e−ω/ωc

1.42 1.43 1.44 1.45

101

102

103

104

0 1 2

0.1

1

Energy (eV)

|(t

)|

Time (ps)

100

5 meV

0

4

250

PL in

tensity

(a.u

.)

d = 1 d = 3

T = 5K

T=0.1K

Counts

T=6K

Page 11: Coherence and entanglement dynamics of exciton qubits

1 qubit: exact coherence for arbitrary substrate dimension d

reduced qubit state

ρq(t) = Trb[R(t)] =(

p0 ρ01(0)c(t)ρ∗

01(0)c∗(t) 1−p0

),

1-qubit coherence function c(t)

exact 1-qubit coherence cd(t) = exp[−λd(t)], with (sorry)

λd(t) = 8αs(−θ)d−1[

Fd−1(θ)−ReFd−1(θ[1+ iωct])]

+4αdΓ(d−1)

(cos[(d−1)arctan(ωct)]

(1+ω2c t2)(d−1)/2

−1

),

Γ(z) is Euler’s Gamma function,

F(z) = logΓ(z), and Fn(z) is its n-th derivative

Page 12: Coherence and entanglement dynamics of exciton qubits

1 qubit: incomplete pure dephasing in bulk substrate

0.94

0.96

0.98

1

exp−

Λ(3

)0,1(t)

0 5 10 15τ

kBT = 0.015 ~ωc

kBT = 0.15 ~ωc

kBT = 0.3 ~ωc

c(3)(τ→∞) → exp(−4α) (θ = kBT

ħωc→ 0)

α= 0.01, time scale for fast decay t∗ 'ω−1c

Vagov et al. PRB 2004

Page 13: Coherence and entanglement dynamics of exciton qubits

1 qubit: complete pure dephasing in a nanotube

0

0.25

0.5

0.75

1

coheren

ce

0 100 200 300 400 500

ωct

c(t)

cME(t)

r cME(t)

α = 0.05, kBT = 0.005hωc

LIN

0.1

0.2

0.5

1

coheren

ce

0 100 200 300 400 500

ωct

α = 0.05, kBT = 0.005hωc

LOG

master equation:

cME (t) = exp(−t/T2),T−1

2 = 4παkBT/ħ

exact coherence :

fast initial decay of c(t)time scale ħ/kBTamplitude

r =[

2πθ2θ−1

Γ2(θ)

]4α

' (2πθ)4α (θ¿ 1).

Page 14: Coherence and entanglement dynamics of exciton qubits

1 qubit: complete pure dephasing in a nanotube

“The non-Markovian nature of this decoherence mechanism may have adverse

consequences for applications of one-dimensional systems in quantum information

processing.” (Galland et al., (2008))

0

0.25

0.5

0.75

1

coheren

ce

0 100 200 300 400 500

ωct

c(t)

cME(t)

r cME(t)

α = 0.05, kBT = 0.005hωc

LIN

Q: 1D substrates less ideal?A: compare quantum errorcorrection rates

Page 15: Coherence and entanglement dynamics of exciton qubits

1 qubit: temperature dependence of QEC rates

1

10

100

1000QEC

rate

ωqec[√

ǫωc]

10−5 10−4 10−3 10−2 10−1 100 101 102 103

Temperature T [~ωc/kB]

ǫ = 10−4

ǫ = 10−3

ǫ = 10−2

αs = 0.1 s = 1s = 2

s = 3

0.01

0.1

1

10

10−4 10−2 100 102

αs = 0.001

Page 16: Coherence and entanglement dynamics of exciton qubits

1 qubit: coupling dependence of QEC rates

0.1

1

10

100

1000

QEC

rate

ωqec[ω

c]

10−5 10−4 10−3 10−2 10−1

coupling strength αs

ǫ = 10−4

ǫ = 10−3

ǫ = 10−2

kBT = 0.01ħωc

Page 17: Coherence and entanglement dynamics of exciton qubits

2 qubits: robust Bell states

Now: 2 qubits at distance x12, coupled to same phonon bath.

x1 x2

x

Qb 1 Qb 2

Known: 2 qubits coupled to same bath at same position:

|ψrobust⟩ =|01⟩+ |10⟩p

2

robust: decoherence-free subspace

Entanglement measure:Concurrence C[ρ] = max0,

√λ1 −

√λ2 −

√λ3 −

√λ4,

λi are ordered eigenvalues of ρσ1yσ2yρ∗σ1yσ2y.

Page 18: Coherence and entanglement dynamics of exciton qubits

2 qubits: entanglement of robust Bell state

0.8

0.9

1

C(3

)−

(τ)

0 5 10 15 20τ

τ12 = 0τ12 = 2τ12 = 10|ψ−〉

(c)

0

0.5

1

C(1

)−

(τ)

0 200 400 600 800τ

τ12 = 0τ12 = 200τ12 = 600

|ψ−〉

(a)

decoherence-poor subspace

upper = 3Dlower = 1D

coupling α= 0.01,

scaled temp.θ = kBT/ħωc = 0.015,

scaled distanceτ12 =ωcx12/vphon,

scaled time τ=ωct.

Page 19: Coherence and entanglement dynamics of exciton qubits

2 qubits: final concurrence of robust Bell state

0

0.25

0.5

0.75

1

C(∞

)

10−2 100 102 104 106 108

ωct12

kBT = 10−6 ~ωc

kBT = 10−5 ~ωc

kBT = 10−4 ~ωc

kBT = 10−3 ~ωc

C(1)− (τ→∞) = (1+τ2

12)4α∣∣∣∣Γ[θ(1− iτ12)]

Γ(θ)

∣∣∣∣16α

→ 1

(1+τ212)4α

(θτ12 → 0)

Page 20: Coherence and entanglement dynamics of exciton qubits

N qubits: entanglement dynamics

x1 x2 x3

x

Qb 1 Qb 2 Qb 3

W states:

|WN ⟩ = 1pN

(|100. . .0⟩+ |010. . .0⟩+ . . .+|000. . .1⟩)

N-qubit generalization of |W2⟩ = |ψrobust⟩, robust Bell state

Entanglement measure for N qubits: problematic

Here: fidelity F(t) = Trρ(t)ρ(0)

Page 21: Coherence and entanglement dynamics of exciton qubits

N qubits: fidelity dynamics and master equations

0

0.25

0.5

0.75

1

F(t)

0 5 10 15 20 25 30

ωct [104]

(b) kBT/~ωc = 10−3

N = 3

N = 6

0.5

1

100

103

106

ωct

N = 3

0

0.25

0.5

0.75

1

F(t)

(a) kBT/~ωc = 10−4

N = 3

N = 6

usual master equation

FME(t) = 1 ∀ t (bad)

causal master equation

d

dtρjj′ (t) =−8απkBT

ħ[

1−Θ(t − tjj′ )]ρjj′ (t)

Two assumptions for QEC violated1 exponential decay2 qubits in uncorrelated baths

Page 22: Coherence and entanglement dynamics of exciton qubits

N qubits: scaling of final fidelity

0

0.25

0.5

0.75

1

F(∞

)

1 10 20 30 40

N

exact, α = 0.001approx.exact, α = 0.01approx.

F(∞) '[Γ( 1

2 −4α)

Γ( 32 −4α)

− 1

1−4α

](Nωct12)−8α→ (Nωct12)−8α (α< 0.005)

Page 23: Coherence and entanglement dynamics of exciton qubits

conclusions

experiments:i. exciton spectra in 3D and on 1D substratesii. non-exponential dephasing challenge for QIP

1 qubit:i. fast initial dephasingii. stabilization in 3D, exponential decay in 1Diii. lowest error correction rates for 1D

2 qubits:i. entanglement stabilization in 3Dii. and in 1D for the robust state

N qubits:i. Incomplete pure dephasing of W states, exact dynamicsii. Master equation very inaccurate. We improved it.

Page 24: Coherence and entanglement dynamics of exciton qubits

thanks to . . .

Roland DollSigmund Kohler (Augsburg)Peter Hänggi

Thanks for your attention!

1 Two-qubit entanglement, EPL 76, 547 (2006),

2 Incomplete pure dephasing of N qubits, PRB 76,

045317 (2007),

3 Quantum error correction rates, EPJ B 68, 523 (2009).

4 Exact results from approximate master equations,

Chem. Phys. 347, 243 (2008). www.martijnwubs.nl

Page 25: Coherence and entanglement dynamics of exciton qubits

2 qubits: entanglement of fragile Bell state

0.8

0.9

1

C(3

)+

(τ)

0 5 10 15 20τ

τ12 = 0τ12 = 2τ12 = 10

|ψ+〉

(d)

0

0.5

1

C(1

)+

(τ)

0 200 400 600 800τ

τ12 = 0τ12 = 200τ12 = 600

|ψ+〉

(b)

upper = 3D, superohmiclower = 1D, ohmic

coupling α= 0.01,scaled temp.θ = kBT/ħωc = 0.015,scaled distanceτ12 =ωcx12/vphon,scaled time τ=ωct.

general identity

C(d)+ (t)C(d)

− (t) = |c(d)(t)|4

Page 26: Coherence and entanglement dynamics of exciton qubits

Deformation-potential coupling dominates

Pure dephasing due to deformation-potential coupling:

Pure dephasing due to piezo-electric coupling:

Krummheuer et al., PRB (2002)

Page 27: Coherence and entanglement dynamics of exciton qubits

1 qubit: Non-Markovian dephasing and lineshape

Krummheuer et al. (2002)