Top Banner
1 $. Heuraux NMCF avril 09 € Codes in reflectometry Numerical Schemes and limitations S. Heuraux , M Schubert £ , F. da Silva ¥ IJL-NANCY UMR CNRS 7198, Université Henri Poincaré Nancy I BP 70239, 54506 Vandoeuvre Cedex - France £ Association Euratom-CEA_Cadarache 13108 St Paul-lez-Durance – France 'LPTP École Polytechnique Palaiseau-France °IOFFE Institut, St Petersbourg Russia ¥ Centro de Fusão Nuclear – Associação EURATOM / IST Av. Rovisco Pais, 1049-001 Lisboa, Portugal $ UKEA JET Culham Science Centre Abingdon - OX14 3DB - United Kingdom conjointement avec F. Clairet £ , R. Sabot £ , S. Hacquin £ , A. Sirinelli $ , T. Gerbaud $ , L. Vermare, P. Hennequin', I. Boucher , E. Gusakov°, A. Popov°, M. Irzak°, N. Kosolapova° et F. da Silva ¥
26

Codes in reflectometry Numerical Schemes and limitations

Jan 12, 2016

Download

Documents

donat

Codes in reflectometry Numerical Schemes and limitations. S. Heuraux € , M Schubert £ , F. da Silva ¥. - PowerPoint PPT Presentation
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Codes in reflectometry Numerical Schemes and limitations

1 $. Heuraux NMCF avril 09 €

Codes in reflectometryNumerical Schemes and limitations

S. Heuraux €, M Schubert£, F. da Silva¥

€IJL-NANCY UMR CNRS 7198, Université Henri Poincaré Nancy I BP 70239, 54506 Vandoeuvre Cedex - France

£Association Euratom-CEA_Cadarache 13108 St Paul-lez-Durance – France'LPTP École Polytechnique Palaiseau-France

°IOFFE Institut, St Petersbourg Russia¥Centro de Fusão Nuclear – Associação EURATOM / IST

Av. Rovisco Pais, 1049-001 Lisboa, Portugal$UKEA JET Culham Science Centre Abingdon - OX14 3DB - United Kingdom

conjointement avec F. Clairet£, R. Sabot£, S. Hacquin£, A. Sirinelli$, T. Gerbaud$, L. Vermare, P. Hennequin', I. Boucher€, E. Gusakov°, A. Popov°, M. Irzak°, N. Kosolapova° et F. da Silva¥

Page 2: Codes in reflectometry Numerical Schemes and limitations

2 $. Heuraux NMCF avril 09 €

• Neoclassical (collisions)• Anomalous => Turbulence (ne>> B, Te…)

Transport mechanisms

Transport coefficients :turbulent >> Neoclassical

Diagnostics are needed to access to the turbulence parameters

Too hot to be probed by material tools (except in the edge until the last closed flux surface LCFS)

Only electromagnetic waves can be used

The understanding of the turbulent transport is key point for the energy production through

the fusion plasma

Page 3: Codes in reflectometry Numerical Schemes and limitations

3 $. Heuraux NMCF avril 09 €

Quasi optic approximation :InterferometryPolarimetryContrast Phase imaging Thompson scattering Spectroscopy

Microwaves are more appropriated to diagnose turbulence ~ f (Bragg scattering)

Reflectometry is a versatile diagnostic which is able to provide turbulence parameters: ne(r) absolute density fluctuation profile, S(kr)& S(kpol) radial & poloidal wavenumber spectra, S() frequency spectrum, lc correlation length, Vpol turbulence velocity…

Electromagnetic (EM) wave for probing plasma ?

Page 4: Codes in reflectometry Numerical Schemes and limitations

4 $. Heuraux NMCF avril 09 €

Fluctuating Plasma

Diagnostic for density profile

-FMCW Reflectometers   mode X or

O: (t)= t + o,

() -> ne(r ),

ne(r), S(kr) ....E1.e(i.2Ft)

E2.e(2iFt-i(t))

E3.e(i.2Ft)

Signal ~ A.e(i.(t))

Mixer

F(t)

F = 50 - 110 GHzt = 20 s

Pout ~ 10 mWS/N = 40 dB

probingwave

Cut-off layer

Principle of reflectometry (1)

Bottollier-Curtetalgorithm

Density profiles

or Abel inversion

F. Clairet et al Rev Sci I. (2003) 74, 1481, F. Clairet et al PPCF 46, 1567 (2004).

Page 5: Codes in reflectometry Numerical Schemes and limitations

5 $. Heuraux NMCF avril 09 €

Fluctuating Plasma

-Doppler Reflectometer X or O-mode

(50-75, 75-110 GHz, fast hopping system)

= o, (t) -> Vpol , S(kpol)

Principle of reflectometry (2)

R. Sabot et al, Int. Journal of Infrared and Millimeter Waves (2004) 25 229-246.

Diagnostics of the turbulence

-Fluctuation - Reflectometer O-X-mode

(110-155 GHz, fast hopping system)

= o, (t) -> ne(t) -> S()

sampling rate 1MHzM. Schubert Names 2007& EPS 2008

P. Hennequin et al, Rev. Sci. I. (2004) 75 3881. F. da Silva et al Nuclear Fusion 46, S816 (2006)..

Page 6: Codes in reflectometry Numerical Schemes and limitations

6 $. Heuraux NMCF avril 09 €

Vacuum Plasma

Correlation length measurement 1, 22

lcphase high

Intercorrelation length

lcsignal signal fct of amplitude <E1ei1 E2ei2>

2 regimes for small kf values

      linear => lc log(∆)

      NL => l cNL < lc linear

lc

correlation length

Gusakov et al PPCF (2004) 46, 1393

Principle of reflectometry (3)

Radial or poloidal Correlation Reflectometers

Leclert et al PPCF (2006) 48, 1389 Gusakov et al EPS (2009)

Page 7: Codes in reflectometry Numerical Schemes and limitations

7 $. Heuraux NMCF avril 09 €

Principle

source

detector

(t)

(t)

A(t) [(t)]

(t'), (t')

[1; 2] ( /t)

Fixed frequency (t) => S()

Frequency sweep () => S(kf)

Density fluctuations induce = WKB +

= <

Effects of density fluctuations on the reflectometer signal

Heuraux et al., Rev. Sci. I (2003) 74, 1501, L. Vermare et al, Plasma Phys Cont Fusion 47, 1895

(2005) T. Gerbaud et al 77, 10E928 (2006).

Density profile

Page 8: Codes in reflectometry Numerical Schemes and limitations

8 $. Heuraux NMCF avril 09 €

In red Bragg backscattering => kf = 2 kloc(x) phase fluctuations

In blue

Reflection at cut-off layer

NO,X (xc)= 0

Amplitude modulation

Destructive interference

Doppler shift n(t)

In magneta

Forward scattering

Beam widening

Doppler shift V

F. Da Silva et al Nuclear Fusion 46, S816 (2006);F. Da Silva et al & A. Popov et al IRW8 reflectometry meeting 2-4 May 2007

Effects of density fluctuations on the reflectometer signal

Localized process in ne(r)

Page 9: Codes in reflectometry Numerical Schemes and limitations

9 $. Heuraux NMCF avril 09 €

Effects of density fluctuations: destructive interference

O ModeFrequency sweep25-40 GHz

Island length10o

width 4o

electric field for ≠ positions of the islands, fixed

Shifted Position / pt X

Same behaviour forsingle structure

island + fluctuation < amplitude >

Amplitude of reflected wave fct of Ez island length 40 o

O point on the waveguide axisX point on the waveguide axis

F. Da Silva et al Rev. Sci. Instrum. 74, 1497-1501 (2003)

Page 10: Codes in reflectometry Numerical Schemes and limitations

10 $. Heuraux NMCF avril 09 €

f

probingwave

Cut-off

Reflectometry Diagnostics in Tokamaks

-Fast sweep frequency

reflectometers O or X-mode

-Plasma Position Reflectoemter

-Fluctuation reflectometer

-Doppler Reflectometer

-Correlation Reflectometer

Why Reflectometry Simulations ?Why Reflectometry Simulations ?

Fluctuating Plasma

QuickTime™ et undécompresseur MPEG-4 Videosont requis pour visionner cette image.

Page 11: Codes in reflectometry Numerical Schemes and limitations

11 $. Heuraux NMCF avril 09 €

Solutions to some simulation problem Solutions to some simulation problem

J. of Computational Physics 174, 1 (2001), J. of Computational Physics 203, 467 (2005), J. Plasma Physics 72, 1205 (2006), RSI 79, 10F104 (2008)

Monomode Wave Injection in oversized wave guideRealistic description of EM probing beamUnidirectional Transparent Source (UTS) for frequency sweep

UTS needed

Page 12: Codes in reflectometry Numerical Schemes and limitations

12 $. Heuraux NMCF avril 09 €

Hyp. WKB : ⎪⎪⎪

⎪⎪⎪dk

dx «k2,

⎪⎪⎪⎪

⎪⎪⎪⎪d2k

dx2«⎪

⎪⎪

⎪⎪⎪dk

dxk

From ray tracing to wave equation (1)

Ray tracing

Single mode description D(,k,r,t)=0

Set of coupled Odes to solve

∂r

r

∂τ= −

∂D(ω,r k ,

r r , t)

∂r k

∂r k

∂τ=

∂D(ω,r k ,

r r , t)

∂r r

⎨ ⎪ ⎪

⎩ ⎪ ⎪

∂t∂τ

=∂D(ω,

r k ,

r r , t)

∂ω∂ω

∂τ= −

∂D(ω,r k ,

r r , t)

∂t

⎨ ⎪ ⎪

⎩ ⎪ ⎪

Can be extended to Gaussian beam propagation by one ODE associated to amplitude

Numerical Tools needed for ITER plasma position studies

Quasi-optic description without scattering

RK45

Page 13: Codes in reflectometry Numerical Schemes and limitations

13 $. Heuraux NMCF avril 09 €

From ray tracing to wave equation (2)

Helmholtz's equation (full-wave)

Hyp: monochromatic wave, steady state plasma (∆t or corr >> 4rc/c)

Single mode description: Computation of the index N(r)

r

E + N 2(r r )

r E = 0

Be careful in multi dimensional case, possible cross derivatives more complicated to solve

No Doppler

Monochromatic and single polarisation probing system

Finite Difference4th order (Numerov)

Page 14: Codes in reflectometry Numerical Schemes and limitations

14 $. Heuraux NMCF avril 09 €

Finite Element Method

Actually only few developments on FEM with dispersive media

In plasma only using equivalent dielectric (Ph Lamalle for ICRH orF. Braun & L. Colas) for ICRH

Accurate method in vacuum and in complex geometry (commercial software)

ALCYON was ICRH code based on functionals, if will be replaced by EVE code developed by R. Dumont (CEA_cadarache)and needs a lot of memory (~10-20 Gbytes)

In the case of reflectometrypossible ? Yes

QuickTime™ et undécompresseur TIFF (non compressé)

sont requis pour visionner cette image.QuickTime™ et undécompresseur TIFF (non compressé)

sont requis pour visionner cette image.QuickTime™ et undécompresseur TIFF (non compressé)

sont requis pour visionner cette image.

Monochromatic multi-polarisation probing system

EVE

Page 15: Codes in reflectometry Numerical Schemes and limitations

15 $. Heuraux NMCF avril 09 €

From ray tracing to wave equation (3)

Shrödinger like's equation (full-wave)

Hyp: quasi-monochromatic wavequasi steady state plasma (∆t or corr >> 4rc/c)

Single mode description: Computation of the index N(r)

i∂t

r E + Δ

r E + N 2(

r r )

r E = 0

Lin et al, Plasma Phys. Cont. Fusion 40 L1 (2001)

>>∂t

Restriction on dispersion effects,Quasi-paraxial approximation

Quasi steady state plasma

Parabolic

Page 16: Codes in reflectometry Numerical Schemes and limitations

16 $. Heuraux NMCF avril 09 €

From ray tracing to wave equation (4)

wave equation (quasi-steady state medium)

Hyp: (tf, ∆t or corr >> 4rc/c)

∂t2

r E − c 2Δ

r E + ωpe

2 (r r )

r E = 0

O-mode or isotrpic plasma

⎩⎪⎪⎪⎪⎨⎪⎪⎪⎪⎧∂2Ex

∂t2 + c2 ∂

2Ex

∂x∂y c2 ∂2Ex

∂y2 + p 2 Ex = p

2 vy

∂2Ey

∂t2 + c2 ∂

2Ey

∂x∂y c2 ∂2Ey

∂x2 + p 2 Ey = p

2 vx

∂∂tvx = c vy c

Ex

∂∂tvy = c

vx c Ey

Set of coupled partial differential equations associated to X-mode

Time dependent physical processes or probing system

Hacquin et al, J. of Computational Physics 174, 1 (2001),

Cohen et al, Plas. Phys. Cont Fusion 40, 75 (1998),

V = V/VD where VD=Eo/Bo

and E= E/Eo

FiniteDifference +pE rewritting

Page 17: Codes in reflectometry Numerical Schemes and limitations

17 $. Heuraux NMCF avril 09 €

From ray tracing to wave equation (5)

wave equation (time-depend medium)

Hyp: single mode polarisation

∂t2

r E − c 2Δ

r E + ωpe

2 (r r , t)

r E =

e

εo

r v ∂tn

∂t

r v = −

e

me

r E

⎨ ⎪ ⎪

⎩ ⎪ ⎪

Just to add tn in the Set of coupled partial differential equations associated to X-mode

O-mode or isotrpic plasma

Fast gradient motion,up or down frequency shiftamplitude variation

Frequency upshift with tn

Turbulence dynamics, fast events

FiniteDifference +pE rewritting+ RK45

Page 18: Codes in reflectometry Numerical Schemes and limitations

18 $. Heuraux NMCF avril 09 €

Cross polarisation simulations

∂t2E z − c 2∂x

2E z + ωpe2 (x, t)E z = COX E x, Ey( )

∂t2E x + ωpe

2 (x, t)Ex = −ωpe2 (x, t)vy + CXOx E z( )

∂t2E y − c 2∂x

2E y + ωpe2 (x, t)Ey = ωpe

2 (x, t)vx + CXOy E z( )

∂t

r v = −

e

me

r E −

e

me

r v ×

r B

⎪ ⎪ ⎪

⎪ ⎪ ⎪

1D Case: O-mode and X-mode

O-modeX-mode

B measurements

Hojo et al, J. of Phys. Soc Jpn. 67, 2574 (1998),

Finite difference

Page 19: Codes in reflectometry Numerical Schemes and limitations

19 $. Heuraux NMCF avril 09 €

Full description: Maxwell's equations

Hyp: linear response of the plasma

∇.r B = 0

∇.r E =

ρ

εo

∇ ×r E = −

∂r B

∂t

∇ ×r B = μo

r j +

1

c 2

∂r E

∂t

⎪ ⎪ ⎪

⎪ ⎪ ⎪

total density of chargesj current density

Associated model fluid or kinetic

Radial direction

60 GHz

Polo

idal di r

ect

ion

F. da Silva et al , J Plasma Phys. 72 1205 (2006) and Rev. Sci Instr. 79, 10F104 (2008)

TE and TM are usually treated separately

Velocity field mapping, Shear layer detection

Yee's algorithm+J solver

x/o

50 cm

Page 20: Codes in reflectometry Numerical Schemes and limitations

20 $. Heuraux NMCF avril 09 €

One example: ITER Plasma Position ReflectometerOne example: ITER Plasma Position Reflectometer

QuickTime™ et undécompresseur codec YUV420sont requis pour visionner cette image.QuickTime™ et undécompresseur codec YUV420sont requis pour visionner cette image.

Page 21: Codes in reflectometry Numerical Schemes and limitations

21 $. Heuraux NMCF avril 09 €

Role of the velocity shear layers (spectrum wings ?)

Long Terms Projects

Blob signature, single event detection (condition requirements)

Page 22: Codes in reflectometry Numerical Schemes and limitations

22 $. Heuraux NMCF avril 09 €

Reflectometry Computation Requirements (1)

To describe the forward scattering effects (long wavelength contribution)

To recover the theoretical results of the forward scattered power much larger mesh size is required

Usefulness of the testing of the code by using analytical results

Be careful on the choice of the turbulence generator: modes summation, burst superposition, …. or coming from turbulence code BUT has intrinsic limitations

Page 23: Codes in reflectometry Numerical Schemes and limitations

23 $. Heuraux NMCF avril 09 €

Reflectometry Computation Requirements (2)

To describe ITER case full size:

Time series long enough to have a good statistics results for the forward scattered power better to use Yee's algorithm

1000 vacuum wavelengths -> Helmholtz code (4th order)-> 14 pts/wavelength-> FDTD code -> 20pts/wavelengh and 40 pts/period

Helmholtz scheme characteristics : Memory N2

with UMF pack library computation time N3

Absorbing boundary conditions to avoid can satisfy to resonant conditions,Needs of real transparent boundary conditions

Page 24: Codes in reflectometry Numerical Schemes and limitations

24 $. Heuraux NMCF avril 09 €

European Reflectometry Computation consorsium

Full-wave european codes in Reflectometry :

Helmholtz's code (1D&2D, O and X) CEA, IJL, LPTP

Wave equation code (1D &/or 2D, O &/or X) TEXTOR, IJL

Maxwell's equations code (2D, O or X) IST, IJL, CIEMAT, ASDEX, Stuttgart

To do What ?fundamental studies (forward scattering effects,….)new diagnostic development (S(kr) fast sweep and radial correlation, …)interpretation of experiments (Doppler, correlation fluctuation,…)ITER design (plasma position reflectometer,…)

Pb turbulence modelling which one, mode superposition, burst emission,….

Project: 3D code Maxwell's equation O and X-mode (ITM group)

Page 25: Codes in reflectometry Numerical Schemes and limitations

25 $. Heuraux NMCF avril 09 €

Conclusions and proposals of further studies (1/2)

-2D full-wave simulations seem to show that it is possible to determine the position of the LCFS with ITER spatial resolution specification when the probing beam corresponds to the perpendicular of the LCFS.

-Reconstruction density profile should be improved to treat the parasitic resonances.

-Full-wave simulations including high amplitude of edge density fluctuations has to be done according to the electric field structure see below (role of the k - spectrum and of the peeling modes)

dominated by Bragg backscattering and by forward scattering

Page 26: Codes in reflectometry Numerical Schemes and limitations

26 $. Heuraux NMCF avril 09 €

-High density fluctuation amplitude at the edge induces modifications of the reconstructed density profile as show in F. da Silva et al paper. This effect should be also taken into account in further studies.

-The effect (toroidal deviation) of the shear magnetic field on the probing beam propagation has been neglected until now, this point should be verified .

-The parasitic resonances should be also studied in details ( 3D full-wave simulations are required, should be done in vacuum)

Conclusions and proposals of further studies (2/2)

F. da Silva et al EPMESC IX, 22-27 November Macau "Computational methods in Engineering and science"ed A.A Balkema ISBN 9058095673, p233 (2003).