Top Banner
Coarse and Fine-Grain Parallelism for Inverse Design Optimization James St. Ville & Subby Rajan Hawthorne & York, Intl. Phoenix, AZ Ashok Belegundu Pennsylvania State University
40

Coarse and Fine-Grain Parallelism for Inverse Design Optimization James St. Ville & Subby Rajan Hawthorne & York, Intl. Phoenix, AZ Ashok Belegundu Pennsylvania.

Jan 17, 2016

Download

Documents

Kelly Wilkerson
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Coarse and Fine-Grain Parallelism for Inverse Design Optimization James St. Ville & Subby Rajan Hawthorne & York, Intl. Phoenix, AZ Ashok Belegundu Pennsylvania.

Coarse and Fine-Grain Parallelism for Inverse Design

Optimization

James St. Ville & Subby RajanHawthorne & York, Intl.

Phoenix, AZ

Ashok BelegunduPennsylvania State University

Page 2: Coarse and Fine-Grain Parallelism for Inverse Design Optimization James St. Ville & Subby Rajan Hawthorne & York, Intl. Phoenix, AZ Ashok Belegundu Pennsylvania.

22

System Architecture

Page 3: Coarse and Fine-Grain Parallelism for Inverse Design Optimization James St. Ville & Subby Rajan Hawthorne & York, Intl. Phoenix, AZ Ashok Belegundu Pennsylvania.

33

Single ProcessorIntel P3 and P4 (Windows & Linux)Itanium (Red Hat Advanced Linux & Windows 2003 Server)

Distributed Processing using MPI (TCP/IP)CML: 25 nodes, 24 processors at ASU (P4-3.06 MHz, 2 GB RAM, Red Hat Linux)FEM: 8 nodes, 16 processors at ASU (Dual P4-1.7 GHz, 1 GB RAM, Windows 2000)HYI: 4 nodes, 4 processors at HYI (P3-1 GHz, 1 GB RAM, Windows 2000)

Computing Platforms

Page 4: Coarse and Fine-Grain Parallelism for Inverse Design Optimization James St. Ville & Subby Rajan Hawthorne & York, Intl. Phoenix, AZ Ashok Belegundu Pennsylvania.

44

Objective Functions

Weight, mass or volumeComplianceConstrained Least-SquaresThermal ResistanceKinetic Energy, Sound Pressure

Page 5: Coarse and Fine-Grain Parallelism for Inverse Design Optimization James St. Ville & Subby Rajan Hawthorne & York, Intl. Phoenix, AZ Ashok Belegundu Pennsylvania.

55

Constraints

ConstraintsStrength-based (failure criterion based)ComplianceNodal displacementsFrequencyLinearized bucklingVolume, mass or weightGeometry

Page 6: Coarse and Fine-Grain Parallelism for Inverse Design Optimization James St. Ville & Subby Rajan Hawthorne & York, Intl. Phoenix, AZ Ashok Belegundu Pennsylvania.

66

Suite of Optimizers

Method of Feasible DirectionsSpecialized Least-Squares SolutionOptimality CriteriaGenetic Algorithm

Page 7: Coarse and Fine-Grain Parallelism for Inverse Design Optimization James St. Ville & Subby Rajan Hawthorne & York, Intl. Phoenix, AZ Ashok Belegundu Pennsylvania.

77

Gradient-Based Optimization

4 Major StepsFunction Evaluation (FE)Gradient Evaluation (GE)Direction-Finding (DF) StepLine Search (LS)

Page 8: Coarse and Fine-Grain Parallelism for Inverse Design Optimization James St. Ville & Subby Rajan Hawthorne & York, Intl. Phoenix, AZ Ashok Belegundu Pennsylvania.

88

3-Level Parallelism

Scenario: NP=8, d=4, f=2DF MANAGER

1

1 5LS MANAGER LS MANAGER

1 2 3 4

1 3

,dstd

1

1

,d

,dstd

1

1

,d

,dstd

2

2

,d

,dstd

2

2

,d

5 6 7 8

5 7

,dt

1

1

,d

FE MANAGERFE MANAGER

,dt

1

1

,d

,dt

2

2

,d

,dt

2

2

,d

Page 9: Coarse and Fine-Grain Parallelism for Inverse Design Optimization James St. Ville & Subby Rajan Hawthorne & York, Intl. Phoenix, AZ Ashok Belegundu Pennsylvania.

Sizing Optimization: Sequential versus Distributed Processing

Page 10: Coarse and Fine-Grain Parallelism for Inverse Design Optimization James St. Ville & Subby Rajan Hawthorne & York, Intl. Phoenix, AZ Ashok Belegundu Pennsylvania.

1010

Fuel Tank Design

FE Model2722 nodes5440 elementsUniform internal pressure

Design Model40 design variablesVon Mises FC30 iterations

Page 11: Coarse and Fine-Grain Parallelism for Inverse Design Optimization James St. Ville & Subby Rajan Hawthorne & York, Intl. Phoenix, AZ Ashok Belegundu Pennsylvania.

1111

Fuel Tank Design (FEM)

# of Procs

ParallelComps

Time(second

s)

Speedup

1 NA 8896 1.08 (1PN) -ge 4792 1.868 (1PN) -ge –ls 2265 3.938 (1PN) -ge –df:4 2166 4.118 (1PN) -ge –df:4 –ls:2 1594 5.5816 (2PN)

-ge –df:4 –ls:4 1254 7.09

Page 12: Coarse and Fine-Grain Parallelism for Inverse Design Optimization James St. Ville & Subby Rajan Hawthorne & York, Intl. Phoenix, AZ Ashok Belegundu Pennsylvania.

1212

Fuel Tank Design (CML)

# of Proc

s

ParallelComps

Time(second

s)

Speedup

1 NA 3602 1.08 -ge 2395 1.508 -ge –ls 1652 2.188 -ge –df:4 –ls:2 920 3.9216 -ge –df:4 –ls:4 732 4.9224 -ge –df:4 –ls:6 783 4.60

Page 13: Coarse and Fine-Grain Parallelism for Inverse Design Optimization James St. Ville & Subby Rajan Hawthorne & York, Intl. Phoenix, AZ Ashok Belegundu Pennsylvania.

1313

Fuel Tank Design

Objective Function History(TB3-T2839-40)

0

1

2

3

4

5

6

7

8

0 5 10 15 20 25 30

Iteration #

(m3)

Page 14: Coarse and Fine-Grain Parallelism for Inverse Design Optimization James St. Ville & Subby Rajan Hawthorne & York, Intl. Phoenix, AZ Ashok Belegundu Pennsylvania.

1414

Truss Design

FE Model1581 nodes4550 elementsWind Loads

Design Model150 design variablesAxial stress20 iterations

Page 15: Coarse and Fine-Grain Parallelism for Inverse Design Optimization James St. Ville & Subby Rajan Hawthorne & York, Intl. Phoenix, AZ Ashok Belegundu Pennsylvania.

1515

Truss Design (FEM)

# of Procs

ParallelComps

Time(second

s)

Speedup

1 NA 2690 1.08 (1PN) -ge 1890 1.428 (1PN) -ge –ls 1196 2.258 (1PN) -ge –df:4 1031 2.618 (1PN) -ge –df:4 –ls:2 1025 2.6216 (2PN)

-ge –df:4 –ls:4 1117 2.41

Page 16: Coarse and Fine-Grain Parallelism for Inverse Design Optimization James St. Ville & Subby Rajan Hawthorne & York, Intl. Phoenix, AZ Ashok Belegundu Pennsylvania.

1616

Truss DesignObjective Function History

(ROD-T1581)

0

20000

40000

60000

80000

100000

120000

140000

160000

180000

0 5 10 15 20

Iteration #

(in

3)

Page 17: Coarse and Fine-Grain Parallelism for Inverse Design Optimization James St. Ville & Subby Rajan Hawthorne & York, Intl. Phoenix, AZ Ashok Belegundu Pennsylvania.

Topology Optimization

Page 18: Coarse and Fine-Grain Parallelism for Inverse Design Optimization James St. Ville & Subby Rajan Hawthorne & York, Intl. Phoenix, AZ Ashok Belegundu Pennsylvania.

1818

3D Topology Optimization

FE Model173663 nodes159763 elementsMech. Loads

Page 19: Coarse and Fine-Grain Parallelism for Inverse Design Optimization James St. Ville & Subby Rajan Hawthorne & York, Intl. Phoenix, AZ Ashok Belegundu Pennsylvania.

1919

3D Topology Optimization(Mass Fraction = 0.5)

Page 20: Coarse and Fine-Grain Parallelism for Inverse Design Optimization James St. Ville & Subby Rajan Hawthorne & York, Intl. Phoenix, AZ Ashok Belegundu Pennsylvania.

2020

3D Topology Optimization(Mass Fraction = 0.3)

Page 21: Coarse and Fine-Grain Parallelism for Inverse Design Optimization James St. Ville & Subby Rajan Hawthorne & York, Intl. Phoenix, AZ Ashok Belegundu Pennsylvania.

2121

3D Topology Optimization (FEM)

# of Procs

Topology Opt.

Time (s)

Normalized Time

Parallel FEA Time (s)

Normalized Time

8 (1PN)

7249 1.9 536 1.68

16 (2PN)

3813 1.0 320 1.0

8 (1PN)

8138 1.8 558 1.73

16 (2PN)

4492 1.0 322 1.0

Page 22: Coarse and Fine-Grain Parallelism for Inverse Design Optimization James St. Ville & Subby Rajan Hawthorne & York, Intl. Phoenix, AZ Ashok Belegundu Pennsylvania.

2222

3D Shape Optimization

Page 23: Coarse and Fine-Grain Parallelism for Inverse Design Optimization James St. Ville & Subby Rajan Hawthorne & York, Intl. Phoenix, AZ Ashok Belegundu Pennsylvania.

2323

3D Shape Optimization (FEM)

# of Procs

ParallelComps

Time(second

s)

Speedup

1 NA 12525 1.08 (1PN) -ge 9235 1.368 (1PN) -ge –ls 4954 2.538 (1PN) -ge –ls –fea:4 4269 2.93

Page 24: Coarse and Fine-Grain Parallelism for Inverse Design Optimization James St. Ville & Subby Rajan Hawthorne & York, Intl. Phoenix, AZ Ashok Belegundu Pennsylvania.

2424

3D Shape Optimization (CML)

# of Procs

ParallelComps

Time(second

s)

Speedup

1 NA 4616 1.08 (1PN) -ge –ls –fea:4 3396 1.3616 (1PN)

-ge –ls –fea:4 2847 1.62

16 (1PN)

-ge –ls –fea:8 2122 2.18

24 (1PN)

-ge –ls –fea:4 2608 1.77

24 (1PN)

-ge –ls –fea:8 1895 2.44

Page 25: Coarse and Fine-Grain Parallelism for Inverse Design Optimization James St. Ville & Subby Rajan Hawthorne & York, Intl. Phoenix, AZ Ashok Belegundu Pennsylvania.

2525

Topology & Shape Optimization of an L-Bracket

Page 26: Coarse and Fine-Grain Parallelism for Inverse Design Optimization James St. Ville & Subby Rajan Hawthorne & York, Intl. Phoenix, AZ Ashok Belegundu Pennsylvania.

2626

Design Flow DiagramCAD System HYI-3D

Create solid model,FEA and design data

Prep3DTopology

optimization

Design3D/MP

Post3DCreate shape and

sizing optimization datausing parametric solid modeling

Prep3DShape and/or

sizing optimization

Update solid modelPrep3D

User prepares formanufacturing

Design3D/MP

Page 27: Coarse and Fine-Grain Parallelism for Inverse Design Optimization James St. Ville & Subby Rajan Hawthorne & York, Intl. Phoenix, AZ Ashok Belegundu Pennsylvania.

2727

Page 28: Coarse and Fine-Grain Parallelism for Inverse Design Optimization James St. Ville & Subby Rajan Hawthorne & York, Intl. Phoenix, AZ Ashok Belegundu Pennsylvania.

2828

Shape Optimization of an Automotive Torque Arm

Page 29: Coarse and Fine-Grain Parallelism for Inverse Design Optimization James St. Ville & Subby Rajan Hawthorne & York, Intl. Phoenix, AZ Ashok Belegundu Pennsylvania.

2929

Torque Arm DesignFE Model

Plane stressTip loading

Design Model4 design variablesVon Mises FC (800 MPa)Frequency constraint (> 400 Hz)Linear buckling constraint (> 750 N)

Page 30: Coarse and Fine-Grain Parallelism for Inverse Design Optimization James St. Ville & Subby Rajan Hawthorne & York, Intl. Phoenix, AZ Ashok Belegundu Pennsylvania.

3030

Torque Arm Problem

Stress Constraint

Stress + Frequency

Stress + Frequency + Buckling

Page 31: Coarse and Fine-Grain Parallelism for Inverse Design Optimization James St. Ville & Subby Rajan Hawthorne & York, Intl. Phoenix, AZ Ashok Belegundu Pennsylvania.

3131

Torque Arm Problem

Type Max. VMFC (MPa)

Freq. (Hz)

Buckling Load

(N)

Volume

(mm3)

Stress 800 - - 83818

Stress + Freq.

776 401 - 99036

Stress + Freq. + Buckling

751 421.5 750.1 102179

Page 32: Coarse and Fine-Grain Parallelism for Inverse Design Optimization James St. Ville & Subby Rajan Hawthorne & York, Intl. Phoenix, AZ Ashok Belegundu Pennsylvania.

3232

Acoustics Optimization

Page 33: Coarse and Fine-Grain Parallelism for Inverse Design Optimization James St. Ville & Subby Rajan Hawthorne & York, Intl. Phoenix, AZ Ashok Belegundu Pennsylvania.

3333

Acoustics Optimization

• Focus has been on experimentally verified, passive noise radiation, from vibrating plates and shells – e.g., appliance covers or side panels, oil pan, timing chain cover plate, trim panels in aircraft

• Objective is based on multiple attributes (sound power over a frequency band, weight, cost, amount of damping)

• Design Idea: attach masses, vibration absorbers, air-filled cavities etc to the existing structure

• Design variables are the parameters of the attachment structures

Page 34: Coarse and Fine-Grain Parallelism for Inverse Design Optimization James St. Ville & Subby Rajan Hawthorne & York, Intl. Phoenix, AZ Ashok Belegundu Pennsylvania.

3434

• Simulation Codes: In-house boundary element for sound power, FEA for vibration

• New fast re-analysis techniques have been developed for obtaining response spectrum;

modal calculations of original structure done once only, outside optimization loop

Efficient for broadband objectives since there are no peak searches

Absorber frequencies can be closely spaced

• Coupled structure-acoustic vibration analysis method has now been developed – can now attach a thin air-filled cavity to structure

Acoustics Optimization

Page 35: Coarse and Fine-Grain Parallelism for Inverse Design Optimization James St. Ville & Subby Rajan Hawthorne & York, Intl. Phoenix, AZ Ashok Belegundu Pennsylvania.

3535

A reduced eigenvalue method for broadband analysis of a structure with vibration absorbers possessing rotatory inertia, J. of Sound and Vibration, 281, pp. 869-886, 2005. [Grissom, Belegundu, et al]

Conjoint Analysis Based Multiattribute Optimization : Application in Acoustical Design, To Appear, J. of Structural Optimization, 2005. [Grissom, Belegundu, et al]

Finite element depiction of the curved pressure vessel

Pressure Vessel

Page 36: Coarse and Fine-Grain Parallelism for Inverse Design Optimization James St. Ville & Subby Rajan Hawthorne & York, Intl. Phoenix, AZ Ashok Belegundu Pennsylvania.

3636

90dBSPL

rms

40

Mag (dB)

kHz20 Hz

Linear Spectral 1 2.TRCX:355 Hz Y:85.841 dBSPL

SOUND PRESSURE LEVEL 1 METER FROM THE VESSEL

The problematic noise occurs at around 360 Hz, a harmonic of the motor frequency, and at the next three harmonics, 720, 1080, and 1440

Page 37: Coarse and Fine-Grain Parallelism for Inverse Design Optimization James St. Ville & Subby Rajan Hawthorne & York, Intl. Phoenix, AZ Ashok Belegundu Pennsylvania.

3737

Define Geometry/Materials

Conjoint Analysis

Modal Analysis of Base Structure

Initial Acoustic Analysis

Modify Many Absorber Parameters Including Rotatory

Inertia Effects

Finished

?

Forcing Function

Calculate Frequency Response

Calculate Objective

Method for Broadband Acoustic Response

Page 38: Coarse and Fine-Grain Parallelism for Inverse Design Optimization James St. Ville & Subby Rajan Hawthorne & York, Intl. Phoenix, AZ Ashok Belegundu Pennsylvania.

3838

AttributesNumber of Beams

dB Reduction: low freq.

range

dB Reduction: mid freq.

range

dB Reduction: high freq.

range

Description

Kinetic Energy

Objective17 15 10 2

Poor high freq.

reduction & many beams

Sound Pressure Objective

10 14 6 7Better than

Kinetic Energy

objective

Multi-attribute Objective

6 13 6 7

Almost the same

reduction as Sound

Pressure objective, but

easier to manufacture

Results

Page 39: Coarse and Fine-Grain Parallelism for Inverse Design Optimization James St. Ville & Subby Rajan Hawthorne & York, Intl. Phoenix, AZ Ashok Belegundu Pennsylvania.

3939

nb = 17

KE Objective

nb = 10

SPL Objective

nb = 6

Multiattribute Objective

The “Optimized Product”A set of optimized Broadband Vibration

Absorbers with a variable number of beams, nb

Page 40: Coarse and Fine-Grain Parallelism for Inverse Design Optimization James St. Ville & Subby Rajan Hawthorne & York, Intl. Phoenix, AZ Ashok Belegundu Pennsylvania.

4040

Concluding Remarks

Future of engineering analysis and design is in some form of a combined desktop-distributed computing paradigmChallenges lie ahead for inverse analysis and designTightly integrated multi-physics design optimization offers an attractive solution to reducing design cycle times