Top Banner

of 12

Clements_Reactive Applications of Cyclic Alkylene Carbonates_Huntsman_January-15-2003

Jun 01, 2018

Download

Documents

andreathome
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
  • 8/9/2019 Clements_Reactive Applications of Cyclic Alkylene Carbonates_Huntsman_January-15-2003

    1/12

    Reactive Applications of Cyclic Alkylene Carbonates

    J ohn H . Clements*

    Huntsman Petrochemical Corporat ion, 7114 North Lamar Boulevard, Aust in, Texas 78752

    The synt hesis and use of cyclic alkylene carbonat es as reactive intermediat es first a ppear ed inth e l i te ratu re m o re th an 50 ye ars ag o . Ho we ve r, th e ran g e o f th e ir u se fu ln e ss in in d u strialapplications has only been fully realized in the past decade. In this article, numerous reactiveap p licat ion s of th e cycl ic a lkylen e carb on at e s, sp ecif ical ly th e f ive -m e m be red cycl ics, arediscussed. In a ddition, utilizat ion of the chemistry presented in t his review for t he prepar a tionof industrially useful monomers, polymers, surfactants, plasticizers, cross-linking agents, curingag e n ts , a n d so lve n ts , to n a m e a few, is a lso d iscu ssed .

    Introduction

    Five-membered alkylene carbonates (1,3-dioxolan-2-ones) of t he general structure

    h a v e bee n t h e s u bje ct of con s ide ra ble re s ea rc h . I np a rt ic u la r , e t h y le n e c a rbo n a t e ( E C, R 1-4 ) H ) a n dpropylene carbonate (PC, R 1-3 ) H , R 4 ) C H 3) h a v ebeen ava ilable commercially for over 40 yea rs.1 For thisrea son, much of the following r eview focuses on resear chinvolving these tw o ma terials. S ince th eir commercial-i za t i on i n t h e m i d-1950s , E C a n d P C h a v e f ou n dnumerous a pplicat ions as both react ive intermediat esand inert solvents. A quick examination of their physical

    properties (Table 1)2

    is all tha t is needed to appreciat ewh y E C a n d P C a re a t t ra c t iv e s o lv e n t s u bs t i t u t e s . I naddit ion t o their biodegrada bility 3 and high solvency,4

    they have high boiling and flash points, low odor levelsand evaporat ion rates,5 and low toxicities.6 The use ofP C a s a s o lv e n t in de g re a s in g , 7 paint stripping,8 a ndcleaning 9 applicat ions has risen dra ma tically in the pastfew years. In a ddit ion, EC a nd P C a re f inding increasedu t i li t y a s di lu en t s f or t h e e pox y10 a n d is o c y a n a t e11

    components of 2K resin sy stems, a nd t hey ha ve becomethe electrolytes of choice in the production of lithiumion batteries.12 P C a lso f inds ut ility a s a carrier solventfor topically applied medicat ions and cosmetics.13 Al-though much can be said concerning the use of thesealkylene carbonates as inert media, their potential as

    re a ct iv e in t e rmedia t e s is t h e p rima ry f ocu s of t h isdiscussion.

    Although a number of methods exist to synthesizef ive -me mbere d a lk y len e c a rbon a t e s of s t ru ct u re 1,carbon dioxide insert ion into the appropriate oxiraneis t he commercial method employed to synthesize themost common of these, EC, PC, and butylene carbonate(B C , R 1-3 ) H , R 4 ) C 2H 5). Typically, an alkylammo-n i um h a l id e ca t a l y st s u ch a s t e t ra e t h y la m m on i umbromide1a,b is employed (Figure 1). The alkylene carbon-

    at es produced react with a lipha tic and ar omatic amines,alcohols, thiols, and carboxylic acids. Under certainconditions, they can also undergo ring-opening polym-erizat ion. I t is the intent of the author to discuss each

    type of reaction in detail, from the reaction mechanismand condit ions r equired to a brief description of thea p p lic a t io n s in wh ic h e a c h re a c t io n f in ds u t i l i t y . I n

    addit ion, the synthesis and utility of unique alkylenecarbonate derivat ives is also discussed. In this way, ag en e ra l ov erv iew of a lk y len e ca rbo n a t e s a s re a ct iv e

    in t erme dia t e s is in t en de d. Sh a ik h a n d co-wo rk ers 14

    recently published a review of orga nic car bonat es inwhich several applicat ions of alkylene carbonates arediscu s s ed in a ddit ion t o t h o se of l in e a r ca rbo n a t e s.

    However, the use of these mat erials has risen drama ti-cally in the past few year s a nd ha s grown to encompassseveral addit ional areas of act ive research.

    * Te l. : 512-407-0811. Fax: 512-483-0925. E -m ai l :[email protected].

    Table 1. Properties of Ethylene and PropyleneCarbonate

    pr oper t y E C P C

    boilin g poin t ( C ) 248 242f re ez in g/m el t in g p oi nt ( C ) 36. 4 -49fla sh poin t ( C ) 160 135

    viscosit y (cP , 25 C) 2.56a 2.50%VOC b (110 C ) 34 28

    a Supercooled liquid. b Volat ile organic content .

    Figure 1. Synth esis of f ive-membered a lkylene carbonat es viainsert ion of C O2 into oxiranes. R ) H , C H 3, or C 2H 5.

    C H : i e2a23 US E R : d g a69 DI V: @xy v04/d at a 1/C L S _pj/G R P _i e/J O B _i 04/DI V_i e020678i DATE : J anua r y 15, 2003

    10.1021/ie020678i CC C: $25.00 xxxx American C hemical SocietyPAGE E ST: 11.8P ubl ish ed on Web 00/00/0000

    1

    2

    3

    4

    5

    6

    7

    8

    9

    10

    11

    12

    13

    14

    15

    16

    17

    18

    19

    20

    21

    22

    2324

    25

    26

    27

    28

    29

    30

    31

    32

    33

    34

    35

    36

    37

    38

    39

    40

    41

    42

    43

    44

    45

    46

    47

  • 8/9/2019 Clements_Reactive Applications of Cyclic Alkylene Carbonates_Huntsman_January-15-2003

    2/12

  • 8/9/2019 Clements_Reactive Applications of Cyclic Alkylene Carbonates_Huntsman_January-15-2003

    3/12

    and react ion temperatures are required. The react ionis classified as a n a lkylat ion/esterifica tion tha t involvesnucleophilic att ack a t either a lkylene car bon (Figure 3).However, a mixture of products 3 a n d 4 is produced inaddition to two isomers of 3 should R * H. An exampleis the r eaction of benzoic acid w ith E C. Apicella a nd co-workers employed a 260%excess of EC to obtain 3 a sthe predominant product .23b However, Yoshino et al .found that a mere 10%excess could be effective using atriethylam monium iodide cata lyst in combination wit ha s h o rt e r re a c t io n t ime . I n t h is ma n n e r, re a c t in g E Cwith benzoic acid at 140-145 C for 0.7 h resulted in

    an 86.5%yield of 3.23a Although this selectivity repre-sents a drawback to the pure synthetic chemist , i t hasbeen exploited to synt hesize prepolymers. 24 Researchersat Reichhold reacted EC and PC with mult ifunctionalcarboxylic acids such as terephthalic acid to synthesizepolyester oligomers. These hydroxy-functional oligomerswe re t h e n re a c t e d wit h s imple diols a n d u n s a t u ra t e da n h y dride s t o g iv e u n s a t u ra t e d p o ly e s t e rs u s e f u l incomposites for the aerospace industry.

    In a ddition to prepolymer synt hesis, the above chem-istry also finds use in polymer modification. EC has beenreacted with poly(ethylene terephthalate) (PET) poly-e s t e rs in a n e f f o rt t o re du c e t h e a c id n u mbe r o f t h ema t e ria l . P E T p oly es t e rs a re e xce llen t ma t e ria ls f or

    industria l conveyor belts tha t opera te under heavy loadsan d a t h igh speeds. However, degrada tion of the poly-mer can occur over t ime, result ing in reduced tensiles t re n gt h a n d e ve n v is ible c ra c kin g . R e s ea rc h ers a tAllied discov ere d t h a t a more ch e mica l ly re sis t a n tm a t e r ia l cou ld b e ob t a i n ed s im pl y b y r ea c t in g t h ep oly mer wit h E C, t h e reby re ducin g t h e n u mber ofcarboxylic acid end groups at which degradation typi-cally occurs.25 The modification procedure follows thepolycondensat ion of dimethyl t erephtha late or tereph-thalic acid with ethylene glycol and involves the additionof a n a l k a l i m e t a l s a l t s u ch a s p ot a s s iu m i od id e.Typically, 0.5-1. 0 w t % E C i s a d d e d a n d a l l ow e d t oreact at 280 C for 5-15 min. The result is a ma terialwith a n a cid number of

  • 8/9/2019 Clements_Reactive Applications of Cyclic Alkylene Carbonates_Huntsman_January-15-2003

    4/12

    re s ult in g mix t u re, w h ich con t a in s u n rea c t e d E C a n dmetha nol in a ddit ion t o dimethyl carbonat e (DMC) andbyproduct ethylene glycol (EG ), is purified by m ean s ofthe process diagram shown in Figure 5.31 In t his process,th e reacta nts a re cont inua lly fed (5:1 meth a nol/EC molera tio)t hrough a cata lyst bed consisting of a wea kly basicsolid support catalyst such as triphenylphosphine onpoly(styrene-co-divinylbenzene) at a temperature of 125 C a n d a p res s u re o f 100 p s ig ( rea c t or u n it A) Th eresult ing mixture, conta ining 20% (by weight) DMCis then distilled at atmospheric pressure to remove DMCa nd metha nol as an a zeotropic mixture (reactor unit B ).Methan ol is th en removed by distillation a t 150 psig an d

    recycled (reactor C). The purified D MC is a usefulreactive intermediate in the synthesis of polycarbonatediols.

    Five-membered alkylene carbonates can also be re-acted with diols to form other alkylene carbonates orpolycar bonat es, as shown in Figure 4b. In th is regard,alkylene car bona tes can be used in lieu of more tra di-t io n a l re a c t a n t s s u c h a s dia lk y l c a rbo n a t e s o r p h o s -gene.32 In such a process, the yield of alkylene carbonateproduced is dependent on the boiling point differencebetween the reactant and byproduct diols. Researchersat Huntsman have reacted several 1,3-diols with 15%excess E C in t he presence of tit a nium(IV)isopropoxidea t 120-150 C a n d 15-30 m m H g t o p re pa r e s ix -membered a lkylene carbona tes (1,3-dioxan-2-ones).33

    T h e re s u lt s a re s h o wn in T a ble 3. I n e a c h c a s e , t h e

    resulting six-membered alkylene carbonate (99%pu-rity) was obta ined by short-path dist illat ion a t temper-a t u re s in t h e ra n g e of 150-2 0 0 C a t 1-2 mmH g . I ncerta in cases, a mixture of cyclic car bonate a nd polymerwa s obt a in e d. H o we ve r , dis t il la t io n con dit ion s we resufficient to convert any polymer to the analogous cyclicca rbo n a t e s u c h t h a t on ly c a t a ly s t re s idue re ma in e dundistilled. Slight decomposition of polymer or cycliccarbona te to car bon dioxide during dist illat ion w as notta ken into account. F or instan ces in which t he boilingpoint difference between the 1,3-diol reactant and thebyproduct EG (bp ) 197 C) was small, yields of cycliccarbonate were low. This is because considerable amounts

    of 1,3-diol were removed from of th e syst em a long wit hthe EG dist illate.Transesterification of 1,2-diols by reaction with car-

    bonat es, cyclic or linear , gives five-membered a lkylenecarbonates almost exclusively. A well-known examplei s t h e r ea c t ion of d im e t hy l ca r b on a t e (D M C ) w i t hpropylene glycol to yield P C. 34 In contrast , t ransesteri-fica tion of 1,X-diols, w here X g 4 , by re a c t io n wit hcarbonat es produces polycar bonates almost exclusively.O n ly wh e n more re a ct iv e s ou rce s o f ca rbo n a t e a reemployed, such as phosgene, are seven- and higher-membered cyclic carbona tes obta ined in appreciabley ield. F o r in s t a n ce , M a t s u o e t a l . re a ct e d p h os g en et r imer wit h 1,4-bu t a n e diol a t 45-5 0 C a n d i n t h epresence of chloroform solvent to obta in the seven-

    membered cyclic carbonate 1,3-dioxepan-2-one in 30%

    Figure 4. Reactions with aliphatic hydroxyls give dialkyl carbonates, 6, wherea s reactions wit h a liphatic diols give other cyclic car bonates,8, a nd/or polycarbona tes, 9. Note tha t t here are tw o possible structura l isomers of species 5.

    Figure 5. Process diagram for the production of DMC from ECa n d m e t h a n ol.

    Table 3. Reactions of EC with Various 1,3-Diolsa

    R 1 R 2 R 3 R 4 R 5 R 6

    bp(C)

    yield(%)

    C H 3 C H 3 H H C H 3 H 197 39.8CH(CH 3)2 H C H 3 C H 3 H H 232 59.6C H 3 H H H H H 203 35.1H H C 2H 5 C 4H 9 H H 262 59.6C 3H 7 H C 2H 5 H H H 244 76.2

    a Note tha t r eact ion yield is relat ive to the a mount of 1,3-diol

    used.

    C H : i e2a23 US E R : d g a69 DI V: @xy v04/d at a 1/C L S _pj/G R P _i e/J O B _i 04/DI V_i e020678i DATE : J anua r y 15, 2003

    D

    253

    254

    255

    256

    257

    258

    259

    260

    261

    262

    263

    264

    265

    266267

    268

    269

    270

    271

    272

    273

    274

    275

    276

    277

    278

    279

    280

    281

  • 8/9/2019 Clements_Reactive Applications of Cyclic Alkylene Carbonates_Huntsman_January-15-2003

    5/12

    yield (70%yield of polyca rbonat e).35 In contrast , whenthey employed DEC in lieu of phosgene, a mere 2.7%yield of cyclic carbonate was obtained. Interest ingly,further analysis of the DEC reaction product revealedthat the cyclic carbonate was not the intended seven-membered ring, but the 14-membered dicarbona te ringshown below

    in wh ic h n ) 4.35 Simila r re s u lt s we re o bt a in e d byKricheldorf and co-workers upon reaction of DEC with1,10-decanediol. Pa rt ial d epolymeriza tion of the producta t 200-310C followed by short-path dist illat ion af-forded the product cyclobis(decamethylene carbonate)in 9.2%yield.36

    G iv e n t h e a bo v e f in din g s , i t is n o t s u rp ris in g t h a ttransesterifcation of 1,3-diols by reaction with carbon-ates, cyclic or linear, yields a mixture of cyclic carbonate

    monomer and polymer. Although a polycondensationmechanism is at work, ring-opening polymerization ofthe cyclic monomer is also likely given the react ionconditions and catalysts often employed. Therefore, itis necessary to investigate the ring-opening polymeri-za t io n beh a v ior of t h e in t en ded cy cl ic ca rbo n a t e t oexplain the above observations. Keul and co-workers 37

    have found that the thermodynamics of alkylene car-bona te polymerizat ion is a na logous t o tha t of lactonesin tha t, because of increased ring str ain, six-a nd higher-membered alkylene carbonates tend to polymerize muchmore readily than five-membered alkylene carbonates.This finding is consistent with that of other researchers,who have found that the analogous polymerizat ion offive-membered a lkylene carbonates such as E C a nd P Cis often slow and plagued by side react ions that intro-duce ether linkages into the ma terial.38 This topic willbe covered in more deta il in a la ter section. In contr a st,six-membered alkylene carbonates can be homopoly-merized quite easily w ith few, if an y, ether linkages byeither anionic,39 cationic,39,40 or complexation-type41

    me a n s .In addition to ring size, the degree to which polymer

    is f orme d in t h e t ra n s e s t e rif ica t io n of 1 ,X -diols byreaction w ith a lkylene car bonat es also depends on thenumber a nd na ture of substituents found on t he cycliccarbonate product . This is most evident with regard tothe synthesis of six-membered alkylene carbonates. Theresults of Ma tsuo a nd co-workers support th is observa -

    tion.42

    In their study, six-membered alkylene carbonateswere synt hesized from ethyl chloroforma te w ith va ryingsubstituents at the 5-posit ion. Each was polymerizedin THF via potassium tert-butoxide init iator at 0 C.After 1 h, the react ion w as terminat ed by a ddit ion of ametha nol/phosphoric acid mixture and the percentmonomer conversion wa s determined by 1H N MR spec-troscopy. The percent monomer conversion was foundto decrease w ith increasing size of the substituents a tR 3 a n d R 4. F o r R 3 ) R 4 ) C H 3, for example, a 96%conversion was observed. For R 3 ) R 4 ) C 6H 6, only a32%conversion of monomer was observed.

    On th e basis of th e above results, par ticular 1,3-diolscan be chosen to give polycarbonates or six-memberedalkylene carbonate monomers almost exclusively. If only

    lightly substituted six-membered alkylene carbonates

    s uch a s t h a t f or w h ich R 1 ) C H 3 a nd R 2-6 ) H(5-methyl-1,3-dioxan-2-one) are desired, one must de-polymerize the result ing polycarbonate in the m ann erdetailed by K richeldorf et al . 36 with the exception tha tmost polycarbonates synthesized from 1,3-diols unzipto give the cyclic monomer under milder condit ions(150-200 C). Unlike other classes of polymers, manypolycarbonates prepared from 1,3-diols can be unzipped

    quite easily and selectively, giving the cyclic monomerin h ig h y ie lds .32a,43 Th e re su lt is a cy cl ic c a rbo n a t emonomer th at can be repolymerized via a nionic polym-erizat ion or other r ing-opening technique to give a well-defined material whose molecular weight can be con-trolled quite well. Because the polymers produced in themanner illustrated in Figure 4b typically have molec-ular weights in the ra nge of 1000-2500,44 the monomermust be recovered and repolymerized by means of aring-opening technique if higher molecular weight s ar edesired. A considera ble a mount of informa tion concern-in g t h e s y n t h es is of cy cl ic f iv e- a n d s ix-me mbe redalkylene carbonates an d the ring-opening polymeriza-tion of such species to yield polycar bonat es can be foundin a recent review by Rokicki. 45

    Because they are hydroxyl-terminated, polycarbon-a t e s p rodu ce d by t h e t ra n s e s t e rif ica t io n of diols byreaction w ith a lkylene carbonates f ind employment a sspacers in the syn thesis of polyuretha nes.32b,46 Althoughpolycarbonat es prepared from unsubst ituted d iols (R1-6) H) can be problematic because of poor solubility andcomp a t ibil it y wit h s olve n t s a n d cu rin g a g en t s , t h isproblem can be overcome by introducing alkyl- andhydroxyl-conta ining substituents w herein at least oneof R 1-6is a lkyl, hydroxyl, or hy droxyalkyl.47 The r esult-ant ma terials boast high tensile strength, flexibility, andchemical resista nce. They find utility in the m anufa c-ture of paints, coat ings, and adhesives.

    Reactions with Aliphatic Amines

    As with hydroxy-functional materials, five-memberedalkylene ca rbonates react very differently wit h a lipha tica m i n es t h a n w i t h t h ei r a r o ma t i c a n a l og u es . Th eyu n derg o a t t a c k a t t h e c a rbo n yl ca rbo n a t o m f o llowe dby ring-opening to give a uretha ne (carba ma te) product,11 (Figure 6b).48 N o t e t h a t o n ly o n e o f t wo p o s s ibleisomers of11 is shown. U nlike linear ca rbonates (Figure6a),49 the rea ct ion of alkylene carbonat es with am inesyields a hydroxy-functional species useful as a reactiveintermediate. Although similar products can be obtainedv ia t h e re a c t ion of dio ls wit h u re a ,50 such react ionsgenerally require higher temperatures (120-170 C)a n d e volv e a mmo n ia a s a by produ ct . I n a ddit ion , i fhydroxya lkylurethanes a re desired, care must be ta ken

    to prevent ring closure, which yields an alkylene car-bona te a nd a second mole of amm onia byproduct .Unlike react ions that occur in the presence of ali-

    phatic alcohols, the hydroxyalkylurethane species pro-duced does not usually undergo further reaction with asecond mole of a mine to produce a ur ea or im ida zolidi-none, except at temperatures g 150 C (Figure 6c).51

    For R 2 ) H, cyclization of 11 yields an oxazolidinone,12, wit h loss of wa ter. Reaction w ith a second mole ofam ine gives a hydroxyalkylurea (not shown ), which a lsoundergoes cyclizat ion with loss of water to yield theimida zolidinone or cyclic urea, 13. Note that this reac-t ion occu rs in t h e a bs en ce o f c a t a ly s t . Sh o u ld a low-boiling a mine such a s m ethylamine be employed, highp res s u re is re q u ire d t o k ee p t h e re a ct ion mixt u re

    condensed at the necessary tempera tures.

    C H : i e2a23 US E R : d g a69 DI V: @xy v04/d at a 1/C L S _pj/G R P _i e/J O B _i 04/DI V_i e020678i DATE : J anua r y 15, 2003

    E

    311

    312

    313

    314

    315

    316

    317

    318

    319

    320

    321

    322

    323

    324

    325

    326

    327328

    329

    330

    331

    332

    333

    334

    335

    336

    337

    338

    339

    340

    341

    342

    343

    344

    345

    346

    347

    348

    349

    350

    351

    352

    353

    354

    355

    356357

    358

    359

    360

    361

    362

    363

    364

    365

    366

    367

    368

    369

    370

    371

  • 8/9/2019 Clements_Reactive Applications of Cyclic Alkylene Carbonates_Huntsman_January-15-2003

    6/12

    Five-membered alkylene carbonates will react withprimary and some secondary amines at room temper-ature. Although most react ions can be accomplishedwit h o u t t h e a id o f a c a t a ly s t , a lk a l i ma t e ria ls c a n beemployed t o increase t he rea ct ion ra te.52 The reactionis accompanied by an exotherm that must be controlledby m onitoring the addit ion ra te of one component int ot h e o t h e r .53 A n e x a m p l e i s t h e r e a c t i o n o f P C w i t h

    am monia to generat e hydroxypropylcar bam at e (HP C)48a

    a s a 50/50 ( 10%mixture of isomers (only one of whichis shown). This ma terial ha s found use in the a utomo-tive coat ings industry in methods for preparing novelpolyurethane resins.54 F or in s t a n ce , re s ea rc h ers a tBASF have investigated react ions of HPC with isocy-anate-functional polyacrylates to prepare carbamate-functional polymers as illustra ted in F igure 7a.54d Theresult ing products of general structure 14we re t h e nmixe d wit h a cros s -l in k in g a g e n t bea rin g me t h ox y

    substituents such as hexamethoxymethyl melamine (n

    ) 6) during spray applicat ion t o a surface. Subsequentbaking or curing of the mixture gave urethane-cross-linked coat ings, 15 (Figure 7b), in which m ) 3-4.Although similar coat ings can be obtained simply bym i xi n g a p ol y is ocy a n a t e w i t h a p ol yol i n a s pr a yapplicat or, the polyisocyana te fumes genera ted un ders u ch con d it i on s ca n b e d a n g er ou s a n d d i ff icu lt t ocontain. In the above example, however, the isocyanateha s been converted to the much less haza rdous mat erial14 under controlled laboratory condit ions prior to a p-plication, elimina ting t he da ngers previously a ssociat edwit h t his industr y. The resulting coating exhibits excel-

    lent resistance to environmental etch (acid rain), scratchand ma r, sa lt corrosion, and hy drolysis,55 all necessaryof coat ings in t he a utomotive industry.

    I t is well-known that polymers containing urethanelin k a g e s in t h e ir ba c k bo n e s c a n be p re p a re d by t h ereaction of a diisocya na te wit h a polyol. However, it w a sdiscov ere d t h a t t h e t o xic di is ocy a n a t e u s ed in t h isprocess could be r eplaced with the ana logous dia minewith the assistance of alkylene carbonates. Researchersa t K in g I n du s t r ie s re a c t e d a lk y le n e c a rbo n a t e s wit ha l iph a t ic dia min es t o g ive di fu n ct ion a l h y drox y a lky lurethanes of structure 16

    wh ich a ct as blocked isocyana tes.56 16 wa s then reactedwith a polyester polyol in the presence of a t in trans-esterificat ion cat alyst at 160 C to produce the desiredpolyurethane with removal of the byproduct glycol bydist illat ion (Figure 8). Thus, a polyurethane wa s pre-pared w ithout the need for isocyana tes.

    In addit ion to polyurethanes, the above technologyha s a lso been a pplied to the modifica tion of amino acidsfor the production of biocompat ible polymers 57 a n ddispersants for use in lubricat ing oils, hydraulic oils,

    an d gasoline. For instan ce, resear chers a t Ch evron ha vecapped polyisobutylene with ma leic a nhyd ride followedby react ion with ethylene amines such as triethylenetetr a a mine (TETA) to form polya lkylene succinimides.They ha ve found th at react ion of EC with the result ingsecondary and primary amines yields hydroxyalkylure-tha ne adducts w ith superior dispersant cha ra cterist ics(Figure 9).58 These ad ducts a re useful in reducing enginedeposits such a s sludge a nd a sh result ing from incom-plete combustion. Modification via ethylene carbonatealso improves the compatibility of the polyalkylenesuccinimide dispersant with other components of theformulation.

    Alkylene carbonates can also be reacted with am inestha t contain h ydroxyl groups to give added functiona lity

    to the urethane product. However, reactions with -hy-

    Figure 6. (a) React ion of linear carbonates (DEC shown) withamines gives urethanes, 10. (b) React ion of a lkylene carbonat eswith a liphat ic amines gives hydroxylalkylurethanes,11. (c) Heat -in g 11, w h e r e R 2 ) H, in the absence of excess amine results incyclizat ion a nd loss of w at er to give oxazolidinones,12, w h e r e a sheat ing in th e presence of excess amine ult ima tely yields imida-

    zolidinones,13.

    Figure 7. Synthesis of polyurethane resin for automotive coat-ings. (a) Reaction of HP C w ith isocyana te-functional polymers. (b)Reaction of carbamate-functional polymer, 14, with cross-linkingagent to give cross-linked polymer 15.

    Figure 8. React ion of a bis(hydroxyalkyl)urethane, 16, w i t h apolyol to produce a polyurethane.

    C H : i e2a23 US E R : d g a69 DI V: @xy v04/d at a 1/C L S _pj/G R P _i e/J O B _i 04/DI V_i e020678i DATE : J anua r y 15, 2003

    F

    439

    440

    441

    442

    443

    444

    445

    446

    447

    448

    449

    450

    451

    452

    453

    454

    455

    456

    457

  • 8/9/2019 Clements_Reactive Applications of Cyclic Alkylene Carbonates_Huntsman_January-15-2003

    7/12

    droxyalkylamines such as ethanolamine are often ac-comp a n ied by cy cl iza t ion a n d los s of g ly col t o g iveoxazolidinones under mild heating (Figure 10). 59 Oxa-zolid in-2-one (R1 ) H) in particular can a lso be preparedby the react ion of EC with urea. 60 Su ch ma t e ria ls a n dtheir derivat ives f ind use as medicinal act ives for thetreat ment of bacterial infect ions, arthrit is , a nd t oxicity

    caused by chemotherapy.61Although t he bulk of this section, a nd indeed most of

    this review, has focused on the reactive applications off ive -me mbe red a lk y len e c a rbo na t e s , E C a n d P C inparticular, it should be noted that six-membered cycliccarbonates (1,3-dioxan-2-ones) can also be reacted witha l iph a t ic a min e s .62 Tomit a e t a l . h a v e re a ct e d a l ly l-functional five- a nd six-membered a lkylene ca rbonat esw i t h n-hexylam ine a nd benzylam ine in the a bsence ofca t a l y st a t v a r iou s t e mp er a t u r es t o com pa r e t h ei rreactivities. 62a By monitoring the carbonate conversionby 1H NMR spectroscopy an d assuming second-orderkinetics, they determined that the rate constant rat io,k ) k1/k2, wh e re k1 a nd k2 a re t h e ra t e c on s t a n t s f orthe reaction of six-a nd five-membered a lkylene carbon-ates, respectively, is 28-60 depending on the reactiontemperature and amine employed. Thus, the 1,3-dioxan-2-ones react much more quickly with amines than dothe corresponding 1,3-dioxolan-2-ones, reaching comple-tion in shorter times a nd a t lower temperatur es. Shouldsuch ma terials become ava ilable commercially, t heymight even be via ble in spray coat ing a pplicat ions forlarge surfaces, such as airport terminal flooring, whichmust cure quickly and at ambient temperatures.

    Ring-Opening Polymerization of AlkyleneCarbonates

    As st at ed ear lier, five-membered a lkylene ca rbonat es

    undergo ring-opening polymerizat ion with diff iculty.Soga an d co-workers were a mong the first researchersto report this behavior.38 In fact , the ceiling tempera-ture, tc, for the process is quit e low. F or insta nce, a tcofonly 25 C was reported for the ring-opening polymer-iza t io n o f E C.63 Nevertheless, EC and other 1,3-diox-olan -2-ones have been polymerized at tempera turesexceeding 100 C . To understa nd this apparent incon-sistency, it must be noted that polymerization involvesloss of carbon dioxide such that the polymer producedcontains both carbonate and ether linkages.

    I t has recently been proposed that the anionic ring-opening polymerization of EC takes place according tothe mechanism illustrat ed in Figure 11.63,66 Followinginit iat ion (Figure 11a), the propaga ting chain can a dd

    EC via a t ta ck at the carbonyl (Figure 11b) or alkylene

    (Figure 11c) carbon, result ing in the production of acarbonat e or ether linka ge, respectively. Assuming t ha tS of decarboxylation is positive,63 polymerization of1,3-dioxolan-2-ones at temperatures above tc for tradi-t ional ring-opening does not violate thermodynamicprinciples. However, da ta generated by Vogdanis et a l.64

    re ve a l t h a t t h e p oly meriza t ion p roce ss is s ome wh a tdifferent from t ha t illustra ted in F igure 11. Recognizingtha t the entropy of ring-opening polymerizat ion, Sp,is posit ive a nd using t he w ell-known relat ion

    it can be said that , for the process to occur spontane-ously (Gp < 0), t he ent ha lpy of r ing-opening polymer-izat ion, Hp, must be negative. This was not found to

    be t h e c a s e , a s Hp values of 124.6, 125.6, and 112.5kJ /mol w ere mea sured for t he ring-opening polymeri-zation of EC, resulting in pure poly(ethylene carbonate),a t t e mpe ra t u re s o f -73, 25, and 170 C, respectively.Thus, the reaction scheme illustrated in Figure 11b isnot possible according to thermodynamic principles.

    Alternat ively, Vogdan is an d co-workers65 proposedt h a t t h e ca r b ox yl a t e i on p rod u ce d v ia t h e s ch em eillustrat ed in Figure 11c can a dd a n a dditional moleculeof EC as w ell as un dergo decar boxylat ion. Note tha t th isis very different from the mechanism given in Figure11, f or wh ich L e e a n d co-wo rke rs63 cl a im t h a t t h ealkylate ion generated as a result of decarboxylat ion,ra t h e r t h a n t h e c a rbo x y la t e io n , is t h e a c t iv e c h a in -propagating species. For the thermodynamic reasons

    discussed above, Vogdanis and co-workers state that

    Figure 9. Modification of polyalkylenesuccinimide dispersantsb y r e a c t ion w it h EC, n ) 3-5, m ) 1, 2. R 1 ) polyisobutylenebackbone.

    Figure 10. -Hydroxyalkylam ines often undergo cyclizat ion tooxazolidinones, 12, prior to react ion with a lkylene carbonates.

    Figure 11. (a) EC ring-opening init ia ted by an anionic species.(b) P ropagat ion via carbonyl a t ta ck, yielding a carbonate linkage.(c) P ropagat ion via a lkylene at t ack, yielding an ether linkage andloss of carbon dioxide.

    Gp ) Hp - TSp

    C H : i e2a23 US E R : d g a69 DI V: @xy v04/d at a 1/C L S _pj/G R P _i e/J O B _i 04/DI V_i e020678i DATE : J anua r y 15, 2003

    G

    508

    509

    510

    511

    512

    513

    514

    515

    516

    517

    518

    519

    520

    521

    522

    523

    524

    525

    526

    527

    528

    529

    530

    531

    532

    533

    534

    535

    536

    537

    538

    539

    540

    541

    542543

    544

    545

    546

    547

    548

    549

    550

    551

    552

    553

    554

    555

    556

    557

  • 8/9/2019 Clements_Reactive Applications of Cyclic Alkylene Carbonates_Huntsman_January-15-2003

    8/12

    on l y on e ca r b on a t e l in k a g e c a n b e f or m ed i n t h ea f o reme n t ion e d ma n n e r bef ore de ca rbo xy la t ion a n d

    subsequent ether linkage formation. Thus, the fractionof carbonate linkages in the polymer relat ive to etherlinka ges cann ot exceed 50%. It should a lso be noted t ha tevidence suggests that the carboxylate ion shown inF ig u re 11c c a n re a ct wi t h t h e h y drox y t e rmin u s o fanother polymer chain, connecting two chains througha ca rbo n a t e l in k a g e (F ig u re 12a ) .66 At t h is t ime, i tshould be reiterat ed tha t , i f polymerizat ion is init iat edby a n a romat ic species such a s the phenolate ion,67 theninitia tion involves CO2loss exclusively, in keeping withthe m ethod of alkylene car bona te a lkylat ion discussedear lier (Figure 2).

    Interest ingly, Lee and co-workers have studied thep ol y me ri za t i on of E C i n it i a t ed b y K O H a t v a r i ou stemperatures (150-200 C) and rat ios of carbonate to

    initiator (1000:1 to 20:1) and discovered that the reac-t ion can be described as a two-stage process. In thisma nner, the f ina l polymer obtained is the result of notonly init iat ion and propagation but also chain cleav-a g e .63 I n t h e f irs t s t a g e , t h e mo le c u la r we ig h t o f t h ep o ly me r in c re a s e s wit h re a c t io n t ime t o a ma x imu mmolecular weight in the ra nge of 1000-9000 dependin gon th e carbona te-to-initia tor r at io employed. The ma te-rial genera lly ha s a carbonate-to-ether linkage ra t io ofa bo u t 2 (30-32% ca rbo n a t e ), wh ich re ma in s f a ir lyconstant until approximately 90-100%monomer con-version. In the second sta ge, the molecular weight a ndcarbonate content of the material decrease significantlywith continued heat ing. In addit ion, the presence of avinyl moiety can be seen by NMR analysis. To accountfor these observations, they proposed the chain cleavagemecha nism shown in Figure 12b.

    As seen with six-membered cyclic carbonates, polym-eriza tion of 1,3-dioxolan -2-ones is dependent on thenumber a nd size of substituents on the carbonate ring.Whereas EC and PC can be polymerized to molecularweights of >50 000, the highly substituted benzo-1,3-dioxolan-2-one

    does not polymerize at all.68

    I t is w idely recognized tha t the preferred method of

    producing poly(a lkylene oxide-co-alkylene carbonate)s

    is via t he copolymeriza tion of the desired alky lene oxide,for instan ce, ethylene oxide (EO), a nd CO 2. B o t h a ca -demic and industrial researchers have studied this typeof reaction in deta il. Typically, th e reaction is performedwit h in t h e t e mpe ra t u re ra n g e 75-150 C under pres-sures of 100-500 psi. Useful initiators for the process

    include zinc(II )phenoxides,69 zinc dicarboxyla tes,70 -di-imina te zinc complexes,71 stannate salts,72 diethylzinc, 73

    a n d t r iet h y la lu min u m,73 t o n a m e b u t a f e w . A m o r ecomplete listing is presented in a review by Darensbourge t a l .74 The result ing materials have found utility asnonionic surfactants,72 binders for glass a nd ceramics,75

    and as possible cosolvents for use in supercritical CO 2applications.76 However, the molecular weight of suchmaterials is often diff icult to control. Although it isdebata ble wh ether polymerization of th e five-memberedcyclic carbonates offers better molecular weight control,such processes do offer a low-pressure a lternat ive tot h os e n ot a b l e or w i l li ng t o e mp loy t h e p re ss u re srequ ired of a lkylene oxide/CO 2 copolymeriza tion.

    Unlike the 1,3-dioxolan-2-ones, six- and seven-mem-bered alkylene carbonates polymerize much more ra p-idly and selectively. The details of such polymerizationsare described in a previous section.

    Alkylene Carbonates as Cure Accelerators

    In addition to their utility as chemical intermediates,alkylene car bonat es a lso f ind use as cure a ccelera torsof phenol-forma ldehyde (PF )77 a n d s odiu m s i l ica t e(SS)78 resin systems, which ar e widely used in foundrysa nd a nd w ood binder a pplications. Although t he effectof alkylene carbonates, particularly PC, on the reactionof phenol and formaldehyde in the presence of sodiumhydroxide has been studied for some t ime, the exact

    mechan ism responsible for cure a ccelera t ion is st ill asubject of debat e. Unfortunat ely, ana lysis of cured PFresins ha s been ha mpered by the fact tha t such mat eri-als contain numerous isomers and are only sparinglysoluble. Tohmura and co-workers77c claim that propy-lene carbonate is quickly hydrolyzed to propylene glycola n d s odiu m h y drog en ca rbo n a t e (F ig u re 13b) wh e nexposed t o the conditions requir ed for P F cure. Thus, itis the sodium hydrogen carbonate byproduct , a cureaccelera tor in its own right , tha t is responsible for t heaccelerated cure. Although Pizzi et al . agrees that PChydrolysis does occur t o some extent , they proposeme ch a n is ms is wh ich t h e cy cl ic ca rbo n a t e a c t ive lyparticipates in bridging reactions.77a On the ba sis of 13CNMR observations, they claim the existence of anhy-

    dride bridg es (F ig u re 13b) n o t f ou n d wh e n s odium

    Figure 12. (a ) R e a c t ion of c a r b ox y la t e ion w it h t h e h y d r ox yterminus of another polymer cha in. (b) Mechanism proposed byLee et a l .63 for s tage two polymer degradat ion.

    Figure 13. (a) P roposed mechanism of P F cure a ccelerat ion viaPC hydrolysis. (b) Cross-linking structure detected by Pizzi et a l.77a

    R 1 represents the remainder of the PF resin.

    C H : i e2a23 US E R : d g a69 DI V: @xy v04/d at a 1/C L S _pj/G R P _i e/J O B _i 04/DI V_i e020678i DATE : J anua r y 15, 2003

    H

    587

    588

    589

    590

    591

    592

    593

    594

    595

    596

    597

    598

    599

    600

    601

    602

    603

    604605

    606

    607

    608

    609

    610

    611

    612

    613

    614

    615

    616

    617

    618

    619

    620

    621

    622

    623

    624

    625

    626

    627

    628

    629

  • 8/9/2019 Clements_Reactive Applications of Cyclic Alkylene Carbonates_Huntsman_January-15-2003

    9/12

    hydrogen car bonat e a lone is employed a s a n a ccelera nt.77d

    A f e w o bs e rv a t io n s ma de by P a rk a n d c o - wo rk e rs 77e

    seem to support this idea; however, t hey concede tha tmore conclusive evidence is needed. It m ight be possiblet h a t bot h me ch a n is ms a re a t w ork .

    Five-Membered Alkylene Carbonates thatInclude Added Functionality

    No review of this na ture w ould be complete withouta brief discussion of alkylene carbonate derivatives asidefrom the simple alkyl-substituted cyclics. With this inmin d, ma n y de riv a t iv es of 1 have been developed inrecent years that contain added functionality, that is ,

    1,3-dioxolan-2-one derivat ives tha t conta in react ivegroups in addit ion to the carbonate ring itself . Exam-ples include vinyl moieties, esters, ethers, and alco-hols. Of these, only glycerol (glycerin) carbonate (GC)

    is a vailable commercially. The ma terial can be synthe-sized by the rea ction of glycerin wit h a carbonat e sourcesuch as phosgene, a dialkyl carbonate,79 or an a lkylenecarbonate;80 by reaction of glycerin with urea, 81 carbon

    dioxide, and oxygen;82

    or by reaction of carbon dioxidewith glycidol. Because it contains a hydroxy-functionalsubstituent , GC can be reacted with anhydrides, 83 acylchlorides, 79a isocyanates,84 and the like. For instance,researchers at Imperial Chemical Industries reacted G Cwith the m ult ifunctional isocyan at e polymeric MDI

    in the presence of potassium a ceta te to create a mult i-functional a lkylene carbonate of th e general str ucture

    17, s h o wn in F ig u re 14a . 84a The reaction of GC with

    isocyana tes occurs at room t empera ture or w ith slightheating and is generally accompanied by an exothermsuch tha t t he contr olled ad dition of one component intothe other is desired. By monitoring for the presence ofisocyana te by IR spectroscopy, the necessary react iontime can easily be determined.

    The mult ifunctional carbonates prepared by meansof the above process a re useful as blow promoters in th e

    preparation of polymeric foams,84a

    or they can reactedwit h a lipha tic diamines to prepare polyuretha ne resins,18 (Figure 14b).85 Although specific deta ils concerningthe react ion of alkylene carbonates with amines werediscussed in a previous section, it should again be notedtha t a promoter is not required and tha t a t empera tureincrease, sometimes as much as t ) 75 C , is observedu pon mixin g . Th e comp on e n t s ca n be mixe d in t h epresence of a polar solvent such a s DMF with st irringuntil a high viscosity is obtained. Once cured at 50-75C for 12-48 h, the result ing resins can be readilycast into films with excellent clarity and tear resistanceor extruded into fibers having high tensile strengths.85a

    Vinyl-functional alkylene carbonates, useful in theprepar at ion of polymers tha t contain a lkylene carbonate

    pendant groups, can also be prepared from GC. Twoexam ples a re the react ion of GC with ma leic anhydrideand acrylyl chloride to produce the acrylate-functionalcyclic carbonates 19 a nd 20, respectively.83a

    Although the transesterification of alkyl esters such asdimet h y l ma lea t e o r me t h y l a cry la t e by re a ct ion wit hGC represents an obvious means of obtaining the above

    materials, the temperatures required of such processes(>100 C) result in unwa nted polymerization of both t hereactant and product species, even in the presence ofwell-known radical inhibitors such as 2,6-di-tert-butyl-p-cresol.83a In a ddition, the synt hesis of vinyl-functiona la lk y le n e c a rbon a t e s s u ch a s 19 a n d 20 i s g r ea t l ycomplicated by the fact that such materials cannot bepurified by dist illat ion and must be stored at temper-a t u re s < 0 C .86,87 In fa ct , these an d similar species areknown to undergo polymerizat ion much more readilytha n t he a na logous underivat ized vinyl monomers.88

    Despite the synthetic challenges, the novel polymersproduced from t he a bove monomers can be modified foru s e i n a w i d e r a n g e of a p pl ica t i on s b y r ea c t in g t h ealkylene carbonate pendant moieties employing any of

    the synt hetic techniques described above. For insta nce,

    Figure 14. Reaction of GC with an n-functional isocyan at e createsa n n-functional a lkylene carbonate, 17. React ion of 17 w it h adiamine gives a useful polyuretha ne resin, 18. N ot e t h a t 18 ca nbe linear (n ) 2) or a network (n > 2 ).

    Figure 15. React ion of mult ifunctional a lkylene carbonat es withIP DA to produce an a mine-functional cross-linking a gent, 21. Notethat only one structural isomer of 21 is shown.

    C H : i e2a23 US E R : d g a69 DI V: @xy v04/d at a 1/C L S _pj/G R P _i e/J O B _i 04/DI V_i e020678i DATE : J anua r y 15, 2003

    I

    679

    680

    681

    682

    683

    684

    685

    686

    687

    688

    689

    690

    691

    692

    693

    694

    695

    696

    697

    698

    699700

    701

    702

    703

    704

    705

    706

    707

  • 8/9/2019 Clements_Reactive Applications of Cyclic Alkylene Carbonates_Huntsman_January-15-2003

    10/12

    several researchers have documented the react ion ofalkylene carbonate-containing polymers with aminesa n d d i a m in es t o p rod u ce g r a f t a n d n et w o r k p ol y -mers.87,88b,89

    Vin y l-f u n ct ion a l a lk y le n e ca rbo n a t e s ca n a ls o beprepared from t he corresponding epoxides in a m a nners imila r t o t h e c omme rcia l ma n u f a ct u re o f E C a n d P Cv i a C O2 insertion.1 The most notable example of this

    technology is the synthesis of 4-vinyl-1,3-dioxolan-2-oneor vinyl ethylene carbona te (VEC) fr om 3,4-epoxy-1-butene.

    O rigin a l ly re port e d by B is s in ge r a n d co-wo rk ers in194790 a n d l a t er b y D u P on t ,91 m u ch of t h e l a t es tresearch involving this molecule has been performed byW e bs t e r a n d Cra in a t E a s t ma n . P re l imin a ry s t u die sha ve found th at VEC can be copolymerized with r eadilyava ilable vinyl monomers useful in th e coat ings indus-try, such as styrene, alkyl acrylates a nd methacrylat es,a n d v in y l e s t e rs .92 With the exception of styrene, theaut hors found t ha t VEC will undergo free-ra dical solu-tion or emulsion copolymerization, although not quan-t i t a t iv e ly , wi t h a l l comon ome rs s t u die d t o p rodu cepolymeric species with a pendant five-membered alky-lene carbonat e functionality th at can be furth er cross-l in k ed by re a ct ion wit h a min e s .93 A more completereview of viny l-functional five-membered a lkylene car-bonat es and their potential in the ma nufacture of novelcross-linkable polymers ha s been pr ovided by Webstera n d C r a i n.94

    Although not yet commercially a vaila ble, multi-alky-lene ca rbonat es ca n a lso be prepared from epoxy resins

    v ia CO2insertion.54c,95 An exa mple is the insert ion of 3mol of CO 2 into Heloxy Modifier 84 (Shell), a trifunc-tional epoxy-terminat ed polyoxypropylene based onglycerine. The result is t he t rifunctional a lkylene car-bonate shown below

    wh e ren 8. As w ith other cyclic carbona tes, these a nds imila r ma t e ria ls c a n be f u rt h er re a ct e d wit h a min e sto yield novel polyuretha nes.95b -d The extensive bodyof research performed by Endo and co-workers in thisa re a h a s le d t o a mu c h g re a t e r u n de rs t a n din g o f t h echemistry involved, thereby allowing its emergence inindustry. F or example, researchers a t Fiber-Cote ha vereacted this ma terial w ith isophorone diamine (IPD A)to prepar e the am ine-functiona l adduct shown in Figure15a.54c The reaction t akes a dvant age of the significantdifference in t he reactivity of the a lipha tic amine versusthe cycloaliphatic amine with alkylene carbonates suchthat only the aliphatic amine part icipates in react ion.The result is an adduct t hat can be reacted with epoxyresins to form useful urethane coatings without the need

    for isocyanates.

    Future Outlook

    The reactive applicat ions of alkylene carbonates isexhaustive. As new applications continue to be devel-oped regar ding commercially a vailable a lkylene carbon-ates, the demand for carbonate-functional cross-linkablepolymers, polycarbonates, and other functional deriva-tives such a s t hose discussed in previous sections is onthe rise. La rge-scale production of these novel sub-

    stances such tha t t hey can be made ava ilable at reason-able costs is the challenge that faces future researchersin this field.

    Literature Cited

    (1 ) (a ) L ich t e n w a lt e r , M . ; Coop er , J . Ca t a ly t ic P r oce s s f orProducing Alkylene Carbonates. U.S. Patent 2,773,070, 1956. (b)McClellan, P. Catalyt ic Process for Producing Alkylene Carbon-ates. U.S. Patent 2,873,282, 1959.

    (2) JEFFSOL Alkylene Carbonates(technical bu lletin); Hu nts-man Petr ochemical Corporat ion: Austin, TX, 2001.

    (3) Beyer, K.; B ergfeld, W.; Berndt , W.; Car lton, W.; Hoffmann ,D.; Schroeter, A.; Sha nk, R. Fina l Report on t he Sa fety Assessmentof Propylene Carbonate. J . Am . Co l l . T o xic ol . 1987, 6, 23.

    (4) JE FF SOL Alk ylene Carbonates Comparati veSolvents Data

    (technical bullet in); Huntsma n P etrochemical Corporat ion: Aus-tin, TX, 1999.

    (5) I n d u s t r i a l C l e a n u p A R C O N A T E P C a n d N M P (technicalbulletin); Lyondell: Houst on, TX, 1993.

    (6) (a) Papciak, R.; Mallory, V. Acute toxicological evaluationof propylene carbonate. Acute Toxic. Data1990, 1, 15. (b) Ursin,C.; Ha nsen, C.; Van D yk, J .; J ensen, P.; C hrist ensen, I .; Ebbehoej,J . P ermeability of Commercial Solvents Through Living Huma nSkin. Am. Ind. Hyg. Assoc. 1995, 5 6, 651.

    (7) Lucas, J . ; Hala r, Z. Low Toxicity S olvent Composition. U.S.P at ent 5,449,474, 1995.

    (8) Marq uis , T.; Ba ldwin, R. ; Ma chac, J . ; Da rra gas, K . ; Wood-r u m , S . Th i ck en e d P a i n t a n d C o a t in g R em ov er . U . S . P a t e n t6,169,061, 2001.

    (9) Machac, J . ; Marquis , T. Alkylene Ca rbonate-Ba sed Clean-ers. U.S. Patent 6,187,108, 2001.

    (10) (a) Alexander, D. Epoxy Modification with Cyclic Carbon-

    ates. In SPI-Epoxy Resin Formulators Division Spring Conference;Epoxy Resin Formulators: Newport B each, CA, 1993; #203. (b)Klein, H. ; Marquis , T. Cyclic Carbonates Serve as Solvents andReact ive Diluents . Coat. World 1997, 2, 3, 38-40.

    (11) (a) Nodelma n, N. Polyurea-Cyclic Ca rbonat e RIM SystemsHa ving Im proved F low P ropert ies. U.S . P at ent 5,028,635, 1991.(b) Nodelman, N. P olyurea RIM Sy stems Ha ving Improved FlowP r op e r t ie s a n d Con t a in in g a n O r g a n ic Ca r b on a t e . U . S . P a t e n t5,149,458, 1992.

    (1 2) W a k ih a r a , M . ; Y a m a m ot o, O. L i t h i u m I o n B a t t er i es sFu n d a m en t a ls a n d Per f o r ma n c e ; Kodansha Ltd. : Tokyo, 1998.

    (13) Sun, Y.; Liu, J . ; Kimbleton, E.; Wan g, J . Composition Ba sefor Topical Therapeutic and Cosmetic Prepara t ions. U.S. P atent5,993,787, 1999.

    (14) Shaikh, A.; Sivaram, S. Organic Carbonates. Chem. Rev.1996, 96, 951.

    (15) (a) Kem, K. Process for Alkylation of Phenols. U.S. Patent

    4,261,922, 1981. (b) Nava, H. Hydroxyalkylation of Phenols. U.S.P at ent 5,679,871, 1997.

    (16) (a) Strege, P. Sodium Sta nnat e Cat alyst for Hydroxyalky-lat ion of P henols or Thiophenols. U.S . P at ent 4,310,707, 1982. (b)S t r e g e , P . ; D oor a k ia n , G . P h os p h on iu m Ca t a ly s t s f or H y d r ox y -alkylat ion of P henols a nd Thiophenols . U .S. P at ent 4,310,708,1982. (c) Dr essler, H. Hydr oxyalky lat ion of Phen ols or Thiophenolswith Cyclic Organic Ca rbonates Using Triorganophosphine Cat a-lysts. U.S. Patent 5,059,723, 1991.

    (17) King, S. Alkylation of Active Hydrogen-Containing Com-pounds. U.S. Patent 5,104,982, 1992.

    (18) Lavallee, F Preparation of Tris(2-hydroxyethyl)isocyanu-rate (THEIC). U.S. Patent 6,046,326, 2000.

    (19) (a) Ka wa saki, M.; Ohbuchi, Y. ; Maeda, Y. ; Sato, S . Ther-mosett ing Uretha ne E lastomer. U .S. P at ent 5,021,534, 1991. (b)Schroeter, A. PU Rubbers, Vulcanizable via Dimerized TDI, toProduce Wear-and-Tear-Resistant Roll Coverings. Rubber World

    1998, 21 9 (Apr). (c) Tonelli , C. ; Trombetta , T.; Maccone, P.

    C H : i e2a23 US E R : d g a69 DI V: @xy v04/d at a 1/C L S _pj/G R P _i e/J O B _i 04/DI V_i e020678i DATE : J anua r y 15, 2003

    J

    754

    755

    756

    757

    758

    759

    760

    761

    762763

    764

    765

    766

    767

    768

    769

    770

    771

    772

    773

    774

    775

    776

    777

    778

    779

    780

    781

    782

    783

    784

    785786

    787

    788

    789

    790791

    792

    793

    794

    795

    796

    797

    798

    799

    800

    801

    802

    803

    804

    805

  • 8/9/2019 Clements_Reactive Applications of Cyclic Alkylene Carbonates_Huntsman_January-15-2003

    11/12

    Synthesis and P hysical Cha racterizat ion of Model Har d SegmentsBa sed on Diphenyl Methane Diisocyana te and H ydroquinone Bis-(2-hydroxyethyl)ether.J. Polym . Sci. A 1999, 3 7, 1473. (d)Poly-GH Q E E A r o m a ti c D i o l (technical bulletin); Arch Chemicals: B ra n-denburg, KY, 1999.

    (20) Po ly -G H QEE M a t er i a l Sa f et y D a t a Sh eet ; Arch Chemi-cals : Bra ndenburg, KY, revised Aug 16, 1999. Note that typicalproduct purity is g89%(n ) m ) 1 ).

    (21) Da i, Z.; Chen, M. D erivat ive of Carda nol and U ses There-fore. U.S. Patent 6,229,054, 2001.

    ( 2 2 ) D u r a ir a j , R . D iol B le n d s a n d M e t h od s f or M a k in g a n dUsing the S ame. U .S. P at ent 6,303,732, 2001.

    (23) (a) Yoshino, T.; Ina ba, S .; Komura , H.; Ishido, Y. Synt heticS t u d ies w i t h C a r b on a t e s. P a r t 6 . J. Chem. Soc., Perkin Trans. I 1977, 1266. (b) Apicella , B . ; Serio, M.; Fiocca, L. ; P o, R. ; Sa nta -cesaria , E. Kinetic and C ata lyt ic Aspects of the Formation of P oly-(ethylene terephthala te) (P ET) Investigat ed with Model Molecules.J . Ap p l. Po ly m. Sc i . 1998, 6 9, 2423.

    (24) (a) Nava , H. Methods of Preparing Polyesters from CyclicOrganic Carbonates in the Presence of Alkali Metal-ContainingCa talysts . U.S. Pa tent 5,714,568, 1998. (b) Nava , H . P rocess forPr eparing Esterif icat ion P roducts from Cyclic Organic Ca rbonatesU s in g Ca t a ly s t s Com p r isin g Q u a t e r n a r y Am m on iu m S a l t s . U . S .P at ent 5,969,056, 1999.

    (25) Lazarus, S . ; Lofquist , R. Production of Thermally Stabi-lized Polyester with Alkylene Carbonates and Sodium or Potas-sium Thiocyanate. U.S. Patent 4,348,314, 1982.

    (26) Trowell, J . ; L ange, S . Aromat ic P olyester Polyols fromDimeth yl Terephtha lat e Pr ocess Residue and Tall Oil Fa tty Acids.U.S. Patent 4,897,429, 1990.

    (27) (a) Ratnapandian, S.; Warner, S. Modern Diaper Technol-ogy. T a p p i J . 1996, 79, 173. (b) Lee, W.; Lin, G. SuperabsorbentPolymeric Materials VIII . J . Ap p l. Po ly m. Sci . 2001, 79, 1665.

    (28) Wada , K. ; Taka hashi, N.; U eda, H. ; Na gasuna , K. Absor-b en t Ar t icle a n d P r od u ct ion P r oce s s Th e r ef or e . U . S . P a t e n t6,150,582, 2000.

    (2 9) D a h m e n , K . ; M e r t en s , R . Aq u e ou s -L iq u id a n d B lood -Absorbing P owdery Reticulated P olymers, P rocess for P roducingthe Sa me and Their Use a s Absorbents in S anita ry Art icles. U.S.P at ent 5,409,771, 1995.

    (30) (a) Fr ee Swell Capacit y T est M ethod 440.1-99; EDANA:Brussels , Belgium, 1999. (b) Absorbency Agai nst Pr essur e TestM eth od 442.1-99; ED ANA: Br ussels , Belgium, 1999.

    (31) (a) Dura nleau, R.; Nieh, E.; Kn ifton, J . Pr ocess for P roduc-t ion of Et h y le n e G l y c ol a n d D im e t h y l Ca r b on a t e . U . S . P a t e n t4,691,041, 1987. (b) K nifton, J . P rcoess for Cogenerat ion ofEt hylene Glycol and D imethyl Ca rbonate. U.S. P at ent 5,214,182,1993.

    (32) (a) Kiso, Y. ; Matsunaga, Y. ; Imagawa, M. Preparat ion ofCyclic Ca rbonates. U .S. Pa tent 4,880,942, 1989. (b) Funakoshi,S . ; K e n z ou , K . P r oc es s f or P r od u cin g P oly ca r b on a t e H a v in gTerminal Hydroxyl Groups. U.S. Patent 5,703,196, 1997.

    (33) Clement s, J . ; Klein, H .; Mar quis, T. Six-membered C yclicCa rbonates from 1,3-Diols and Alkylene Ca rbonates. U.S. P atentPending.

    (3 4) O h n o, M . ; Y a m a g iw a , S . P r oc es s f or P r od u cin g Cy c licCa rbonic Esters . U .S. P atent 6,054,596, 2000.

    (35) Ma tsuo, J . ; San da, F. ; Endo, T. Anionic Ring-OpeningP olymerizat ion B ehavior of a Seven-Membered Cy clic Car bonate,1,3-Dioxepan-2-one. J . Poly m. Sc i . A 1997, 35, 1375.

    (36) Kricheldorf , H. ; Mahler, A.; Lee, S . P olymers of Car bonicAcid. 20. Pu r e Ap p l. Ch em. 1997, A 34, 417.

    (37) Keul, H .; B a cker, H.; Hocker, H . Anionic P olymeriza tionof 2,2-Dimethyltrimethy lene Ca rbonate. M a k r o mol. Ch em. 1986,18 7, 2579.

    (38) Soga, K.; Tazuke, Y.; Hosoda, S.; Ikeda, S. Polymerizationof Propylene Carbonate. J . Po ly m. Sci . 1977, 15, 219.

    (39) Albertsson, A.; Sjoling, M. Homopolymerizat ion of 1,3-dioxan-2-one to High Molecular Weight Poly(trimethylene ca rbon-ate). Pure Appl. Chem. 1992, A 29, 43.

    (40) Taka ta , T.; Igara shi, M.; Endo, T. Synt hesis and C at ionicRing-Opening Polymeriza tion of a Cy clic Ca rbonat e, 5-Methylene-1,3-dioxa n-2-one. J . Po ly m. Sci . A 1991, 29, 781.

    (41) (a) Hovesta dt, W.; Mu ller, A.; K eul, H .; H ocker, H. Ring-Opening Polymerizat ion of 2,2-Dimethyltrimethy lene Ca rbonate,a Gr oup Tran sfer or a Metal-free Anionic Polymerizat ion? M a k - romol. Ch em.1990,11, 271. (b)K richeldorf, H .; J ensen, J .; Kreiser-S a u n d e r s , I . P oly m er s of Ca r b on ic A cid , 6 . P oly m er iz a t ion of

    Trimethylene Carbonate (1,3-Dioxan-2-one) with ComplexationCa t a ly s t s . Macromol. Chem. 1991, 1 92, 2391.

    (42) Mat suo, J . ; Aoki, K.; Sanda , F.; En do, T. Substit uent E ffecton the Anionic Equilibrium Polymerization of Six-Membered CyclicCa r b on a t e s . Ma cromolecul es1998, 31, 4432.

    (43) Searles, S . ; Hummel, D. ; Nukina, S . ; Throckmorton, P.Ca talyt ic Decomposit ion of C arbonat e E sters of 1,3-Diols .J . A m .Chem. Soc. 1960, 82, 2928.

    (44) Rokicki, G. ; Kowalczyk, T. Synthesis of OligocarbonateDiols an d Their C har acterizat ion by MALDI-TOF S pectrometry.

    Polymer 2000, 41, 9013.(45) Rokicki, G. Aliphat ic Cyclic Carbonates and Spiroortho-

    carbonates as Monomers. Prog. Polym. Sci. 2000, 25, 259.(46) Ka wa saki, M.; Ohbuchi, Y.; Maeda, Y.; Sa to, S. Thermoset-

    t ing U rethan e Ela stomer. U.S. P at ent 5,021,534, 1990.(47) Naka e, Y.; Tan abe, H .; Nishi, T.; Eguchi, Y. P olyfunctiona l

    P olycarbonat e P olyol. U .S. Pa tent 5,527,879, 1993.(4 8) (a ) M a lk em u s , J . H y d r oxy Ca r b a m a t e s a n d P r oc es s of

    P roducing S am e. U.S. Pa tent 2,627,524, 1953. (b)C oury, A.; Hobot,C. Hydroxy F unctional Monomers. U .S. P at ent 4,883,854, 1989.

    (4 9) A n g eles , E. ; S a n t i l l an , A. ; M a r t in e z, I . ; R a m ir e z, A. ;M or e n o, E . A S im p le M e t h od f or t h e S y n t h e sis of Ca r b a m a t e s .Sy n t h . Co mmu n . 1994, 24, 2441.

    (5 0) D oy a , M . ; K im izu k a , K . ; K a n b a r a , Y . P r oce s s f or t h eproduction of Dialkyl Carbonate. European Patent 638,541, 1995.

    (51) H enkelman n, J . ; Ru hl, T. P rocess for t he P repar at ion of1,3-Disubstituted Imidazolidinones. U.S. Patent 5,783,706, 1998.

    (5 2) A n d er s on , A. (D u P on t ). P r e p a r a t ion of H y d r ox y U r e -thanes. U.S. Patent 5,977,262, 1999.

    (53) Alkylene Carbonates in the Preparation of Hydroxyalkyl- carbamates (technical bulletin); Huntsman Petrochemical Corpo-ra tion: Austin, TX, 2000.

    (54) (a) Forgione, P. ; Singh, B. Beta-Hydroxyalkylcarbamyl-Methylated Aminotrizines a nd Cur able Composit ions Containingthe Same. U.S. Patent 4,708,984, 1987. (b) Forgione, P.; Singh, B.Beta -Hydroxyalkylcarba myl-Methylated Aminotrizines. U .S. Pa tent5,089,617, 1992. (c) Ra ppoport, L .; B rown , R. U retha ne Oligomersand Polyuretha nes. U .S. P at ent 5,175,231, 1992. (d) Rehfuss, J .(BASF). Tri-Ca rbama te-Functional Crosslinking Agents. U.S.Patent 5,336,566, 1994. (e) Swarup, S.; Singer, D.; McCollum, G.;Olson, K. Aqueous Aminoplast Cura ble Film-Forming Composi-t ion s P r ov id in g F i lm s H a v in g R e s ist a n c e t o Ac id Et c h in g . U . S .P at ent 6,103,816, 2000.

    (5 5) G r e en , M . L ow VO C Ca r b a m a t e F u n c t ion a l Coa t in g s

    Compositions for Automotive Topcoats. In I n t e r n a t io n a l Wa t e r - borne, High-Solids, and Powder Coatings Symposium; School ofP oly m e r s a n d H ig h P e r f or m a n c e M a t e r ia ls , T h e U n iv e r s i t y ofSouthern Mississippi: Ha tt iesburg, MS, 2000, 224.

    (5 6) B la n k , W. C e r t a in H y d r ox y a lk y l Ca r b a m a t e s , P oly m er sand Uses Thereof. U.S. Patent 4,820,830, 1989.

    (5 7) K ih a r a , N . ; M a k a b e, K . ; En d o, T. P oly con de n s a t ion of-Hydroxy Carboxylic Acid Derived from L -P h e n y la la n in e a n dEt h y le n e Ca r b on a t e . J . Poly m. Sc i . A 1996, 34, 1819.

    (58) (a) Wallenberg, R. ; P lava c, F. ; E rdma n, T. Modified S uc-cinimides. U.S . P at ent 4,612,132, 1985. (b) Ha rrison, J . ; Ruhe, W.Polyalkylene Succinimides and Post-treated Derivatives Thereof.U.S. Patent 5,716,912, 1998.

    (59) Dyer, E .; Scott, H . The Pr epara tion of Polymeric and CyclicUrethans a nd Ureas from Ethylene Carbonate and Amines.J . A m .Chem. Soc. 1956, 79, 672.

    (60) Yaegashi, K. (Daiso). Process for Producing Oxazolidin-2-

    one Derivatives. European Patent 1,069,115, 2001.(61) (a) Roberts , D. ; B et ts , M. Oxa zolidinone Derivat ives a nd

    Their Use as Antibacterial Agents. U.S. Patent 6,194,441, 2001.(b) Sciotti, R .; Djuric, S. Oxa zolidinone Chemothera peutic Agents.U.S. Patent 6,277,868, 2001.

    (62) (a) Tomita , H.; Sa nda , F.; Endo, T. Reactivity C omparisonof Five- and Six-Membered Cyclic Carbonates with Amines. J .Polym. Sci. A 2001, 3 9, 162. (b) Clements, J . ; Klein, H.; Marquis,T.; Machac, J . P reparat ion of Hydroxyalkylcarba mat es from Six-Membered Cyclic Carbonates. U.S. Patent 6,262,297, 2001.

    (63) Lee, J . ; Litt, M. Ring Opening Polymerization of EthyleneCa rbonate a nd Depolymerizat ion of P oly(ethylene oxide-co-ethyl-ene carbonate). Ma cromolecul es2000, 33, 1618.

    (64) Vogdanis, L.; Mart ens, B.; Uchtma nn, H.; Hensel, F.; Heitz,W. Synthetic and Thermodynamic Invest igat ions in the Polym-erization of Ethylene Carbonate.M akromol. Chem.1990,19 1, 465.

    (65) Vogdanis , L. ; Heitz , W. The Polymerizat ion of Ethylene

    Ca r b on a t e . Ma k r o mo l . Chem., Ra p id Co mmu n . 1986, 7, 543.

    C H : i e2a23 US E R : d g a69 DI V: @xy v04/d at a 1/C L S _pj/G R P _i e/J O B _i 04/DI V_i e020678i DATE : J anua r y 15, 2003

    K

    880

    881

    882

    883

    884

    885

    886

    887

    888

    889

    890

    891

    892

    893

    894

    895

    896

    897

    898

    899

    900

    901

    902

    903

    904

    905

    906

    907

    908

    909

    910

    911

    912

    913

    914

    915

    916

    917

    918

    919

    920

    921

    922

    923924

    925

    926

    927

    928

    929

    930

    931

    932

    933

    934

    935

    936

    937

    938

    939

    940941

    942

    943

    944

    945

    946

    947

    948

    949

    950

    951

    952

    953

    954

    955

    956

    957

  • 8/9/2019 Clements_Reactive Applications of Cyclic Alkylene Carbonates_Huntsman_January-15-2003

    12/12

    (66) Keki, S.; Torok, J . ; Dea k, G .; Zsuga, M. Ring OpeningOligomerization of Propylene Carbonat e Initiat ed by the BisphenolA/K H C O3 S y s t e m . Ma cromolecul es2001, 3 4, 6850.

    (67) S oos , L. ; Deak, G. ; Keki, S . ; Zsuga, M. Anionic B ulkOligomerizat ion of Ethylene and Propylene Carbonate Init ia tedby B isphenol A/Ba se Syst ems. J . Poly m. Sc i . A . 1999, 37, 545.

    (6 8) B ia la s , N . ; K uh l in g , S . ; K e u l, H . ; H oc ke r , H . O n t h eB eha vior of B enzo-1,3-dioxolan -2-one a nd B enzo-1,3-dioxa n-2-onevs C arba nionic Species.M a k r o mo l. Ch em. 1990, 1 91, 1165.

    (69) Darensbourg, D. ; Holtcamp, M.; Struck, G. ; Zimmer, M.

    S. ; Niezgoda, S . A.; Rainey, P . ; Robertson, J . B . ; Dra per, J . D . ;Reibenspies, J . H. Catalytic Activity of a Series of Zn(II)Phenoxidesfor the Copolymerization of Epoxides and Carbon Dioxide. J . A m .Chem. Soc. 1999, 121, 107.

    (70) (a) Sun , H. Reduction of Cat aly st U sage in E poxide/CO 2-P olymerizat ion. U.S. Pa tent 4,789,727, 1988. (b) Rockiki, A.Making P oly(alkylene carbonat es)of C ontrolled Molecular Weight.U.S. Patent 4,943,677, 1990.

    (71) (a) Cheng, M.; Lobkovsky, E. ; C oates, G. Ca talyt ic Reac-tions Involving C 1Feedstocks.J . Am. Chem. Soc.1998,12 0, 11018.(b) Cheng, M.; Moore, D. ; Reczek, J . ; Ch amberlain, B. M.; Lob-kovsky, E. B .; Coat es, G. W. Single-Site -diiminate Zinc Catalystsfor the Alternating Copolymerization of CO 2and Epoxides. J . A m .Chem. Soc. 2001, 123, 8738.

    (72) Cuscurida, M. Low F oaming Nonionic Polyether Polycar-bonate Surfactants and Fuctional Fluids. U.S. Patent 4,488,982,1984.

    (73) Inoue, S . ; K oinuma, H.; Tsuruta , T. C opolymerizat ion ofCarbon Dioxide and Epoxide with Organometallic Compounds.M a k r o mo l. Ch em. 1969, 130, 210.

    (74) D ar ensbourg, D.; Holtcamp, M. Cata lysts for the Reactionsof Epoxides and Carbon Dioxide. Coord. Chem. Rev. 1996, 153,155.

    ( 7 5 ) H u r le y , M . P oly m e r s f or Ce r a m ic s a n d M e t a l B in d in gApplications. Ce r a m. I n d . 1995, 145(6), 51.

    (76) Sar bu, T.; Sty ran ec, T.; B eckman, E. Non-Fluorous P oly-mers with Very H igh Solubility in S upercrit ical CO 2Down to LowPressures. N a t u r e 2000, 4 05, 165.

    (77) (a) P izzi, A.; Stephanou, A. On th e Chemistry, Beha vior,and Cure Accelerat ion of Phenol-Formaldehyde Resins underVery Alkaline Conditions. J. Appl. Polym. Sci. 1993, 4 9, 2157. (b)Stepha nou, A.; Pizzi, A. Rapid-Curing Lignin-Ba sed Ext erior WoodAdhesives.H oltzforschun g1993,47, 501. (c) Tohmur a, S .; Higuchi,M. Accelerat ion of the Cure of P henolic Resin Adhesives. VI

    M okuzai Gakkaishi1995,4 1, 1109. (d) Pizzi, A.; Ga rcia, R.; Wan g,S . O n t h e N e t w or kin g M e ch a n is m s of Ad d it iv e s-Ac ce le r a t e dPhenol-Formaldehyde P olycondensates.J. Appl. Polym. Sci.1997,66, 255. (e) Pa rk, B .; Riedl, B. 13 C NMR Stu dy on C ure-AcceleratedPhenol-Formaldehyde Resins with Carbonates. J . Ap p l. Po ly m.Sci. 2000, 77, 841.

    (78) Stevenson, J . ; Machin, J . ; Dyke, D. Sa nd Reclamat ion. U.S.P at ent 4,416,694, 1983.

    (7 9) ( a ) H a m a g u c h i, S . ; Y a m a m u r a , H . ; H a s e g a w a , J . ; W a -tanabe, K. Enzymatic Resolution of 2-Oxazolidinone Esters. Agric.Bi ol. Chem. 1985, 4 9, 1509. (b) Pfa endler , H.; Mu ller, F . A SimplePreparat ion of Enol Ether Lipids. Synthesis1992, 23 (Apr), 350.

    (80) (a) Bruson, H.; Riener, T. Thermal Decomposit ion ofGlyceryl Carbonates. J. Am. Chem. Soc. 1952, 74, 2100. (b) Bell,J . ; Cu r r ie r , V . ; M a lk em u s , J . M e t h od of P r e p a r in g G ly c er inCarbonate. U.S. Patent 2,915,529, 1959. (c) Sugita, A. Productionof Glycerol Carbonate. J apanese Patent 6-329,663, 1994.

    (81) (a) C laud e, S.; Zeph irin, M.; Yoo, J . ; G aset , A. Method ofPreparing Glycerol Carbonate. U.S. Patent 6,025,504, 2000. (b)Okutsu, M.; Kitsuki, T. Process for the Preparat ion of GlycerolCa rbonate. E uropean Pa tent 1,156,042, 2001.

    (82) Teles, J . ; Rieber, N.; Ha rder, W. P reparat ion of G lycerylCa rbonate. U .S. P at ent 5,359,094, 1994.

    (8 3) ( a ) G r a h e , G . ; L a c h ow ic z, A. Es t e r s Con t a in in g C y c licCa r b on a t e a n d P r oce s s f or Th e ir P r e p a r a t ion . Eu r ope a n P a t e n t328,150, 1989. (b) DAlelio, G . ; Huemmer, T. P reparat ion a ndP olymerizat ion of Some Vinyl Monomers Conta ining t he 2-Oxo-1,3-Dioxolane Gr oup.J . Poly m. Sc i . A 1967, 5, 307.

    ( 8 4 ) ( a ) G i l l is , H . ; S t a n s s e n s , D . ; P os t e m a , A . ; R a n d a l l , D .P olymeric Foam s. U.S . Pa tent 5,703,136, 1997. (b) Whela n, J .; Hill,M . ; Cot t e r M u lt ip le Cy c l ic Ca r b on a t e P oly m e r s. U . S . P a t e n t3,072,613, 1963.

    (85) (a) Whelan, J . ; Hill, M.; C otter, R. Mult iple Cyclic Carbon-ate Polymers. U.S. Patent 3,072,613, 1963. (b) Klein, H. ; Alex-ander, D. ; Woodrum, S. ; Machac, J . Mult ifunctional Carbonatesa n d D e r iv a t iv e s. U . S . P a t e n t P e n d in g .

    (86) Golden, J . ; C hew.; B. ; Zax, D . ; D iSalvo, F . ; Fr echet , J .P reparat ion of Propylene Ca rbonate Acrylat e and P oly(propylenecarbonate acrylate) Electrolyte Elastomer Gels . M acromolecul es1995, 2 8, 3468.

    (8 7) K ih a r a , N . ; En d o, T. S y n t h e s is a n d R e a ct ion of P oly -methacrylate Bearing Cyclic Carbonate Moieties in the Side Chain.M a k r o mo l. Ch em. 1992, 193, 1481.

    (88) (a) Decker, C.; Moussa, K. A New C lass of Highly ReactiveMonomers. M a k r o mol. Ch em. Ra p id Co mm u n . 1990, 1 1, 159. (b)Decker, C.; Moussa, K. A New C lass of Highly Rea ctive Monomers2. M a k r o mol. Ch e m. 1991, 192, 507.

    (89) Couvret, D.; B rosse, J . Cyclic Carbona te Functional Acrylic

    Monomers. M a k r o mo l. Ch em. 1990, 19 1, 1311.(90) Bissinger, W.; Fredenburg, R. ; Kadesch R. et a l . Some

    Reactions of B uta diene Monochlorohydr in, 1-Ch loro-3-buten-2-ol.J . A m. Ch e m. Soc . 1947, 6 9, 2955.

    (91) P richard, W. Vinylethylene Carbonat e and Its Pr epara tion.U.S. Patent 2,511,942, 1950.

    (9 2) We bs t e r , D . ; Cr a in , A. S y n t h e s is of C y c lic C a r b on a t eFunctional Polymers. Am. Chem. Soc. Symp. 1998, 704, 303.

    (93) (a) Webster, D. ; Crain A. Synthesis and Applicat ions ofCyclic Carbonate F unctional Polymer in Thermosett ing Coat ings.I n Proceedings of the 25th International Conference on OrganicCoatings, Waterborne, Hi gh Solid s, Powd er Coatings; Inst itute ofMat erials Science: New P altz , NY, 1999, 397. (b) Webster, D. ;Crain, A. Synthesis and Applicat ions of Cyclic Carbonate Func-t ional P olymers from Vinyl Et hylene Carbonat e. InI n t er n a t i on a l Waterborn e, Hi gh-Soli ds, and Powder Coatings Symposiu m; S chool

    of Polymers and High Performance Materials , The University ofSouthern Mississippi: Ha tt iesburg, MS, 2000.

    (94) Webster, D. Cyclic Carbonat e Functional P olymers: Syn-thesis a nd Applicat ions.Po ly m. N ews 1998, 2 3, 187.

    (95) (a) Rokicki, G.; Wojciechowski, C. Epoxy Resin Modifiedby Aliphatic Cyclic Carbonates. J . Appl. Polym. Sci.1990, 41, 647.(b ) K i h a r a , N .; E n d o, T. S y n t h es is a n d P r o pe r t ie s of P o ly -(hydroxyurethane)s. J . Po ly m. Sc i . A 1993, 31, 2765. (c) Stebly-anko, A.; Choi, W.; Endo, T. Addition of Five-Membered CyclicCa rbonate with Amine and I ts Applicat ion to P olymer Syn thesis .J . Poly m. Sc i . A 2000, 3 8, 2375. (d) Tomita, H.; Sanda, F.; Endo,T. St ructural Analysis of P olyhydroxyurethane Obtained by Poly-addit ion of Bifunctional Five-Membered Cyclic Carbonate andDiam ine Ba sed on the Model React ion.J. Polym. Sci. A. 2001,3 9,8 51 . ( e) M a c h a c , J . ; M a r q u is , E . ; K le in , H . P r oc es s f or t h eP reparat ion of Carbonates that Melt a t a H igh Temperat ure. U.S.P a t e n t P e n d in g .

    Received for review August 30, 2002Revised manuscript received November 12, 2002

    Accepted November 13, 2002

    IE020678I

    C H : i e2a23 US E R : d g a69 DI V: @xy v04/d at a 1/C L S _pj/G R P _i e/J O B _i 04/DI V_i e020678i DATE : J anua r y 15, 2003

    L PAGE EST: 11.8

    1037

    1038

    1039

    1040

    1041

    1042

    1043

    1044

    1045

    1046

    10471048

    1049

    1050

    1051

    1052

    1053

    1054

    1055

    1056

    1057

    1058

    1059

    1060

    1061

    1062

    1063

    10641065

    1066

    1067

    1068

    1069

    1070

    1071

    1072

    1073

    1074

    1075

    1076

    1077

    1078

    1079

    1080

    10811082

    1083

    1084

    1085

    1086

    1087

    1088

    1089

    1090

    1091

    1092

    1093

    1094

    1095

    1096

    1097

    10981099

    1100

    1101

    1102

    1103