Top Banner
Classical and quantum causal inference (An introduction to techniques and open questions) Sally Shrapnel
54

Classical and quantum causal inference

Jan 23, 2022

Download

Documents

dariahiddleston
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Classical and quantum causal inference

Classical and quantum causal inference

(An introduction to techniques and open questions)

SallyShrapnel

Page 2: Classical and quantum causal inference

Classicalcausalinference

...theLaplacianconceptionismoreintunewithhumanintuitions.Thefewesoteric

quantumexperimentsthatconflictwiththepredictionsoftheLaplacianconception

evokesurpriseanddisbelief,andtheydemandscientistsgiveupdeeplyentrenched

intuitionsaboutlocalityandcausality.Ourobjectiveistopreserve,explicateand

satisfy- notdestroy- thoseintuitions.(Pearl,2009)[26]

Page 3: Classical and quantum causal inference

Classicalcausalinference

Glymour onBellexperiments:

...realexperiments...createassociationsthathavenocausalexplanation

consistentwiththeMarkovassumption,andtheMarkovassumptionmustbe

appliedtoobtainthatconclusion.Youcansaythereisnocausalexplanationof

thephenomenon,orthatthereisacausalexplanationbutitdoesn’tsatisfythe

Markovassumption.(Glymour,2006)[124]

Page 4: Classical and quantum causal inference

Classicalcausalinference

Currentquantumtheoryandexperimentsshowthatthisassumptiondoesnotholdat

thequantumlevel,wheretherearenonlocalvariablesthatappeartohaveadirect

causaleffectonothers.WhilethesecasesdonotimplythatthecausalMarkov

assumptiondoesnothold,theydosuggestthatwemayseemoreviolationsofthis

assumptionatthequantumlevel.However,inpractice,theCausalMarkovassumption

assumptionappearstobeareasonableworkingassumptioninmostmacroscopic

systems.

Page 5: Classical and quantum causal inference

Outline

1. Classicalcausalinference

2. Quantumcausalinference

3. Greatintheory,butwhataboutinpractice?

4. Machinelearningtotherescue?

Page 6: Classical and quantum causal inference

Causalinference

Petersetal,2018

p(Ph,A)

p(Ph,B)

Page 7: Classical and quantum causal inference

Causalstructurematters

Petersetal,2018

Page 8: Classical and quantum causal inference

interventionistcausation

CausationisNOTsimplycorrelation

Correlationsdonotenableustodistinguishbetweeneffectiveandineffectivestrategiesthatbringaboutspecificends(Cartwright,1979)

“interventioninvariantmodel”

Page 9: Classical and quantum causal inference

interventionistcausation

CausationisNOTsimplycorrelation

• correlationsdonotenableustodistinguishbetweeneffectiveandineffectivestrategiesthatbringaboutspecificends(Cartwright,1979)

Goldstandard

Page 10: Classical and quantum causal inference

interventionistcausation

Interveningandrandomisation oftennotpossible

• Lookforfootprintsinthedatatogiveuscluestothetopologyofthecausalstructure

• Needprinciplesorassumptionstogofromjointdistributionoverobservedvariablestocausalstructure.

Page 11: Classical and quantum causal inference

Causalinference

Reichenbach’sprinciple:ifXandYarestatisticallydependent,then

1. thereexistseitheracommoncauseZoradirectcausalrelationshipbetweenXandY,and

2. ZscreensoffXandYfromeachother(X⊥Y⏐ Z)

X

Z

Y

X Y

X Y

Page 12: Classical and quantum causal inference

Causalinference

Jointdistributionisthesameinallthreecases:causalstructure capturedbydifferentpossiblefactorisations

X

Z

Y

X Y

X Y

! 𝑝 𝑋 𝑍 𝑝 𝑌 𝑍 𝑝(𝑍)�

)

𝑝(𝑌)𝑝(𝑋|𝑌)

𝑝(𝑋)𝑝(𝑌|𝑋)

𝑝(𝑋, 𝑌)

Page 13: Classical and quantum causal inference

CausalgraphicalmodelCasualmodel=graph+causalparametersCausalparameters=distributionofeachvariableconditionedonitsparents

X4

X3

X5

X1

X2

Page 14: Classical and quantum causal inference

Structuralcausalmodel

𝑋1 = 𝑓1(𝑁1)𝑋2 = 𝑓2(𝑁2)

𝑋3 = 𝑓3(𝑋1, 𝑁3)𝑋4 = 𝑓4(𝑋3, 𝑁4)

𝑋5 = 𝑓5 𝑋3, 𝑋2, 𝑁5 X4

X3

X5

X1

X2

N4

N5

N2N3

N1

Page 15: Classical and quantum causal inference

MarkovCondition

X4

X3

X5

X1

X2

N4

N5

N2N3

N1

parentsNon-descendants

Graphically,children areconditionallyindependentoftheirnon-descendants,giventheirparents.

(𝑋 ⊥ 𝑌 𝑍 𝐺→ (𝑋 ⊥ 𝑌 𝑍 𝑃

Page 16: Classical and quantum causal inference

FaithfulnessCondition

X4

X3

X5

X1

X2

N4

N5

N2N3

N1

parentsNon-descendants

Graphically,childrenareconditionallyindependentoftheirnon-descendants,giventheirparents.

Independenciesfoundinthedistributionareonly thoseimpliedbytheMarkovcondition

(𝑋 ⊥ 𝑌 𝑍 𝐺 → (𝑋 ⊥ 𝑌 𝑍 𝑃

(𝑋 ⊥ 𝑌 𝑍 𝐺 ← (𝑋 ⊥ 𝑌 𝑍 𝑃

Page 17: Classical and quantum causal inference

FaithfulnessCondition

X4

X3

X5

X1

X2

N4

N5

N2N3

N1

parentsNon-descendants

Graphically,childrenareconditionallyindependentoftheirnon-descendants,giventheirparents.

Independenciesfoundinthedistributionareonly thoseimpliedbytheMarkovcondition

(𝑋 ⊥ 𝑌 𝑍 𝐺 → (𝑋 ⊥ 𝑌 𝑍 𝑃

(𝑋 ⊥ 𝑌 𝑍 𝐺 ← (𝑋 ⊥ 𝑌 𝑍 𝑃

Page 18: Classical and quantum causal inference

Interventions

X4

X3

X5

X1

X2

N4

N5

N2

N1

Interventionseparatesvariablefromantecedentcauses

𝑋1 = 𝑓1(𝑁1)𝑋2 = 𝑓2(𝑁2)

𝑋3 = 𝑓3(X1,N3)𝑋4 = 𝑓4(𝑋3, 𝑁4)

Page 19: Classical and quantum causal inference

Causalinference

X4

X3=2

X5

X1

X2

N4

N5

N2

N1

Interventionseparatesvariablefromantecedentcauses

𝑋1 = 𝑓1(𝑁1)𝑋2 = 𝑓2(𝑁2)

𝑋3 = 2𝑋4 = 𝑓4(𝑋3, 𝑁4)

Page 20: Classical and quantum causal inference

Whyisitcausal?

LocalCPDaregeneratedbyautonomouscausalmechanisms thatexistbetweenparentsandchildren.

Causalstructureofmodelisisomorphictonetworkofautonomouscausalmechanisms.

Interventions bringlocaldistributionundercontrolofexperimenteranddon’tdisruptothermechanismsinthemodel

Thisstructurehaspragmaticvalue– ittellsushowtoacttobringaboutcertainends

Page 21: Classical and quantum causal inference

Latentvariables?

GraphnotMarkovian andFaithful?

Implicitassumptionthatthisisalwaysaconsequenceofunmeasuredcommoncauses(latentvariables)

Inprinciple,locatingandmeasuringsuchvariablesoughttorestoreMarkovianity tothemodelforsomecausalstructure.

Page 22: Classical and quantum causal inference

Constraintbasedmethods

Algorithms:PC

– Identifiesadjacenciesviadependencies

– IdentifiesV-structuresX YZXZXYZXYZY

– Propagationrulestoorientremainingedgestoavoidcycles

– IdentifiesMarkovequivalentsetofDAGsunderCMA,CFA,acyclicity andCSA

Page 23: Classical and quantum causal inference

Constraintbasedmethods

PROBLEMS

Givesyougraphbutnotthestructuralequations(can’tinfercounterfactuals).

StatisticaltestsacceptorrejectCIatagivenconfidenceintervalandgraphstructureisverysensitivetohowyousetthisconfidencelevel.

CItestingisunjustifiedforfinitedata(forarbitrarilycomplexfunctions)

Propagationrulestendstopropagateerrors.

Whatabouttwovariables?

Page 24: Classical and quantum causal inference

AlternativestoCItesting?

Generalprinciples?

Keyideatoretainisindependenceofcausalmechanisms:

“Statisticalcorrelationsbetweenvariablesinasystemaretheresultofacausalgenerativeprocess thatiscomposedofautonomousmodulesthatdonotinformorinfluenceeachother.”

Forbivariatecasethisreducestoindependenceofcause andmechanismrelatingcausetoeffect.

𝑝 𝑐, 𝑒 = 𝑝 𝑐)𝑝 𝑒 𝑐 (𝑐 → 𝑒

Page 25: Classical and quantum causal inference

Asymmetryofcauseandeffect

𝑝 𝑥, 𝑦 = 𝑝 𝑥)𝑝 𝑦 𝑥 (𝑥 → 𝑦

𝑝 𝑥, 𝑦 = 𝑝 𝑦)𝑝 𝑥 𝑦 (𝑦 → 𝑥

𝑦 = 𝑥@ + 𝑥 + 𝑁

Wantlowstructuralvariabilityofmechanismfordifferentinputvaluesofcause

Page 26: Classical and quantum causal inference

Alternatives?

Makeassumptionsaboutdatageneratingcausalmechanisms:

Bivariate

1. Additivenoisemodel(ANM)• assumenonlinearfunction,additivenoise,noiseindependentof

cause• Admitsonlyasingleunidentifiablecase:linearfunctionwithgaussian

causeandnoise

2. Post-nonlinearmodel(PNL)• Addsanextranonlinearfunctionwhichisinvertible• Morenon-identifiablecases

3. GaussianProcessInferencemodel(GPI)

4. Algorithmiccomplexity– exploitasymmetriesinfactorisation accordingtoKolmogorovcomplexitymeasures(selectssimplestexplanation)

Page 27: Classical and quantum causal inference

Alternatives?

Multivariate:

1. ConstraintbasedmethodsPC,FCI(relaxesCS),RFCI.Allrequiredata++

2. Scorebasedalgorithmssearchmodelspaceandminimise aglobalscore• GESexploresgraphspaceusingoperators“addedge”,“removeedge”,

“reverseedge”andoptimises accordingtoBIC.• FGESmorecomputationallyefficient

3. Hybridalgorithms=constraint+scorebased• Max-minHillclimbing(MMHC)buildsskeletonusingCIteststhen

performsagreedyhill-climbingsearchtoorientedges• GFCIusesFGEStosketchgraphandthenCItoorientedges

4.Exploitasymmetrybetweencauseandeffect(LinGAM)+MORE• linearfunctions,non-gaussian sourcenodes,additivenoise

Page 28: Classical and quantum causal inference

Crowdsourcedcausaldiscovery

Guyon,(2013)

Principledmethods(withvoting)– 0.6accuracyonclassificationtask

Generalised – 0.8(lowlevelfeaturesofjointdistribution- 9000!)

Notlearningthefunctionalrelationships,justdirectionality

Page 29: Classical and quantum causal inference

machinelearningmethods

Data=x Model=f(x)p(y|x)

10

Optimise andregularise!

Label=y

Page 30: Classical and quantum causal inference

machinelearningmethods

Supervisedlearning

Largedatabasesofsampledvariablepairswithknowncause-effectrelation.

Castasclassificationproblem.

Taskistogeneralise solutiontounseendatasets(borrowexistingregularisationmethodsfromML).

BUTneedtofeedit“groundtruth”models~motivatedbycommonsense,domainknowledge.

Page 31: Classical and quantum causal inference

machinelearningmethods

Generativemodels((CiGAN,CausalGAN,CGNN)

SAM“StructuralAgnosticModel”withpenalised adversariallearning.

Recoverscasualgraphfromdata(learnsbothjointandinterventionaldistributions).

RelaxesCMC,CFC,CSA,acyclicity.

Scalestohundredsofvariables.

Estimatesbothstructureofgraphandfunctionalcausalmechanisms.

90%accurate.

Needtofeedit“groundtruth”models– sensitiveto“Bayeserror”.

Needsverification!

Page 32: Classical and quantum causal inference

Classicalcausalinference

Causalinferencefromjointdistributionsisverydifficult.

Nicetheoreticalandconceptualapproaches,butmanypracticaldifficulties.

Machinelearningseemsapromising(bruteforce)approachbutatthecostofinterpretability(fornow).

Causalinferencetotheexclusionofotherdomainknowledgeisanoccupationalhazard…

Page 33: Classical and quantum causal inference

Parachuteusetopreventdeathandmajortraumarelatedtogravitationalchallenge:systematicreviewofrandomised controlledtrialsBMJ 2003; 327

Objectives Todeterminewhetherparachutesareeffectiveinpreventingmajortraumarelatedtogravitationalchallenge.Design Systematicreviewofrandomised controlledtrials.Datasources:Medline,WebofScience,Embase,andtheCochraneLibrarydatabases;appropriateinternetsitesandcitationlists.Studyselection: Studiesshowingtheeffectsofusingaparachuteduringfreefall.Mainoutcomemeasure Deathormajortrauma,definedasaninjuryseverityscore>15.ResultsWewereunabletoidentifyanyrandomised controlledtrialsofparachuteintervention.

Conclusions Aswithmanyinterventionsintendedtopreventillhealth,theeffectivenessofparachuteshasnotbeensubjectedtorigorousevaluationbyusingrandomised controlledtrials.Advocatesofevidencebasedmedicinehavecriticisedtheadoptionofinterventionsevaluatedbyusingonlyobservationaldata.Wethinkthateveryonemightbenefitifthemostradicalprotagonistsofevidencebasedmedicineorganised andparticipatedinadoubleblind,randomised,placebocontrolled,crossovertrialoftheparachute.

Page 34: Classical and quantum causal inference

Bellinequalities

2006Glymour:

Belltheoremisaparticularexampleofamoregeneraltheoryofcausalinference:

Causalgraphicalmodels

Glymour,Clark "MarkovPropertiesandQuantumExperiments,"inW.DemopoulosandI.Pitowsky,eds. PhysicalTheoryandItsInterpretation:EssaysinHonorofJeffreyBub,Springer2006.

Page 35: Classical and quantum causal inference

Quantumcausalinference

“AnycausalmodelwhichcanreproduceBell-inequalityviolationswhilerespectingtheobservedindependences…willnecessarilyviolateaprinciplethatisatthecoreofallthebestcausaldiscoveryalgorithms [Faithfulness].”

Page 36: Classical and quantum causal inference

Quantumcausalinference?

r

Non-localityviolatesfaithfulness.

• Settingsaremarginallyindependent𝐴 ⊥ 𝐵

• Nosignalling𝑋 ⊥ 𝐵 𝐴; 𝑌 ⊥ 𝐴 𝐵

Page 37: Classical and quantum causal inference

Quantumcausalinference

r

Retrocausality violatesfaithfulness.

• Settingsaremarginallyindependent𝐴 ⊥ 𝐵

• Nosignalling𝑋 ⊥ 𝐵 𝐴; 𝑌 ⊥ 𝐴 𝐵

Page 38: Classical and quantum causal inference

Quantumcausalinference

r

Superdeterminism violatesfaithfulness.

• Settingsaremarginallyindependent𝐴 ⊥ 𝐵

• Nosignalling𝑋 ⊥ 𝐵 𝐴; 𝑌 ⊥ 𝐴 𝐵

Page 39: Classical and quantum causal inference

Quantumcausalinference

Conclusion:CItestingnotrichenoughmethodologytocapturequantumcausalrelations

Page 40: Classical and quantum causal inference

Threeapproaches

1. ClassicalapproachPlugquantumdataintoclassicalalgorithms.Usefulascertificationforquantumness.Doesitreallyhelpwithcausalexplanation?

2. Quantumdomainisacausal.

3. Tryanddevelopamoregeneralversionofcausalinference.

Page 41: Classical and quantum causal inference

Acausal?

Page 42: Classical and quantum causal inference

Alternativeapproach

Assumequantumcausalstructureisprimitive,buildacausaltheoryfromthegroundup(usingmathematicalobjectsfromQM),thatrecoversclassicalcausalstructureinasuitablelimit.

Writedefinitionsaccordingtothewayphysicistsuse quantumtheorytomakeinterventionistinferencesthatdistinguishbetweeneffectiveandineffectivestrategies(inmostgeneralform).

Obeysindependenceassumptionsthatunderpinclassicalcausalinference.

CostaandShrapnel(2016)“Quantumcausalmodelling”,NJP,18,063062

Shrapnel(2016)“Usinginterventionstodiscoverquantumcausalstructure”PhDthesis,http://espace.library.uq.edu.au/view/UQ:411093

Shrapnel(2017)“DiscoveringQuantumCausalModels,”TheBritishJournalforthePhilosophyofScience(advancearticle)

Page 43: Classical and quantum causal inference

Desiderata

1. Empirical =Theformalismshouldallowforthediscoveryofcausalstructurefromempiricaldata(causalstructure- canactasanoracleforinterventions).

2. Explanation =All correlationsbetweenempiricallyderiveddatashouldbeaccountedforvianotionsofdirect,indirectorcommoncauserelations,i.e.thereshouldbeno“unexplained”correlations.

3. Classicality=Classicalcausalmodelsshouldberecoveredasalimitingcaseofquantumones.

Page 44: Classical and quantum causal inference

Quantumcausalmodels

A

B

C

D

G

F

E

Variables=regions

Values=CP maps

Intervention=instruments

CausalMechanisms=CPTP

Causalstructure=process

Generalised circuit

Processisgeneratedbyautonomouscausalmechanisms(channels).

Mechanisms=deterministicunitaries withunmodelled noise

=

Page 45: Classical and quantum causal inference

Contextuality?

=

Shrapnel,CostaandMilburn,NJP (2018)ShrapnelandCosta,Quantum (2018)

𝑝 𝑗 = 𝑇𝑟(𝐸J𝜌)

Unique!

Unique!

Page 46: Classical and quantum causal inference

Quantumcausalmodels

A

B

C

D

G

F

E

Variables=regions

Values=CPmaps

Intervention=instruments

CausalMechanisms=CPTP

Causalstructure=process

=

Assumptions:independenceofinterventionsandmechanisms.Do-calculusisignoreincomingstateandre-prepareoutgoingstate.Markovianity – setoflinearconstraintsontheprocess.Faithfulness– nofine-tunedmechanisms(measuretheoreticsense).

Page 47: Classical and quantum causal inference

Quantumcausalmodels

A

B

C

D

G

F

E

Causalmodelis“interventioninvariant”

Non-Markovian?(unmodelled (latent)commoncause)- extendingthemodeltoincludesuchnodesrestorestheMarkovpropertytothecausalgraph

Canprovethatallclassicalcausalmodelscanbegivenaquantumrepresentation(allinstrumentsfixedinsomebasis)

Page 48: Classical and quantum causal inference

Inprinciple:

MeasurementDataà graphthat

(i) Accountsforallcorrelations(classicalorquantum)viaautonomouscausalmechanisms

(ii) Actsasanoracleforfutureinterventions

Needcausaldiscoveryalgorithms….

Page 49: Classical and quantum causal inference

Discoveryalgorithm:

1. Determinesifprocessiscausallyordered

2. Checksifalllatentvariablesareincluded

3. IfMarkoviangivesuniqueDAG

Giarmatzi andCosta,NQI,2018

Page 50: Classical and quantum causal inference

Stillworktodo

Quantumcausalinferenceiscomputationallyand practicallyveryhard.

Needtoinputprocesswhichrequiresinformationallycompletetomography–exponentialinnumberofvariables.

Needtoknowdimensionofinputsystemsandnumberofsubsystems.

Switch?Indefinitecausalorder?LargerclassesofWthataretheoreticallypossible.

Page 51: Classical and quantum causal inference

Supervisedlearningofprocess

Task=>classifyprocessasMarkovianvsnon-Markovian,=>estimatedimensionofnon-Markovianenvironment.

SimulatedataandusesupervisedMLtechnique– labelledprocesses.

TrainedRandomForestRegressor,testonunseendata(frominsideandoutsideoutsidetrainingrange)

99%accurateonMarkovianvsnon-Markovian.

95%accurateondimensionalityofenvironment.

Nolossofaccuracyorgeneralityonless-than-informationallycompletedata(only20%offeaturesincluded).

Page 52: Classical and quantum causal inference

Supervisedlearningofprocess

Caveats:

Simulateddata– tryexperimentaldatanext.

Scaling?

Transferabletodifferentsizeprocesses?

Interpretability?

Page 53: Classical and quantum causal inference

Conclusions

Causalinferenceisimpossiblewithoutassumptions.

Independenceofcausalmechanisms(includinginterventions)iskey.

Machinelearningmethodsmayprovideapowerfultoolforidentificationofcausalstructure(butatsomecosttointerpretability).

Implicationsof“theoryblind”classical-quantumcausalinference?

Page 54: Classical and quantum causal inference

References

Acknowledgements:

Causalparents?Hardy,Brukner,Costa,Oreshkov,Spekkens,Liefer,Chiribella,Tucci,Ried,Cavalcanti,Lal,Henson,Pusey,Chaves,Pienaar,Giarmatzi…..+manymore(Lloyd)Causalsisters?Reidetal.,Allenetal.,Causalchildren?Schmid,Pienaar....+more

Books:“Elementsofcausaldiscovery”,Petersetal.,(2018);“DeepLearning”Goodfellowetal.,(2016)