Top Banner
CARRERA: INGENIERÍA BIOMÉDICA F.C.E.F.y N - U.N.C. MATERIA: MEDICINA NUCLEAR Año: 2008 Lic. G. R. Vélez – Lic. A. Martínez – Lic. M.L. Haye.
28

clase_3

Jan 15, 2016

Download

Documents

Jhon Peñalva

j
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: clase_3

CARRERA: INGENIERÍA BIOMÉDICA

F.C.E.F.y N - U.N.C.

MATERIA: MEDICINA NUCLEAR

Año: 2008

Lic. G. R. Vélez – Lic. A. Martínez – Lic. M.L. Haye.

Page 2: clase_3

COEFICIENTE DE ATENUACIÓN

Supongamos que tenemos el siguiente experimento:

Fotones incidentes

Colimador

Fotones dispersados

Fotones transmitidos

Detector

Un haz delgado de fotones monoenergético incide sobre un absorbente.

Se ubica un detector a una distancia fija de la fuente y suficientemente lejos del absorbente como para que sólo el haz primario sea detectado (todos los fotones que interactúan con el absorbente no son detectados).

Bajo estas condiciones, se cumple:

NdxdN dN: número de fotones que son detectados

N: número de fotones incidentes

dx: espesor del absorbente

Page 3: clase_3

También: NdxdN es la constante de proporcionalidad y el signo “–” indica que el número de fotones decrece a medida que aumenta el espesor del absorbente.

es el Coeficiente de Atenuación

Podemos escribir la ecuación anterior en términos de la intensidad I :

IdxdI dxI

dI

Si se expresa como distancia ( [] = 1/cm ) se denomina Coeficiente de Atenuación Lineal.

Page 4: clase_3

Resolviendo la ecuación diferencial obtenemos:xeIxI 0)(

I(x) es la Intensidad Transmitida

x es el espesor de absorbente,

I0 es la Intensidad Incidente en el Absorbente

En general depende de la energía de los fotones y de la naturaleza del material absorbente.

Dividiendo por la densidad del material, el coeficiente resultante ( / ) es independiente de la densidad.

( / ) es el Coeficiente de Atenuación Másico

La dependencia con el material de este coeficiente involucra la composición atómica pero no la densidad.

[ ( / ) ] = cm2/gUnidades:

Page 5: clase_3

Cuando se usa el coeficiente de atenuación másico en la ecuación para la intensidad transmitida, el espesor del absorbente debe expresarse como x que tiene unidades g/cm2.

Otras formas de expresar este coeficiente:

Coeficiente de Atenuación Electrónico

electróncm

e N

2

0

1

El espesor se expresa en unidades de electrones/cm2.

Coeficiente de Atenuación Atómico

átomocm

a N

Z 2

0 El espesor se expresa en unidades de átomos/cm2.

Z es el número atómico,W

A

A

ZNN 0 es el número de electrones por gramo

NA es el número de Avogadro y AW es el peso atómico.

Page 6: clase_3

COEFICIENTE DE ENERGÍA TRANSFERIDA

Cuando un fotón interactúa con los electrones en un material, una parte o toda su energía se convierte en energía cinética de los electrones.

Un fotón puede experimentar una o múltiples interacciones en las cuales la energía que pierde se convierte en energía cinética de los electrones.

Si consideramos un haz de fotones atravesando un material, la fracción de energía transferida como energía cinética a las partículas cargadas por unidad de espesor de absorbente está dada por el Coeficiente de Energía Transferida tr.

h

E trtr

:es la energía media transferida como energía cinética a las partículas cargadas por interacción

trE

Coeficiente de Energía Transferida Másico: tr /

Page 7: clase_3

COEFICIENTE DE ENERGÍA ABSORBIDA

La mayoría de los electrones puestos en movimiento perderán su energía mediante colisiones inelásticas (ionización y excitación) con los electrones atómicos del material.

Algunos, dependiendo del Z del material, perderán su energía por bremsstrahlung.

La energía de bremsstrahlung es irradiada fuera del volumen local como rayos X y no es incluída en el cálculo de la energía absorbida localmente.

El Coeficiente de Energía Absorbida en, se define como:

)1( gtren g es la fracción de energía de las partículas secundarias cargadas que se pierde por bremsstrahlung en el material.

Coeficiente de Energía Absorbida Másico: en /

Page 8: clase_3

En los materiales de Z bajo, como tejido blando, en los cuales los electrones pierden su energía casi totalmente mediante colisiones inelásticas, la componente de bremsstrahlung es despreciable.

tren

Estos coeficientes pueden diferir apreciablemente cuando las energías cinéticas de las partículas secundarias son altas y el material es de Z alto.

El coeficiente de Energía Absorbida es una cantidad importante en Radioterapia, ya que permite evaluar la energía absorbida por los tejidos y sus efectos biológicos.

Page 9: clase_3

ENTONCES...

La atenuación de un haz de fotones en un material absorbente se lleva a cabo, principalmente, por cuatro procesos:

DISPERSIÓN COHERENTE

EFECTO FOTOELÉCTRICO

EFECTO COMPTON

PRODUCCIÓN DE PARES

Cada uno de estos procesos se puede representar por su correspondiente Coeficiente de Atenuación, el cual varía según la energía de los fotones incidentes y el Z del medio absorbente.

El Coeficiente Total de Atenuación Másico es la suma de los coeficientes de cada proceso.

Ccoh

Page 10: clase_3

El coeficiente de atenuación para la Dispersión Coherente, coh, decrece

rápidamente cuando aumenta la energía de los fotones incidentes y es casi despreciable para energías mayores que 100 keV en materiales de bajo Z.

COEFICIENTE DE ATENUACIÓN O SECCIÓN EFICAZ.

Este proceso es más probable, o sea aumenta su sección eficaz, para materiales de alto Z y fotones de baja energía ( no es de gran interés en radioterapia).

Dispersión Coherente

Efecto Fotoeléctrico

La probabilidad de ocurrecncia de este efecto, o sea su sección eficaz,

(o /) , depende de la energía de los fotones incidentes y del Z del material.

La relación entre / y la energía está dada por:3

1

E

Page 11: clase_3

En un gráfico en escala logarítmica se puede ver que la relación entre E y / es casi lineal con pendiente aproximada de -3.

Las discontinuidades en 15 keV y 88 keV para el Pb, son los Bordes de Absorción y corresponden a las EB de las capas L y K.

Z bajo

Z alto

Cuando el fotón incidente tiene energía igual a EB, de alguna de las capas, los e- pueden ser eyectados de esa capa, aumentando la probabilidad de ocurrencia del proceso y así la absorción

En la curva del agua, no se muestran los bordes de absorción ya que la energía EB para la capa K ~ 0,5 keV.

Page 12: clase_3

El coeficiente de atenuación / , depende fuertemente del Z del material absorbente, y su dependencia está dada por:

3Z

Entonces:

3

3

E

Z

Resumiendo...

Este efecto involucra electrones ligados

La probabilidad de ocurrencia aumenta (discontinuidades o picos) cuando la energía del fotón incidente es igual a EB de alguna de las capas K, L, M o N.

/ (Z3 / E3 )

Page 13: clase_3

Efecto Compton

Es la interacción más importante en los tejidos.

Es una interacción entre un fotón y un electrón libre, por lo tanto la

sección eficaz, C (o C / ) ,

de este proceso es prácticamente independiente del Z del material.

C / depende sólo del número de electrones por gramo (que se puede considerar aproximadamente el mismo para todos los materiales, excepto el H).

C / es casi el mismo para todos los materiales.

Page 14: clase_3

Resumiendo...

Es una interacción entre un fotón y un electrón libre

Es prácticamente independiente del Z del material

La probabilidad de ocurrencia decrece a medida que aumenta la energía

En cada colisión parte de la energía es dispersada y parte transferida al electrón

En promedio, la energía transferida como EC por colisión aumenta cuando aumenta la energía del fotón incidente

En tejido blando el efecto Compton es mucho más importante que el efecto fotoeléctrico o la producción de pares para fotones en el rango de 100 keV a 10 MeV

Page 15: clase_3

Producción de Pares

Como es una interacción con el campo elctromagnético del núcleo, la probabilidad de

ocurrencia de este proceso ( ) aumenta rápidamente con el Z

El coeficiente de atenuación de este proceso varía como:

2Za (Por átomo)

Ze (Por electrón o por gramo)

Esta interacción aumenta como el logaritmo de la energía del fotón incidente para energías por encima del umbral.

Para E altas, la curva para Z alto decae por debajo de la curva para Z bajo por el apantallamiento de la carga nuclear debido a los e- orbitales

Page 16: clase_3

Resumiendo...

Es una interacción entre un fotón y el núcleo

El umbral de energía para que ocurra el proceso es 1,022 MeV

Aumenta rápidamente con la energía por encima del umbral

a Z2 por átomo

El coeficiente por unidad de masa g Z

La energía transferida como EC es h - 1,022 MeV

En la aniquilación, se producen dos fotones de 0,511 MeV y son irradiados en direcciones opuestas.

Page 17: clase_3

Coeficiente Total de Atenuación

C

Z alto

Z bajo

( / )

( / ) vs. E

Page 18: clase_3

El coeficiente de atenuación másico total ( / ) , es mayor para E bajas

y alto Z, porque predomina en esta región el efecto fotoeléctrico ( ) en estas condiciones.

( / ) decrece rápidamente con E hasta que los fotones exceden las energías de ligadura de los e-, y comienza a predominar la interacción

Compton ( CC )

En la región en que predomina el efecto Compton, ( / ) es prácticamente igual tanto para el agua como para el Pb.

Luego ( / ) decrece cuando aumenta la E hasta que toma importancia la

producción de pares ( ).

El dominio de la producción de pares ocurre a energías mucho mayores que la energía umbral.

Page 19: clase_3

Comentarios...

El Coeficiente de Energía Total Transferida y el de Energía Total Absorbida se obtiene sumando las componentes separadas del efecto fotoeléctrico, Compton y producción de pares (la dispersión coherente no se tiene en cuenta porque no hay transferencia ni absorción de energía)

trCtrtrtr abCababab

Si se divide por la densidad , se obtienen los respectivos coeficientes másicos.

Para tejido blando se puede aproximar:

Hasta 50 keV es importante el efecto fotoeléctrico

60 keV a 90 keV fotoeléctrico y Compton

200 keV a 2 MeV sólo efecto Compton es importante

5 Mev a 10 MeV comienza a ser importante producción de pares

50 MeV a 100 MeV producción de pares es el efecto más importante

Page 20: clase_3

CAPA HEMI - REDUCTORA

La Capa Hemi- Reductora (CHR) se define como el espesor de absorbente requerido para atenuar la intensidad del haz a la mitad de su valor inicial. Se utiliza para indicar la calidad del haz.

Teníamos:xeIxI 0)(

Entonces, si CHRx

Luego, por definición de CHR:

2

1

0

I

I

Entonces, de la ecuación para la Intensidad, se puede ver que:

693.0

CHR

Page 21: clase_3

Haz de fotones monoenergético

Haz de fotones con un espectro de energía

Realación lineal en escala logarítmica

En este caso la relación no es lineal en escala logarítmica

Page 22: clase_3

La primera CHR es el espesor de absorbente que atenúa el haz a la mitad de su intensidad inicial.

La segunda CHR es el espesor de absorbente que atenúa el haz a la mitad de su intensidad luego de haber atravesado la primera CHR.

En general, para un haz heterogéneo, la primer CHR es menor que las subsecuentes CHRs

A medida que aumenta el espesor del filtro, la energía promedio del haz transmitido aumenta: “ENDURECIMIETO DEL HAZ” y de esta forma aumenta el poder de penetración del haz.

Page 23: clase_3

INTERACCIÓN DE PARTÍCULAS CARGADAS CON LA MATERIA

Las interacciones de partículas cargadas o colisiones, se llevan a cabo mediante fuerzas coulombianas entre el campo eléctrico de la partícula incidente y el campo eléctrico de los electrones orbitales y el núcleo de los átomos del material.

Las colisiones entre las partículas y los electrones atómicos resultan en ionización y excitación de los átomos.

Las colisiones entre la partícula y el núcleo, resultan en pérdidas radiativas de energía o bremsstrahlung

Las partículas sufren también dispersión, sin pérdidas significativas de energía. Los e-, por tener menor masa, sufren más interacciónes que las partículas pesadas.

Page 24: clase_3

Partículas pesadas cargadas.

El poder de frenado, S, se define como la tasa de energía que pierde la partícula por unidad de camino, dE/dx.

El poder de frenado másico está dado por S/ , donde es la densidad del medio y se expresa en MeVcm2/g

El Poder de Frenado por ionización es proporcional al cuadrado de la carga de la partícula e inversamente proporcional al cuadrado de la velocidad.

A medida que la partícula cargada se va frenando, su poder de frenado aumenta y por lo tanto aumenta la ionización y la energía absorbida por el medio.

Page 25: clase_3

Por ejemplo, la dosis (energía absorbida por unidad de masa) en agua, aumenta primero muy lentamente con la profundidad y luego aumenta abruptamente cerca del fin del rango de la partícula

PICO DE BRAGG

Una ventaja de las partículas pesadas cargadas en radioterapia, es que a medida que atraviesan el tejido, la dosis depositada en profundidad es aproximadamente constante hasta la cercanía del fin del rango de la partícula, donde entrega casi toda su energía y cae abruptamente a cero.

Page 26: clase_3

RANGOCuando un haz de partículas cargadas pasa a través de la materia, las interacciones que sufre hacen que las partículas se vayan frenando y cambiando la dirección.

Eventualmente, una partícula perderá toda su energía cinética y alcanzará el reposo.

Hay una distancia finita más allá de la cual no habrá ninguna partícula, y esta distancia se denomina rango de la partícula.

Rango Proyectado Rp:Rango Proyectado Rp: se determina extrapolando una recta desde la parte recta descendente de la curva intersectando el fondo de la curva debido a los rayos X.

RR5050: es la distancia recorrida a la cual las partículas entregan la mitad de su energía

Para los e-:

Page 27: clase_3

El rango aproximado para otras partículas cargadas con la misma velocidad inicial se puede calcular de la siguiente forma:

Relación entre la energía del protón en MeV y el rango en agua en cm.

2

1

2

2

1

2

1

q

q

M

M

R

R

R1 y R2 son los rangos de las partículas que se comparan,

M1 y M2 son las masas,

Z1 y Z2 son las cargas.

Además de las interacciones coulombianas, las partículas pesadas cargadas originan reacciones nucleares produciendo nucleidos radioactivos.

Page 28: clase_3

Electrones

Las interacciones de los electrones a medida que pasan en un material son similares a las de las partículas pesadas cargadas.

Sin embargo, por su masa relativamente pequeña, los e- sufren múltiple dispersión y cambios en la dirección de movimiento, por lo que no se observa el pico de Bragg.

En agua o en tejido, los e- pierden su energía principalmente por ionización y excitación, depositando así energía en el medio.

Los e-, pueden interactuar con el campo electromagnético del núcleo y ser desacelerado rápidamente, tal que parte de su energía se pierde por bremsstrahlung

La tasa de energía perdida por bremsstrahlung aumenta a medida que aumenta la energía de los e- y el Z del medio.