Top Banner
1 Circuits & 2-adic Integers Digital Synchronous Circuit 2-adic Integers Arithmetic Circuits LHC Application Jean Vuillemin École Normale Supérieure de Paris
21

Circuits & 2-adic Integers · 1 Circuits & 2-adic Integers Digital Synchronous Circuit. 2-adic Integers. Arithmetic Circuits. LHC Application. Jean Vuillemin. École Normale Supérieure

Nov 04, 2020

Download

Documents

dariahiddleston
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Circuits & 2-adic Integers · 1 Circuits & 2-adic Integers Digital Synchronous Circuit. 2-adic Integers. Arithmetic Circuits. LHC Application. Jean Vuillemin. École Normale Supérieure

1

Circuits & 2-adic Integers

Digital Synchronous Circuit2-adic IntegersArithmetic CircuitsLHC Application

Jean VuilleminÉcole Normale Supérieure de Paris

Page 2: Circuits & 2-adic Integers · 1 Circuits & 2-adic Integers Digital Synchronous Circuit. 2-adic Integers. Arithmetic Circuits. LHC Application. Jean Vuillemin. École Normale Supérieure

2

Synchronous Binary SignalsEBM Images @1GHz

1 μm

Binary Values Discrete Time

Synchronous Transitions

1 νs

Page 3: Circuits & 2-adic Integers · 1 Circuits & 2-adic Integers Digital Synchronous Circuit. 2-adic Integers. Arithmetic Circuits. LHC Application. Jean Vuillemin. École Normale Supérieure

3

Synchronous Gates1

2t t

t t t t t t

t t t t t t

t t t t

a aa b a b a ba b a b a ba b a b

¬ = −⊕ = + −∪ = + −∩ =

Register

0 10, t to o i+= =

Boolean Gates

0 11, t to o i+= =

Page 4: Circuits & 2-adic Integers · 1 Circuits & 2-adic Integers Digital Synchronous Circuit. 2-adic Integers. Arithmetic Circuits. LHC Application. Jean Vuillemin. École Normale Supérieure

4

Half Adder

2t t t t t t t

t t t t t

s a b a b a br a b a b= ⊕ = + −= ∩ =

( , , ) ( , ){

}

halfAdd a b c s rs a br a b

== ⊕= ∩

: 2t t t tt a b s r∀ + = +

Page 5: Circuits & 2-adic Integers · 1 Circuits & 2-adic Integers Digital Synchronous Circuit. 2-adic Integers. Arithmetic Circuits. LHC Application. Jean Vuillemin. École Normale Supérieure

5

Digital Synchronous Circuit• Syntax

• Compose In, And,Xor, Reg• Feed-forward Boolean Gates & Clocked feed-back• Hierarchical Netlist

• Semantics• All variables have binary values at all times• Zero delay: Not, And,Xor Unit delay: Reg• All transitions happen at clock signal

• Global clock• Isochronous distribution through entire chip• Clock period can be constant or variable• Clock period exceeds all transition delays

Page 6: Circuits & 2-adic Integers · 1 Circuits & 2-adic Integers Digital Synchronous Circuit. 2-adic Integers. Arithmetic Circuits. LHC Application. Jean Vuillemin. École Normale Supérieure

6

Binary Integers

2 2n k kk

k k n

n B∈

= =∑ ∑

1 nkk n B∈ ⇔ =

0 1 2 4 8 16 1¬ = + + + + + = −

( 1)n n¬ = − +

{ }0 1 2 3 3

0 0 0 0 0 {}1 0 0 0 0 {0}0 1 0 0 0 {1}1 1 0 0 0 {0 1}0 0 1 0 0 {2}1 0 1 0 0 {0 2}0 1 1 0 0 {1 2}

012345678

1 1 1 0 0 {0 1 2}0 0 0 1 0 {3}

n n n nk

nB B B B B k nn > ∈ { }0 1 2 3 3

1 1 1 1 1 {}0 1 1 1 1 {0}1 0 1 1 1 {1}0 0 1 1 1 {0 1}1 1 0 1 1 {2}0 1 0 1 1

12

{0 2}1 0 0 1 1 {1 2}0 0 0 1 1 {0 1 2}1 1 1 0 1 {3

345

}

6789

n nk

n n nB B B B B nkn >

−−−−−−−

∈¬¬¬¬¬

¬−¬−

¬¬

Page 7: Circuits & 2-adic Integers · 1 Circuits & 2-adic Integers Digital Synchronous Circuit. 2-adic Integers. Arithmetic Circuits. LHC Application. Jean Vuillemin. École Normale Supérieure

7

2-adic Addition

1 1 1 0 1 01 0 1 1 1 0

abcs

12t t t t ta b c s c ++ + = +

01 …0

11

10

11

11

+

0

Page 8: Circuits & 2-adic Integers · 1 Circuits & 2-adic Integers Digital Synchronous Circuit. 2-adic Integers. Arithmetic Circuits. LHC Application. Jean Vuillemin. École Normale Supérieure

8

Magic Masks

0

0

: 101010102 : 01010101μμ+

2 22

1(1 0 )1 2

k k

k kμ ∞ −= =

+

11 4 160 3

μ = + + + = −

03 1μ = −

1 2 3 4 5

1 0 1 0 1 1/31 1 0 0 1 1/51 1 1 1 0 1/1

01

72

k k k k k kB B B Bk B μ− − − − −

−−−

2 2n n nk k

n n k

Bμ ¬

= =∑ ∑

0

0

0

: 101010102 : 010101013 : 11111111

μμμ

+=

Page 9: Circuits & 2-adic Integers · 1 Circuits & 2-adic Integers Digital Synchronous Circuit. 2-adic Integers. Arithmetic Circuits. LHC Application. Jean Vuillemin. École Normale Supérieure

9

0 10, t to o i+= =

2 2t tt to o i i= =∑ ∑

2-adic Gates

2 2

2 2

t tt t

t tt t

a a b b

s s r r

= =

= =

∑ ∑∑ ∑

: 2t t t tt a b s r∀ + = +

2o i=

2a bs r+ =+

O’

' 1 2o i= +

Page 10: Circuits & 2-adic Integers · 1 Circuits & 2-adic Integers Digital Synchronous Circuit. 2-adic Integers. Arithmetic Circuits. LHC Application. Jean Vuillemin. École Normale Supérieure

10

Serial Increment

1 22

c rx c y r

= ++ = +

0 1

: 1

2t t

t t t t

tc c rx c y r

+

∀ ∈= =+ = +

N2 2

2 2

t tt t

t tt t

t tt t

x x y y

c c r r∈ ∈

∈ ∈

= =

= =

∑ ∑∑ ∑N N

N N

1y x= +

Page 11: Circuits & 2-adic Integers · 1 Circuits & 2-adic Integers Digital Synchronous Circuit. 2-adic Integers. Arithmetic Circuits. LHC Application. Jean Vuillemin. École Normale Supérieure

11

One & Two’sComplement

11

11

x xx x

x xx x

− = +¬− = +¬+ = −¬− = ¬−

Page 12: Circuits & 2-adic Integers · 1 Circuits & 2-adic Integers Digital Synchronous Circuit. 2-adic Integers. Arithmetic Circuits. LHC Application. Jean Vuillemin. École Normale Supérieure

12

Full Adder( , , ) ( , )

{ ( , ) ( , )( , ) ( , )

}

fullAdd a b c s rp g halfAdd a bs d halfAdd c gr g d

===

= ⊕

2a b c s r+ + = +

p a b g a bs c p d c p

r g d

= ⊕ = ∩= ⊕ = ∩

= ⊕

22

a b p gc p s dr g d

+ = ++ = +

= +

Page 13: Circuits & 2-adic Integers · 1 Circuits & 2-adic Integers Digital Synchronous Circuit. 2-adic Integers. Arithmetic Circuits. LHC Application. Jean Vuillemin. École Normale Supérieure

13

Parallel Adder

0 2 2 2 2k k k Nk k k N

k N k N k N

c a b s c< < <

+ + = +∑ ∑ ∑

0 0 0 0 1

1 1 1 1 2

22

a b c s ca b c s c+ + = ++ + = +

Page 14: Circuits & 2-adic Integers · 1 Circuits & 2-adic Integers Digital Synchronous Circuit. 2-adic Integers. Arithmetic Circuits. LHC Application. Jean Vuillemin. École Normale Supérieure

14

Serial Adder

c= 2ra+b+c=s+2r s=a+b

Page 15: Circuits & 2-adic Integers · 1 Circuits & 2-adic Integers Digital Synchronous Circuit. 2-adic Integers. Arithmetic Circuits. LHC Application. Jean Vuillemin. École Normale Supérieure

1515

Beyond Addition

( )

2

2 223

(01)

a x axa

a x∞

= +

= −

= ×

2y b by x

= +=

2

31 1(10)3

b x axb

= +

=

=

Page 16: Circuits & 2-adic Integers · 1 Circuits & 2-adic Integers Digital Synchronous Circuit. 2-adic Integers. Arithmetic Circuits. LHC Application. Jean Vuillemin. École Normale Supérieure

1616

Large Hadron Collider

> 100 TB/s

~ 100 GB/s

Page 17: Circuits & 2-adic Integers · 1 Circuits & 2-adic Integers Digital Synchronous Circuit. 2-adic Integers. Arithmetic Circuits. LHC Application. Jean Vuillemin. École Normale Supérieure

17

Transition Radiation TrackerRegion of interest

Page 18: Circuits & 2-adic Integers · 1 Circuits & 2-adic Integers Digital Synchronous Circuit. 2-adic Integers. Arithmetic Circuits. LHC Application. Jean Vuillemin. École Normale Supérieure

18

Linear Hough Transform

L

h∈∑p L

(L) = p

LH = Lmax max { ( )}h

maxL

Page 19: Circuits & 2-adic Integers · 1 Circuits & 2-adic Integers Digital Synchronous Circuit. 2-adic Integers. Arithmetic Circuits. LHC Application. Jean Vuillemin. École Normale Supérieure

19

Input Receiver

FHT

Bit Reverse

Max Column

Max Rows

Adders &

Line Delay

Network

Page 20: Circuits & 2-adic Integers · 1 Circuits & 2-adic Integers Digital Synchronous Circuit. 2-adic Integers. Arithmetic Circuits. LHC Application. Jean Vuillemin. École Normale Supérieure

20

Trade Time For Space

Z=4 : 2b/cycle

Z=2 : 1b/cycle

Z=√2 : 0.5b/cycle

Energy is #1 design criteria for both hard & soft,hence minimal computation at minimal speed!

kka a Z=∑0 1( 2 ) ka a a Z= +∑

2 1 22 2 2k kk ka a a += +∑ ∑

Page 21: Circuits & 2-adic Integers · 1 Circuits & 2-adic Integers Digital Synchronous Circuit. 2-adic Integers. Arithmetic Circuits. LHC Application. Jean Vuillemin. École Normale Supérieure

21

Questions!