Top Banner
Circuit Simulation via Matrix Exponential Operators CK Cheng UC San Diego 1
28

Circuit Simulation via Matrix Exponential Operators CK Cheng UC San Diego 1.

Dec 18, 2015

Download

Documents

Herbert Paul
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Circuit Simulation via Matrix Exponential Operators CK Cheng UC San Diego 1.

1

Circuit Simulation via Matrix Exponential Operators

CK ChengUC San Diego

Page 2: Circuit Simulation via Matrix Exponential Operators CK Cheng UC San Diego 1.

2

Outline

• General Matrix Exponential• Krylov Space and Arnoldi Orthogonalization

• Matrix Exponential Method– Krylov Subspace Approximation– Invert Krylov Subspace Approximation– Rational Krylov Subspace Approximation

Page 3: Circuit Simulation via Matrix Exponential Operators CK Cheng UC San Diego 1.

3

General Matrix Exponential

• 𝝓0(At)= eAt• 𝝓1(At)= d𝞽=A-1(eAt-I)• 𝝓2(At)= 𝞽d𝞽=A-2(eAt-A-I)• 𝝓k(At)=Exercise: Expand the right hand side expression to remove the inverse operation.

Page 4: Circuit Simulation via Matrix Exponential Operators CK Cheng UC San Diego 1.

4

Krylov Space and Arnoldi Orthonormalization

Input A and v1=x0/|x0|

Output AV=VH+hm+1vm+1emT

For i=1, …, m• Ti+1=Avi

• For j=1, …, I– hji=<Ti+1,vj>

– Ti+1=Ti+1-hjivj

• End For• hi+1,i=|Ti+1|

• vi+1=1/hi+1 Ti+1

End For

In other words,Avi-=hi+1,ivi+1

Page 5: Circuit Simulation via Matrix Exponential Operators CK Cheng UC San Diego 1.

5

Standard Krylov Space

Generate: AV=VH+hm+1vm+1emT

Thus, we have eAhv1≈VeHhe1

Residual r=Cdx/dt-Gx=-hm+1Cvm+1emTeHhe1

Derivation:Cdx/dt-Gx=CVHeHhe1-GVeHhe1

=(CVH-GV)eHhe1 = C(VH-C-1GV)eHhe1

=C(VH-VH-hm+1vm+1emT)eHhe1

=-hm+1Cvm+1emTeHhe1

Page 6: Circuit Simulation via Matrix Exponential Operators CK Cheng UC San Diego 1.

6

Standard Mexp

Error trend

12

hhError e e e mHAmv v V

sweep m and h

Page 7: Circuit Simulation via Matrix Exponential Operators CK Cheng UC San Diego 1.

7

Invert Krylov Space

Generate: A-1V=VH+hm+1vm+1emT

Let H=H-1, we have eAhv1≈VeHhe1

Residual r=Cdx/dt-Gx=hm+1Gvm+1emTHeHhe1

Derivation:Cdx/dt-Gx=CVHeHhe1-GVeHhe1

=(CVH-GV)eHhe1 = G(G-1CVH-V)eHhe1

=G(A-1VH-V)eHhe1

=hm+1Gvm+1emTHeHhe1

Page 8: Circuit Simulation via Matrix Exponential Operators CK Cheng UC San Diego 1.

8

• large step size with less dimensionInvert Matrix Exponential

sweep m and h1

12

hherror e e e

mHA

mv v V

Page 9: Circuit Simulation via Matrix Exponential Operators CK Cheng UC San Diego 1.

9

Rational Krylov SpaceGenerate: (1-rA)-1V=VH+hm+1vm+1em

T

Let H=1/r (I-H-1) we have eAhv1≈VeHhe1

Residual r=Cdx/dt-Gx=-hm+1(C/r-G)vm+1emTH-1eHhe1

Derivation:Cdx/dt-Gx=CVHeHhe1-GVeHhe1

=(CVH-GV)eHhe1 = (1/r CV(I-H-1)-GV)eHhe1

=(1/rCV(H-1)-GVH)H-1eHhe1

=((1/rC-G)VH-1/rCV)H-1eHhe1

=-hm+1(C/r-G)vm+1emTH-1eHhe1

Page 10: Circuit Simulation via Matrix Exponential Operators CK Cheng UC San Diego 1.

10

• large step size with less dimensionRational Matrix Exponential

fix , sweep m and h 1

~

2eeeError

hh mH

mA Vvv

Page 11: Circuit Simulation via Matrix Exponential Operators CK Cheng UC San Diego 1.

11

Different

needs large m

Page 12: Circuit Simulation via Matrix Exponential Operators CK Cheng UC San Diego 1.

12

Different

Page 13: Circuit Simulation via Matrix Exponential Operators CK Cheng UC San Diego 1.

13

Spectral Transformation – = 10f• Small RC mesh, 100 by 100• Different h for Krylov subspace• Different for rational Krylov subspace

Page 14: Circuit Simulation via Matrix Exponential Operators CK Cheng UC San Diego 1.

14

Spectral Transformation– = 1p• Small RC mesh, 100 by 100• Different h for Krylov subspace• Different for rational Krylov subspace

Page 15: Circuit Simulation via Matrix Exponential Operators CK Cheng UC San Diego 1.

15

Spectral Transformation– = 100p• Small RC mesh, 100 by 100• Different h for Krylov subspace• Different for rational Krylov subspace

Page 16: Circuit Simulation via Matrix Exponential Operators CK Cheng UC San Diego 1.

16

Sweep for Large Range

Page 17: Circuit Simulation via Matrix Exponential Operators CK Cheng UC San Diego 1.

17

Sweep for Large Range

Page 18: Circuit Simulation via Matrix Exponential Operators CK Cheng UC San Diego 1.

18

Difference Between Inverted and Rational

Page 19: Circuit Simulation via Matrix Exponential Operators CK Cheng UC San Diego 1.

19

Fixed = 1p, sweep time step h

Page 20: Circuit Simulation via Matrix Exponential Operators CK Cheng UC San Diego 1.

20

Fixed = 1n, sweep time step h

Page 21: Circuit Simulation via Matrix Exponential Operators CK Cheng UC San Diego 1.

21

Fixed = 1u, sweep time step h

Page 22: Circuit Simulation via Matrix Exponential Operators CK Cheng UC San Diego 1.

22

Fixed = 1m, sweep time step h

Page 23: Circuit Simulation via Matrix Exponential Operators CK Cheng UC San Diego 1.

23

Fixed = 1, sweep time step h

Page 24: Circuit Simulation via Matrix Exponential Operators CK Cheng UC San Diego 1.

24

Fixed = 1k, sweep time step h

Page 25: Circuit Simulation via Matrix Exponential Operators CK Cheng UC San Diego 1.

25

Fixed = 1M, sweep time step h

Page 26: Circuit Simulation via Matrix Exponential Operators CK Cheng UC San Diego 1.

26

Krylov Space ResidualGenerate: AV=VH+hm+1vm+1em

T

Thus, we have eAhv1≈VeHhe1

Residual r=Cdx/dt-Gx=-hm+1Cvm+1emTeHhe1

Derivation:1. Set Y=[e1 He1 H2e1 … Hm-1e1]

2. We have YC=HY where C=zm+cm-1zm-1+…+c1z+c0=0

has roots 𝞴1, 𝞴2,… 𝞴m

0 -c0

1 0 -c1

1 0 -c2

… … …1 0 -cm-2

1 -cm-1

Page 27: Circuit Simulation via Matrix Exponential Operators CK Cheng UC San Diego 1.

27

Krylov Space ResidualResidual r=Cdx/dt-Gx=-hm+1Cvm+1em

TeHhe1

3. C=V-1DV (VC=DV), V= D=Diag(𝞴1, 𝞴2,… 𝞴m)

4. H=YCY-1=YV-1DVY-1

5. eH=YV-1eDVY-1

6. emTeHhe1

=emTYV-1eDhVY-1e1

=emTYV-1eDh1, 1=[1,1,…1]T

=emTYV-1[e𝞴1h, e𝞴2h,…,e𝞴mh]T ≈hm-1/(m-1)!

1 𝞴1 . 𝞴1m-11 𝞴2 . 𝞴2m-1. . . .. . . .. . .

1 𝞴m . 𝞴mm-1

Page 28: Circuit Simulation via Matrix Exponential Operators CK Cheng UC San Diego 1.

28

Invert Krylov Space ResidualGenerate: A-1V=VH+hm+1vm+1em

T

Thus, we have eAhv1≈VeHhe1

Residual r=Cdx/dt-Gx=-hm+1Cvm+1emTeHhe1

Derivation:6. Exercise to derive: em

TH-1eHhe1≈