Top Banner
29

CIGRE – Comité Chileno · System Enhancement & Elimination of Bottlenecks ... bottlenecks are well known. Looking into details … Waiting for a new 400 kV Line ? # $ ' Source:

Oct 21, 2020

Download

Documents

dariahiddleston
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
  • s

    Reliabilty of the Electrical Systems

    Elimination of Bottlenecks in Transmission Systems using FACTS and HVDC

    Mario Lemes – Siemens Brazil

    Dietmar Retzmann – Siemens Germany

  • The Blackout – A spread of Cascading Events 

    A brief Summary of the RoutCauses: 

    n  Lack of Investments into the Grids (high CostPressure for the AssetOwners due to Deregulation), leading to Bottlenecks in Transmission 

    n  Need for more Regulatory Works (Rules, Gridcode etc.) for the Operation of Transmission Systems and Power Plants in Case of Cascading Events 

    n  Weak Points in the Energy and Demand Side Management  EMS, DSM

  • The Final Report - Direct Causes and Contributing Factors

    Source: USCanada Blackout Final Report April 2004

  • The Blackout: Conclusions and Recommendations - an Excerpt

    Source: USCanada Blackout Final Report April 2004 

    3T: Trees   Tools   Training 

    System Enhancement & Elimination of Bottlenecks 

    ●  OnLine Monitoring and RealTime Security Assessment ●  Increase of Reserve Capacity

  • What can be done ? Are other large Systems in the World Safe ?

    n  Enhancement of Communication and Monitoring with IT (EMS & DSM) 

    n  Review of Generator and Load Trip Strategy (UnderVoltage and UnderFrequency Trip Levels and Times) 

    n  Use of FACTS for ReactivePower Compensation, PowerFlow Control and Prevention of Voltage Collapse 

    n  Active Damping of Power Oscillations with FACTS & HVDC 

    n  Possibly more HVDC in the interconnected USCanada Areas: HVDC is a Barrier against cascading events (Voltage Collapse and Frequency decline): Quebec was not affected ! 

    n  Increase of Reserve Capacity (HVDC, new Generations) 

    Task Forces are “ looking into”  their Systems  all over the World

  • Quebec Canada was not affected – Why ?

    The Reasons are very clear: 

    n  Québecs major Interconnections to the affected Areas are DCLinks 

    n  These DCLinks are like Barriers against Cascading Events 

    n  They split the Systems at the right Point in the right Time, only if necessary 

    n  Hence, Quebec was “ saved”  

    n  In addition, for the USSystem Restoration, the DCs assisted by “ Power Injection”

  • Spain-France Interconnections: A weak Link

    “ Stable”  Power Flow: 1500  2000 MW. Stability Limit: 0 MW. 

    System unstable in Case of Power Reversal. 

    However, in UCTE, bottlenecks are well known. Looking into details … 

    Waiting for a new 400 kV Line ?

  • Summary of Root Causes for Italian Blackout

    Source: UCTE Interim Report 27.10.2003 

    Source: UCTE Interim Report 27.10.2003

  • Blackout in Italy: Conclusions 

    Summary: Ø There is congestion in the UCTE System Ø Too high phase angle difference between UCTE main grid and Italy Ø Voltage collapse in Italy Ø Loss of generation Ø Blackout in Italy 

    Evaluation of Countermeasures: Ø Avoidance of Congestion Ø System Enhancement 

    by means of: Ø Studies 

    Source: UCTE Interim Report 27.10.2003

  • System Enhancement - How to use HVDC & FACTS

    U U 1 1  U U 2 2 

    U U 1 1  U U 2 2 

    Parallel Compensation 

    X X 

    X X 

    Series Compensation 

    G ~  G ~ 

    , , δ 1  , , δ 2 

    sin ( sin (δ 1  δ 2 ) 

    LoadF low Control 

    P P 

    P P  = =

  • Elimination of Bottlenecks in Transmission – Prevention of Overloads and Outages

    Source: National Transmission Grid Study; U.S. DOE 05/2002 

    Load Displacement (by Impedance Control) 

    Short Circuit Current Limitation for Connection of new Power Plants 

    The FACTS & HVDC “ Application Guide”  

    Load Management by PowerFlow Control

  • Avoidance of Loop-Flows by means of Power-Flow Control

    360 km 

    400 MW 

    Loads 

    Loads 

    3 ~ 

    Power Flow Controller 

    3 ~ 

    Restoration of the initial Power Flow 

    200 MW 

    … Quite Easy 

    A  B

  • UCTE: Load-Flow Improvement with FACTS/HVDC

    DE  CZ 

    Uncontrolled LoadFlow 

    DE 

    Power Flow Controller 

    CZ Control of LoadFlow 

    Benefits: Directing of LoadFlow 

    Basis for Power Purchase Contracts

  • Voltage Collapse – without and with Reactive-Power Compensation

    No Reactive Power Support 

    Voltage remains low 

    Reactive Power Support 

    Voltage recovers

  • Voltage Collapse - How to explain it

    n During the Fault, the Induction Machines Slip increases 

    n This is like a Starting Conduction: high Currents 5 x I nominal 

    n High Reaction Power Consumption decreases the Recovery   Voltage 

    n ReactivePower Compensation is essential 

    The Solution: SVC + MSC. Option: STATCOM. However, the 

    required Reaction Time is  only  100 ms =

  • Voltage Collapse – What are the “Parameters” ?

    Fault Duration: here 150 ms 

    Initial Recovery Voltage ~ Σ S Machines 

    SCC System 

    SCC System + 5 x 

    Very High Reactive Power Consumption

  • A Study Example: SVC Muldersvlei, RSA

    No SVC  Voltage Collapse leads to Protection Trip and System Blackout 

    With SVC  System recovers* 

    The test Case : AC System with large Induction Machine Loads 

    Fault Duration: 150 ms* 

    * In this Simulation (RTDS), both Fault duration & Machine Rating have been selected to “ hit”  the Stability Limit → “ Slow Recovery”

  • Classification of Stability Problems in Power Systems 

    Overview about basic physical Problems, which are related to a high loading of Transmission Systems by Transport of electrical Energy. 

    The main types of Instability Concerns are: Ø Cascading Line Tripping by Overload Ø Loss of Synchronism due to Angle Instability Ø Oscillatory Instability causing self exciting InterArea Oscillations Ø Exceeding of the allowed Frequency Range (Over and Under Frequency) 

    Ø Voltage Collapse 

    Source: UCTE Interim Report 27.10.2003

  • Alternatives of Power System Interconnections

    System  1  System  2 

    a) AC Interconnection: many Lines “ at the Beginning”  

    c) Hybrid AC/DC Interconnection: The flexible synchronous Solution 

    b) DC Interconnection: 1 Link sufficient for stable Interconnection

  • HVDCLDT 9 GW: TAGG 

    Tomorrow: 

    Power Exchange today: Western  Eastern  700 MW Western  ERCOT  200 MW Eastern  ERCOT  800 MW

    US Grid: DC Energy Bridges - more in the Future ?

    Eastern Interconnection 

    Western Interconnection 

    Power River Basin, WY  Chicago, IL 

    DCLinks Today: 

    TAGG  TransAmerica Generation Grid: “ Coal & Wind by Wire”  

    ERCOT Los Angeles, CA 

    Planning the Future 

    New DCs from Canada ?

  • System A

    AC double-link 1

    1200 MW

    Ac double-link 2 7

    System B

    200 GW Grid A 200 GW Grid B

    System Stability: Comparison of AC & Hybrid Interconnection (Study for 400 kV Grids)

    System A System B

    AC double-link 2

    DC-link 1

    7 1200 MW

  • AC & Hybrid Interconnection - Test Results

    Only AC  System instable after Fault  Hybrid AC/DC  System remains stable 

    AC Link 1 

    AC Link 2  AC Link 2 

    DC Link 1

  • m With DC Solution, Interconnection Rating is determined only by the real Demand of Transmission Capacity

    m With AC solution, for System Stability Reasons, AC Rating must be higher than the real Demand on Power Exchange

    m Increase of Power Transfer: With DC, staging is easily possible

    m With DC, the Power Exchange between the two Systems can be determined exactly by the System Operator

    m DC features Voltage Control and Power Oscillation Damping

    m DC is a Barrier against Stability Problems and Voltage Collapse

    m DC is a Barrier against cascading Blackouts

    m Predetermined mutual Support between the Systems in Emergency Situations

    Benefits of DC Solution for System Interconnection

  • How large can a synchronous System be ? 

    Effor ts, Benefits 

    Interconnected Operation 

    Benefits 

    Efforts 

    Advantages of 

    Size of inter connected Gr id 

    Optimum 

    Effor ts, Benefits 

    Interconnected Operation 

    Benefits 

    Efforts 

    Advantages of 

    Size of inter connected Gr id 

    Optimum 

    Interconnected Systems 

    o Load Flow Problems (needs Management of Congestion) 

    o Frequency Control 

    o Voltage Stability 

    o Oscil lation Stability 

    o InterArea Oscillations 

    o Blackout Risk due to cascading Effects 

    o Physical Interactions between Power Systems 

    When the Synchronous System is very large – Advantages diminish 

    Long Distance Transmission Systems 

    o  Voltage Stability 

    o  Reactive Power Problems 

    o  SteadyState Stability 

    o  Transient Stability 

    o  Subsynchronous Oscillations 

    Limitations of large AC Systems

  • FACTS & HVDC - The Result

    Influence: *

    ¡ low or no l l small l l l l medium l l l l l l strong

    * Based on Studies & practical Experience

    HVDC (B2B, LDT)

    UPFC

    (Unified Power Flow Controller)

    SVC (Static Var Compensator)

    STATCOM (Static Synchronous Compensator)

    Load-Flow Control

    Voltage Control: Shunt Compensation

    l l l l l l

    l l l l l l

    FSC (Fixed Series

    Compensation)

    TPSC (Thyristor Protected Series Compensation)

    TCSC (Thyristor Controlled Series Compensation)

    Variation of the Line Impedance: Series Compensation

    Voltage Quality

    Stability Load Flow

    Scheme Devices Principle

    l l

    l l

    l l

    l l l l l l

    l l l l l l

    l l l l

    l l l l l l

    l l l l l l

    l l l l

    l l l l l l

    l l l l

    l l

    l l l l l l

    l l l l l l

    ¡

    l l

    l l l l

    ¡

    Impact on System Performance

    l l l l l l

  • System Interconnections: The “Extended“ HVDC & FACTS Application Guide

    System A 

    System B 

    System C 

    System E 

    System F 

    HVDC LDT 

    B2B  GPFC 

    FACTS 

    Voltage Power Flow 

    Control of  Limitation of 

    Faults  SCC 

    Power Swing Damping 

    Barrier x x

    x TCSC

    x

    SVC* SVC* SCCL

    x

    x

    x

    x Barrier 

    Spread of Voltage Collapse

    x

    x

    x Risk

    Risk of Spread of Voltage Collapse Barrier Barrier Risk

    System D

    *or STATCOM

  • Lessons learned: HVDC and FACTS are essential for Transmission

  • Need for Advanced Transmission Solutions

    This is This is unavoidable unavoidable ...   but ...   but HVDC & FACTS HVDC & FACTS can support can support Recovery Recovery 

    Reduction Reduction of Outage of Outage Times & Times & more more  Stability Stability 

    Blackout Blackout Increasing Increasing Oscillations Oscillations 

    If there is no If there is no HVDC HVDC, , no no FACTS FACTS ... ...

  • Intelligent Solutions for Power Transmission

    Thank You for your Attention!

    with HVDC & with HVDC &

    FACTS from FACTS from

    Siemens Siemens