Top Banner
EXTENDED LEARNING INSTITUTE NORTHERN VIRGINIA COMMUNITY COLLEGE LABORATORY GUIDE ELI HOTLINE: (703) 323-3347 V/TDD: (703) 323-3717 Version 1/02 CHM 111 CHM 111 College Chemistry I
66
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: CHM111LabGuide

EXTENDED LEARNING INSTITUTENORTHERN VIRGINIA COMMUNITY COLLEGE

LABORATORY GUIDE

ELI HOTLINE: (703) 323-3347V/TDD: (703) 323-3717

Version 1/02

CHM 111

CHM 111College Chemistry I

Page 2: CHM111LabGuide

Copyright © 2002 by Northern Virginia Community College. All rights reserved.

Page 3: CHM111LabGuide

CHM 111 Laboratory Guide

Table of Contents

Overview of CHM 111 Laboratory Component............................................................1On-Campus Laboratory Experiments................................................................1Off-Campus Laboratory Exercises....................................................................2

Policies and Procedures for On-Campus Laboratories.............................................3

Prelaboratory for Dry Lab 3 -- Chemical Models: Lewis Structures..........................5

Instructions for Off-Campus Laboratory Exercises.................................................14Inorganic Nomenclature...................................................................................15Scientific Literature...........................................................................................32

Exercise 1: Library Information Retrieval............................................33Exercise 2: Research Report.................................................................34

Smithsonian Lab Exercises..............................................................................35Exercise 1: Hands-on Science Center..................................................36Exercise 2: “Science in American Life” Exhibit..................................37

Chromatography of Food Dyes........................................................................38

Page 4: CHM111LabGuide

Overview of CHM 111 Laboratory Component

The laboratory component of the ELI course CHM 111, College Chemistry I, consists of ten laboratory exercises: four on-campus laboratory experiments, one Lab Safety, Orientation, and Techniques, one Nomenclature Lab and Test, three CyberChem CD-ROM CyberLabs, and your choice of one out of five off-campus experiments.

On-Campus Laboratory Experiments (all are mandatory)

Scheduling

Four experiments are scheduled in the chemistry lab on Annandale Campus on Saturdays from 9:00 am to 3:30 pm during the semester. These are to be done in groups of four students. These experiments have been selected from the Laboratory Manual for Principles of General Chemistry, 6th Edition. These are:

1. Experiment 2: Identification of a Compound: Physical Properties -- read the textbook assignments for Units 1 and 2

2. Experiment 9: A Volumetric Analysis -- read the textbook assignments for Units 3 & 4

3. Experiment 12: Inorganic Compounds and Metathesis Reactions -- read the textbook assignments for Units 3 and 4

4. Dry Lab 3: Atomic and Molecular Structure -- read the textbook assignments for Units 7, 8, and 9; also complete the Prelaboratory assignment (Chemical Models: Lewis Structures) on pages 5 - 12 of this Lab Guide.

Complete the Prelaboratory Assignment questions in the Laboratory Manual for each scheduled experiment individually, not in groups. Submit it to the instructor in Lab. Perform each experiment and submit a Lab Report as per the described format. Allow three hours to complete one experiment. You must plan to do two experiments on each Saturday, 9-12 and 12:30-3:30

Preparation for first on-campus laboratory experiment

Before reporting to the Annandale Campus chemistry lab for the first time, you should:

a. complete Assignment 0 (see your online Course Guide) including your Course Completion Plan on the online forum.

b. Do the Lab Safety, Orientation, and Techniques off-campus lab (see instructions in the Off-Campus Laboratory Exercises section on the next page).

c. read the Procedures and Policies for On-Campus Laboratories section of this Guide.

1

Page 5: CHM111LabGuide

d. view the Lab Safety Video in one of the campus libraries and take the Lab Safety quiz (available at any NVCC campus Testing Center). Note: you must pass this safety quiz and present a form certifying this to the lab instructor in order to be admitted to the lab.

Off-campus Laboratory Exercises

Mandatory Exercises:

5. Lab Safety, Orientation, and Techniques -- Read Laboratory Safety and Guidelines, Laboratory Data, and Laboratory Techniques sections; Read Dry Lab 1, complete Sections A through D and submit pages 35-36 and pages 41-42 stapled together

6. Inorganic Nomenclature Lab and Nomenclature Test 7. CyberLab 3: Combustion Analysis -- read textbook assignments for Unit 38. CyberLab 4: Precipitation Reactions -- read textbook assignments for Units 3 & 49. CyberLab 6: Hess’ Law -- read textbook assignments for Unit 6

Complete instructions for Lab 6 is found in the Instructions for Off-Campus Laboratory Exercises section of this Laboratory Guide.

Complete instructions for the three CyberLabs (CyberLabs 3, 4, and 6) are found on the Cyber-Chem CD-ROM. For the CyberLabs, after performing each experiment submit a Lab Report using the format described in the Procedures and Policies for On-Campus Laboratories section of this Laboratory Guide.

Optional Exercises: Choose one of the following five experiments:

10a. Scientific Literature: Library Information Retrieval10b. Scientific Literature: Research Report10c. Smithsonian Institution: Visit to “Science in American Life” exhibit 10d. Smithsonian Institution: Visit to “Hands-on Science Center”10e. Chromatography of M&M Candies

Complete instructions for these optional labs are found in the Instructions for Off-Campus Laboratory Exercises section of this Laboratory Guide.

2

Page 6: CHM111LabGuide

Procedures and Policies for On-Campus Laboratories

During the lab

- Identify one member of your laboratory group to be the designated leader for the experiment. This person will take the official set of data and observations during the lab and coordinate the preparation of the lab report.

- Each member of the group should record notes, observations and data on the Data Sheet provided in the laboratory module. These data and observations are to be written in ink.

- Follow all general laboratory safety rules and specific safety precautions and disposal procedures for the experiment.

- Have the instructor initial the official copies of all data and observations that will be turned as part of the lab report.

Following the lab

Complete and submit a lab report within 2 weeks after performing the experiment. One lab report will be submitted by each group. The content of the report should include the following:

Cover page: Includes lab section, the names of the group members who performed the experiment and contributed to the writing of the report; number and name of the experiment, date performed, and date due.

Body of report -- This part of the report will contain:

An introduction stating the purpose of the lab exercise and a brief description of procedures followed.

The "official" Data Sheet from the lab module exactly as completed during the experiment.

A page or pages showing all calculations hand written in pencil. Calculations of experimental error are to be included if appropriate for the experiment. Units should be

NOTE: It is important that you follow the rule that all observations and data be recorded in ink. These constitute an official and unchangeable record of the experiment. If there is disagreement within the group concerning a measurement or observation, it must be repeated. If the second determination differs from the original one, the original is crossed out with a single line also in ink and the new value entered. A notation is added explaining why repetition was necessary. It is essential that all observers agree on observation before it is recorded, and that each member of a group assume responsibility for assuring that everyone records the same data. If it is impossible to agree on an observation or measurement, even after repeating it, the details of the argument are to be included as part of the observation so they become part of the record.

Page 7: CHM111LabGuide

included for all calculations and the rules for significant figures followed. A discussion of experimental results including:

- an analysis of results comparing actual results with expected results, i.e. experimental accuracy;

- a discussion of experimental error (random and systematic) and its possible sources as well as the precision of results.

A concluding statement summarizing how the experimental results relate to the objective of the experiment.

A statement from each individual group member describing his/her contribution to the report.

If the lab experiment includes Post Laboratory Questions, these are to be completed by the group working together and one copy attached to the lab report.

Page 8: CHM111LabGuide

Prelaboratory Assignment for Dry Lab 3Chemical Models: Lewis Structures

The Problem to be Investigated:

Write Lewis structures for atoms, molecules, and ions. Predict the empirical formulas of compounds and write their Lewis structures. Write chemical equations using Lewis structures for the reactants and products.

Background Information

To understand better the nature of matter, chemists become involved in model building. The structure of a substance can often be pictured in the mind by constructing a physical model to represent it. By studying the model, predictions can often be made as to the possible physical and chemical behavior of the substance, and insight is often gained as to its shape and size.

The atoms of a substance are held together by bonds. The nature of the bonding can be considered also by building a model of the substance. One type of model that is often used is the Lewis structure. This model shows the sequence of the atoms in the molecule and the distribution of the outer electrons of the atoms.

In a Lewis structure, the chemical symbol of an element represents the nucleus and all the inner electrons of an atom of that element. This portion of the structure is sometimes called the atomic kernel. The outer electrons may be represented by dots added to the kernel.

The number of outer electrons of an element may be determined from its position in the periodic table. The Roman numeral heading each group or column on the table indicates the number of outer electrons of each element in that group.

When writing the Lewis structure for lithium, for example, the presence of Li in Group I of the periodic table indicates Li has one outer electron. The Lewis structure for lithium is:

The Lewis structure for the fluorine atom, F, may be written by recognizing that fluorine is in Group VII of the periodic table. Thus, fluorine has seven outer electrons. The Lewis structure for the fluorine atom is:

Page 9: CHM111LabGuide

As many of the electrons are written as pairs as is possible. There are three pairs of electrons and one lone electron for the fluorine atom.

To write the Lewis structure for the fluorine ion, F-note that the negative sign on the fluorine indicates the ion has one more electron than the fluorine atom. By adding an electron to the fluorine atom, the Lewis structure of the fluoride ion becomes:

This structure has eight electrons, which are written as four pairs around the fluoride ion. The ion has a negative one charge.

The Lewis structure for the lithium ion is:

In this case a lithium atom loses an electron and becomes the lithium ion. No outer electrons are shown and the lithium has a positive one charge.

When writing the Lewis structure for a molecule or a polyatomic ion, the bonding between the atoms is shown. Two electrons may form a single bond between two atoms.

In the case of the hydrogen molecule, H2, each hydrogen atom has one outer electron. With two outer electrons available from two hydrogen atoms, an electron-pair bond can be formed between the two hydrogen atoms. The Lewis structure for H2 is:

A further shorthand allows the electron pair to be represented by a line or a dash between the two bonding atoms.

For elements in the second and third periods of the periodic table, there is a tendency for the atoms of the elements to each accommodate eight outer electrons. The resulting outer electron configuration is like that of a rare gas. Because the eight outer electrons form an octet, the resulting structure is said to obey the octet rule.

In the case of hydrogen and helium, a filled outer level would contain two electrons. When a hydrogen atom has two electrons, the structure is said to comply with the duet rule.

How does one begin to write the Lewis structure for the fluorine molecule, F2? There are two atomic kernels and 14 outer electrons. First, the two atomic kernels are written. Because a two-atom molecule is of necessity linear, the two atomic kernels can be placed as shown in Figure 1(a). Second, a pair of electrons is placed between the two fluorines to form a bond. Finally,

Page 10: CHM111LabGuide

the remaining 12 electrons are distributed, assigning three electron pairs to each fluorine. In Figure 1(c), each fluorine has an octet of electrons.

Chemical equations can be written for some reactions using Lewis structures for both the reactants and the products. The chemical equation for the reaction of lithium atoms and fluorine molecules may be written as shown in Equation (1).

The lithium atom has lost an electron to a fluorine atom and become a lithium ion. The fluorine gains an electron from the lithium atom and becomes a fluoride ion. The product is lithium fluoride, an ionic compound. Neither the lithium ion nor the fluoride ion share any outer electrons. The fluoride ion meets the octet rule, while the lithium ion follows the duet rule.

Lewis structures can also be used to predict the empirical formula of a substance formed from two elements. If silicon and hydrogen reacted to form a compound, what might the Lewis structure and the empirical formula of the compound be? Silicon is found in Group IV of the periodic table, which suggests that silicon has four outer electrons. Because hydrogen is in Group 1, it has one outer electron. Consideration of the Lewis structures for silicon and

a) the atomic kernels b) the electron-pair bond c) the distribution of remaining electrons

Figure 1. The Lewis structure of the fluorine molecule.

for hydrogen suggests that silicon could form four bonds, one with each of four hydrogen atoms. The resulting structure would have an octet of electrons on the silicon and an empirical formula of SiH4.

In this experiment, Lewis structures will be used as models for atoms, molecules, and ions. By considering Lewis models of substances, predictions will be made as to the possible products that might form from a chemical reaction. Chemical equations will be written in which Lewis structures will be used as models for reactants and products. By considering the Lewis structures of certain elements in the periodic table, the empirical formula of the product and the Lewis structure of the product formed will be predicted.

Page 11: CHM111LabGuide

PROCEDURE

In each of the following questions, supply the requested information. A periodic table would be useful in doing this exercise.

A. Writing Lewis Structures

1. Fill in the remaining spaces with the Lewis structures of each of the second period elements in the following table.

2. Write a Lewis structure for each of the following:

Ca2+____ Ne____ Cl -____Na+____ O2-____

3. Example: Lewis structure for hydrogen fluoride, HF.

(a) The total number of outer electrons available is __________.

(b) Write the atomic kernels in the box below.

(c) Write the electron pair to represent the bond between the two kernels.

(d) Distribute the remaining outer electrons between the two atomic kernels.

Lewis Structure of HF

(e) Why is the Lewis structure of HF different from that of LiF?

4. Example: Lewis structure for the water molecule, H2O.

(a) The total number of outer electrons available is _______.

Page 12: CHM111LabGuide

(b) Write the atomic kernels in the box below. Arrange the kernels so that bonds can be written between each hydrogen and the oxygen kernel.

(c) Place an electron-pair bond between each hydrogen and the oxygen kernel.

(d) Distribute the remaining outer electrons so that the octet rule is followed by oxygen and the duet rule by hydrogen.

Lewis Structure of H2O

5. Example: Lewis structure for the methane molecule, CH4.

(a) The total number of outer electrons available is _________.

(b) Select the atomic kernel of the element which would seem likely to be the central atom in the molecule. Position the remaining atomic kernels around it in the box below.

(c) Place an electron pair between each of the two bonding atoms.

(d) Distribute the remaining outer electrons so that the octet rule is followed by carbon and the duet rule by hydrogen.

Lewis Structure of CH4

6. Example: Lewis structure for oxygen difluoride, OF2.

(a) The total number of outer electrons available is ________.

(b) Arrange the atomic kernels in the box below so that they are positioned according to the bonds to be formed. Generally, the element appearing nearer the middle of the periodic table is the central atom.

(c) Place an electron-pair bond between each fluorine and oxygen kernel.

(d) Distribute the remaining outer electrons so that oxygen and both fluorines follow the octet rule.

Page 13: CHM111LabGuide

Lewis Structure of OF2

7. Example: Lewis structure for ethylene, C2H4.

(a) The total number of outer electrons available is _______.

(b) Hydrocarbons are substances in which carbon atoms are bonded together and which contain hydrogen atoms attached to the carbon atoms. Arrange the atomic kernels in the box below.

(c) Place one electron-pair bond between the atomic kernels.

(d) Assign the remaining outer electrons to the carbon atomic kernels so that they each have an octet of electrons.

(e) If there are not enough outer electrons remaining for the carbon atoms, consider the possibility of having a multiple bond between two bonding atoms. If there should be twoelectron pair bonds between the two carbons, does each carbon comply with the rule of the octet? Place the remaining pair of electrons in the structure.

Lewis Structure of C2H4

8. Example: Lewis structure for chloroform, CHCl3.

(a) The total number of outer electrons available is _______.

(b) Use carbon as the central atomic kernel and place the other kernels accordingly, joining the kernels with an electron pair to form the necessary bonds. Distribute the remaining electrons so that carbon and chlorine follow the octet rule.

Lewis Structure of CHCl3

9. Example: Lewis structure for carbon (IV) oxide, or carbon dioxide, CO2.

(a) The total number of outer electrons available is ________.(b) Arrange the atomic kernels in appropriate order. Place electron pairs so that the atoms

are bonded to each other. Distribute the remaining electrons so that the carbon and the oxygens each have an octet of electrons.

(c) If there seem to be too few electrons for the structure, consider the possibility of placing

Page 14: CHM111LabGuide

a double bond in the structure. Are two double bonds required?

Lewis Structure of CO 2

10. Example: Lewis structure for the sulfate ion, SO42-, in which the central atom is sulfur.

(a) The total number of outer electrons available is ________.

Lewis Structure of SO 4 2-

11. Example: Lewis structure for acetylene, C2H2 , in which the two carbons are bonded together.

(a) The total number of outer electrons available is ________.

Lewis Structure of C2H2

B. Prediction of Compounds and of Products of Reactions

1.(a) The hydride of sulfur has an empirical formula of H2S and the central atom is sulfur. The empirical formula for the hydride of selenium would be expected to be ____ and its Lewis

structure would be:

Page 15: CHM111LabGuide

(b) The hydride of silicon has the empirical formula of SiH4 and silicon is the central atom. The empirical formula of the hydride of germanium would be expected to be ______ and its Lewis structure would be:

LEWIS FORMULAS

Write Lewis formulas for the following:

Elemental molecules

Br2 N2

O3 I2

Covalent compounds

H2S PH3

C2H6

H2SO4

Ionic Compounds

CsFKNO3

Page 16: CHM111LabGuide

(NH4)2SO4

Page 17: CHM111LabGuide

Instructions for Off-Campus Laboratory Exercises for CHM 111-ELI

This section contains instructions for those CHM 111 ELI off-campus laboratory exercises which are not CyberChem Labs as follows:

Mandatory Exercises:

Lab Safety, Orientation, and Techniques -- Read Laboratory Safety and Guidelines, Laboratory Data, and Laboratory Techniques sections; Read Dry Lab 1, complete Sections A through D and submit pages 35-36 and pages 41-42 stapled together

Inorganic Nomenclature -- see page 15

Optional Exercises (choose one):

Scientific Literature Exercise 1: Library Information Retrieval

Scientific Literature Exercise 2: Research Report

Smithsonian Lab Exercise 1: Hands-on Science Center

Smithsonian Lab Exercise 2: “Science in American Life” Exhibit

Chromatography of Food Dyes

Page 18: CHM111LabGuide

Inorganic Nomenclature

An Exercise in

Naming Chemical Compounds

and

Writing Chemical Formulas

This exercise should be completed as early as possible. Related material is covered in Chapter 1 and in the Appendix of the text. View the lab video "Nomenclature" available at each of the five campus libraries. Also read Dry Lab 2B, Inorganic Nomenclature II, and Dry Lab 2C, Inorganic Nomenclature III.

Note: you must study the Stock system of nomenclature: see page 128. You are not responsible for knowing the archaic or old system.

Your grade for this exercise will consist of the score earned on the Nomenclature Test you take in the Testing Lab upon completion of the lab. Exercises contained in the lab need not be turned in. However, you should complete them all. Be sure to check your responses against the answers given at the end of the lab write-up.

In the Nomenclature Test you will be asked to identify compounds as ionic or covalent from their names or formulas, to classify compounds as binary or ternary, to write formulas of compounds given their names and to write names of compounds given their formulas. This last task is the most difficult one of those listed. It would be well worth it to put extra effort into developing this skill.

Any of the compounds or ions discussed in the lab handout may be included on the test.

Page 19: CHM111LabGuide

INORGANIC NOMENCLATURE

1. Introduction

Chemistry is divided into two main branches: organic chemistry and inorganic chemistry. Organic chemistry is the study of carbon compounds, although some of these are included in the study of inorganic chemistry. Among these compounds are carbon dioxide and its derivatives, the carbonates, cyanides, carbon monoxide, and carbon disulfide.

Organic chemists deal with compounds which are relatively large. The properties of these compounds depend on the spatial arrangement of the atoms within the molecules. Therefore, the system of nomenclature used for organic chemistry must be detailed and complex.

Inorganic compounds, on the other hand, are commonly named by simply specifying the proportions of the elements that make up the compound. The two branches of chemistry have distinctly different but compatible systems of nomenclature, but the objective of both systems is to name each compound in such a way that the chemical identity of the specific compound is known with certainty.

2. The IUPAC System of Inorganic Nomenclature

The evolution of the science of chemistry is traced back to the early fifteen hundreds to the work of the alchemists and the iatrochemists. Substances often were given names based on their appearance or source. For example, "blue vitriol" and "bluestone" were two of the names given to the substance now called copper(II) sulfate. Ammonium hydroxide, the name for household ammonia, was called "spirits of hartshorn" because it was prepared primarily from the dry distillation of antlers from the hart, a common European deer.

The alchemists concentrated their efforts on the search for the "philosopher's stone" which they believed would change common, corrodible base metals into the noble metal, gold. The iatrochemists studied both plants and minerals, and were searching for the "elixir of life" which would, they thought, prolong life indefinitely. These early "chemists" worked quite independently of each other, and were often very secretive about their results. As a result, the compounds they worked with were described by individually developed symbols, or codes. There were almost as many symbols for the elements known at that time as there were people working with them.

As chemistry gradually became more sophisticated and its practitioners began to cooperate and share results of experiments, the need for a commonly agreed upon set of symbols for the elements and for a systematic method for naming compounds became urgent. Even so, it was not until the late eighteenth century that the first widely used system of chemical nomenclature was developed. This system was developed in France by four prominent scientists, Antoine Lavoisier, Guyton de Morveau, Comte de Antoine Fourcroy and Comte Claude Berthollet, and published in 1787. Their proposed system emphasized the necessity for a commonly agreed upon system of naming compounds.

Page 20: CHM111LabGuide

Twenty six years later, in 1813, J. J. Berzelius of Sweden, proposed the use of the first letter of the Latin name of the element as its symbol. To avoid duplication, he used the second letter from the name where necessary. Thus carbon was given the symbol C; chlorine, Cl; chromium, Cr.

Berzelius also introduced the idea of writing formulas to indicate the ratio of the elements in the compound. At first, he wrote the formula for the compound we now call carbon dioxide as COO; later he changed this to CO2. This system for formulas was not widely accepted until a journal editor, Justus von Liebig altered the superscripts to subscripts to avoid the comparison with mathematical symbolism. Finally, carbon dioxide became CO2, and this system was gradually adopted as standard.

In 1894, the International Congress of Chemists met in Brussels. This Congress was composed of leading chemists from the major western countries, and an agreement was reached on a standard system of nomenclature based on that of Lavoisier, et al, and on the system of formulas patterned after that of Berzelius and Liebig.

In June of 1920, the International Union of Pure and Applied Chemistry was formed with the aim of this organization being the assurance of international agreement in nomenclature, chemical symbols, formulas, and other aspects of chemistry where communication among scientists requires complete uniformity. The IUPAC holds meetings for this purpose every two years, rotating the site among member nations. The system of nomenclature and formula writing used here is based on the IUPAC rules and recommendations as presently stated.

A. Nomenclature of Cations

Cations are formed when an atom loses one or more electrons. These ions will have a positive electrical charge, and are normally formed from the atoms of metals.

A cation, if present, is always listed first in both names and formulas of compounds. These ions have the same name as the elements from which they are derived, without any alteration. When writing the symbol of a cation, the number of electrons lost in its formation is indicated by a superscript Arabic numeral followed by a positive sign. (For those ions formed by losing one electron, thus with a charge of positive one, the numeral 1 is commonly omitted.)

Examples: Na+ "en ay positive"Ca2+ "cee ay two positive"

Page 21: CHM111LabGuide

Some elements, particularly those in the "d" block of the periodic table (transition elements) form more than one cation. This is because the atom may, under different circumstances, lose a different number of electrons. To name the cations of such an element, a system known as Stock notation is preferred. A Roman numeral, representing the number of electrons lost and thus the positive charge on the ion, is placed in parentheses immediately following the name of the element.

Examples: Fe2+ iron(II) "iron two"Fe3+ iron(III) "iron three"Cu1+ copper(I)Cu2+ copper(II)Hg2

2+ mercury(I)Hg2+ mercury(II)

Note: The mercury(I) cation consists of two mercury atoms covalently bonded together. Each of these atoms has lost one electron so that the charge on the pair of 1+ ions is 2+.

In the IUPAC system, it is considered inappropriate to use a Roman numeral in naming the ion of a metal that forms only one cation. It is incorrect to omit the Roman numeral in the name of the ion of a metal that has more than one possible cation. Therefore, to correctly apply the rules of this system, it is necessary to know which metals fall into each category. The following relatively common metallic elements should not have a Roman numeral included as part of their names in as much as they have only one possible charge on their cations:

The alkali metals and silver (all form 1+ cations)(Memorize) The alkaline earths, zinc and cadmium (all form 2+ cations)

Aluminum and scandium (form 3+ cations)For all other metals, the use of Roman numerals is required.

The NH4+ cation, the ammonium ion, is a common inorganic cation. It is derived from

the compound NH3, ammonia, by the addition of a hydrogen ion to the NH3 molecule. Because the chemistry of the NH4

+ ion somewhat resembles that of metal ions having a 1+ charge, it is given a name with the "ium" ending common to the Group 1 metals.

B. Nomenclature of Simple Anions

The nomenclature of all anions depends on alterations of the ending of the name of the main element to indicate the exact nature of the anion. The simple anions are, for the most part, single atoms of the nonmetals which have gained one or more electrons. The ending which indicates the single atom nature of an anion is -ide. The elements which form this type of anion, the symbol and charge for the anion formed, and its name are given in the following table.

Table 1 - The Single Atom Anions

Page 22: CHM111LabGuide

Element Symbol for Anion Name of Anion

fluorine chlorine bromine iodine oxygen sulfur selenium tellurium nitrogen phosphorus hydrogen

F-

Cl-

Br-

I-

O2-

S2-

Se2-

Te2-

N3-

P3-

H-

fluoride chloride bromide iodide oxide sulfide selenide telluride nitride phosphide hydride

Other anions with names ending in ide:

CN- cyanide (a carbon and nitrogen atom covalently bonded, one electron added to the pair of atoms.)

OH- hydroxide (a hydrogen and an oxygen atom covalently bonded, one electron added to the pair of atoms.)

O22- peroxide (two oxygen atoms covalently bonded, two electrons added to the

bonded pair.)C2

2- carbide (two carbon atoms covalently bonded, two electrons added to the bondedpair.)

The names and charges for these ions must be memorized. However, the charges on the single atom anions can be deduced from position in the periodic table.

The name of a binary compound formed from one or more cations and one or more single atom anions or cyanide, hydroxide, peroxide or carbide anions is simply the name of the cation followed by the name of the anion, separated by one space.

Table 2 - Some Compounds Formed from Metals with Only One Ion Charge

Name Formula Name Formula

sodium chloride barium chloride

NaCl BaCl2

strontium hydroxidealuminum cyanide

Sr(OH)2

Al(CN)3

Since the above compounds contain metallic ions of only one possible charge, a Roman numeral indicating the charge is not included as part of its name.However, if the cation is formed from a metal which can form cations with different charges, and for which the ion charge must be included as part of its name, the charge on the cation in the particular compound being named must be determined from the formula and the charge on the

Page 23: CHM111LabGuide

anion. Examples are discussed below.

Table 3 - Some Compounds Formed from Metals with More Than One Possible Ion Charge

Name Formula

iron(II) iodidea

iron(III) iodideb

chromium(III) oxidec

FeI2

FeI3

Cr2O3

a. The formula, FeI2, must represent a neutral compound, with no net charge. The iodide ion has a 1- charge. Two iodide ions represent a total of 2- charges. To be electrically neutral the iron ion must have a charge of 2+. This is the iron(II) cation.

b. Three iodide ions represent a total negative charge of 3-. For the formula, FeI3, to represent a neutral compound the iron cation must have a charge of 3+. This is the iron(III) ion.

c. The oxide ions represent a total negative charge of 6-. Therefore, two chromium ions must have a total charge of 6+. This means each chromium ion has a charge of 3+ in the compound, and is the chromium(III) ion.

Exercise 1: Write the preferred IUPAC name for the compounds below.a. CaO f. Na2O2 k. Al2O3 p. AgIb. KCl g. CrBr3 l. CrO3 q. NiS c. Hg2O h. Au(CN)3 m. CuO r. Hg3N2

d. ZnF2 i. Sr3P2 n. PbO2 s. Li3Ne. Ba(OH)2 j. CoS o. Cu(CN)2 t. CaC2

C. Binary Compounds of Two Non-metals

For naming compounds containing two elements, both of which are nonmetals, the IUPAC system recommends the use of a series of prefixes to specify exactly how many atoms of each element there are in a molecule of the compound. These prefixes and their numerical meanings are:

1 - mono 5 - penta 8 - octa2 - di 6 - hexa 9 - nona3 - tri 7 - hepta 10 – deca4 - tetra

Table 4 - Nomenclature of Binary Compounds Using Numerical Prefixes

Page 24: CHM111LabGuide

Name Formula

Name Formula

carbon monoxidesulfur trioxidetetraphosphorus hexaoxide

COSO3

P4O6

carbon dioxide dinitrogen pentaoxide dibromine heptachloride

CO2

N2O5

Br2Cl7

Note: When there is only one atom of the first element in the compound, the prefix "mono" is

not used.

The IUPAC rules state that in the preferred system of nomenclature:

a. Binary compounds of two nonmetals should be named using the system of numerical prefixes.b. Numerical prefixes should not appear in the name of binary compounds of metals with

nonmetals.c. The Stock system of using Roman numerals to indicate ion charges is not appropriate for naming binary compounds of two nonmetals.

Exercise 2: Name the following binary compounds using the system of numerical prefixes.

a. SiO2

b. Cl2O c. S2Cl2

d. SF6

e. CCl4

f. NF3

g. CS2

h. ClF3

i. N2O3

j. XeF6

Exercise 3: Name the following compounds using the preferred IUPAC nomenclature.

a. XeF4 f. Cs3N k. N2O4

b. CuCl g. CrCl3 l. Ag2Oc. Mg(CN)2 h. CaO2 m. MnO2

d. Au(OH)3 i. CuS n. PbO2

e. PCl3 j. SO2 o. Hg2O

Page 25: CHM111LabGuide

D. Writing Formulas from Names for Binary Compounds

When the name of a compound ends in ide, it can be assumed to be a binary compound formed from:

a. one or more metal (or ammonium) cations and one or more single atom anions (or

one of the exceptions noted before); or,b. two nonmetals.

To correctly write a formula for a compound formed from a metal and non-metal given the name of the compound:A. The charges on both the cation and anion must be known.

Cation charge: If the name includes a Roman numeral, this numeral gives the number of positive charges on the cation. If the name does not include a Roman numeral, the charge on the cation must be inferred from the position of the element in the periodic table or have been memorized.Anion charge: The charge on the anion is never stated in the name of a compound, and therefore must be inferred from the position of the element in the periodic table, or have been memorized.

B. The formula for a compound must be electrically neutral. This means that the totalnumber of positive (cation) charges must be exactly balanced by the total number ofnegative (anion) charges. More than one cation and/or more than one anion may benecessary to balance these charges. If so, the number of ions needed is indicated by asubscript written after the symbol for the ion.

Page 26: CHM111LabGuide

Table 5 - Examples of Formulas from Names of Binary Metal/Nonmetal Compounds

Name Cation Anion Formula

sodium chloride Na+ Cl- NaCl

(one 1+ ion and one 1- ion result in a neutral compound.)

iron(III) bromide Fe3+ Br- FeBr3

(one 3+ ion and the three 1- ions result in a neutral compound.)

silver sulfide Ag+ S2- Ag2S

(two 1+ ions and 2- ion result in a neutral compound.)

calcium oxide Ca2+ O2- CaO

( one 2+ ion and one 2- ion result in a neutral compound.)

aluminum oxide Al3+ O2- Al2O3

(two 3+ ions and three 2- ions give a neutral compound.)

gold(III) cyanide Au3+ CN- Au(CN)3

(one 3+ ion and three 1- ions give a neutral compound. The cyanide ion is enclosed in parentheses to indicate that three CN- ions, each consisting of one C and one N, are needed.)

ammonium sulfide NH4+ S2- (NH4)2S

(two 1+ ions are needed to balance the one 2- charge. Note that the ammonium ion is enclosed in parentheses to indicate that two multi-atom ions are required.)

To write the formula for a binary compound composed of two nonmetals from its name in which numerical prefixes have been used, simply write the constituent elements in order given using subscripts to indicate the number of the atoms indicated by the prefix for each.

Page 27: CHM111LabGuide

Exercise 4. Write the formulas for the following binary compounds

a. magnesium iodide k. gold (III) hydroxideb. chlorine dioxide l. aluminum nitridec. chromium(III) sulfide m. iron(II) phosphided. silver bromide n. oxygen difluoridee. mercury(II) hydride o. potassium peroxidef. ammonium sulfide p. gold(I) cyanideg. barium hydroxide q. zinc oxideh. strontium phosphide r. selenium disulfidei. carbon tetraiodide s. uranium(III) oxidej. iodine heptafluoride

E. Archaic System of Cation Nomenclature

At the time Lavoisier and his fellow scientists proposed their system of naming compounds, none of the metallic elements had more than two known charge states. Thus, they recommended that the two charge states be differentiated by adding the suffix ous to the Latin name for the element in the lower charge state, and the suffix ic to the Latin name for higher charge state. This system is not recommended by IUPAC because many elements have been discovered in more than two charge states, and because this old system is not as explicit as the stock system. However, it as yet has not completely disappeared from scientific literature or from labels used by chemical manufacturers.

Table 6- Comparison Of Some Stock System/ Archaic System Cation Names

Stock System Archaic Stock System Archaic

iron(II) ferrous gold(I) aurous

iron(III) ferric gold(III) auric

copper(I) cuprous lead(II) plumbous

copper(II) cupric lead(IV) plumbic

mercury(I) mercurous tin(II) stannous

F. Nomenclature of Complex Anions

Complex anions are made up of several atoms. One atom will be the central atom; the others are referred to as ligands. By far the most common ligand is oxygen, and in the common complex anions, oxygen is the only ligand. These anions are usually identified by their "trivial" or common names. For example, the SO4

2- complex anion oxygen is commonly called the sulfate ion. The IUPAC systematic name for this anion is tetraoxosulfate(VI). Since the trivial

Page 28: CHM111LabGuide

names are the ones in almost universal use within the United States, the rules for forming these names are discussed here.

In the correct formula for a complex anion, the central atom will appear first. Sulfur is the central atom in the sulfate ion and it is covalently bonded to four oxygen ligands. This group of five atoms shares two electrons over and above the number of electrons normally belonging to one sulfur atom and four oxygen atoms. Thus, the ion has a charge of 2-.

The names of the majority of complex anions with oxygen as the only ligand are derived by altering the name of the central atom. The following rules set out the derivation of the anion name:

Rule 1: The most common oxygen-containing anion has the name of the central atom altered to "ate."Rule 2: Anions with one fewer oxygen atom than the most common anion have the

name of the central atom altered to "ite."Rule 3: Anions with two fewer oxygen atoms than the most common anion have the

prefix "hypo" added to the name of the central atom and the ending altered to "ite."

Rule 4: Anions with one more oxygen atom than the most common anion have the pre-fix "per" added to the name of the central atom and the ending altered to

"ate."

When writing formulas for compounds containing complex anions, as usual the positive cation charges and the negative anion charges must be balanced so that the compound is neutral. When more than one complex anion is required in the formula, the entire anion is placed in parentheses. The number of anions in the formula is indicated by a subscript outside and to the right of the parentheses.

If there is only one complex anion required in the formula, the anion is not placed in parentheses.

Table 7 - Examples of Formulas with Complex Anions

Compound Cation Anion Formula

silver nitrate calcium chlorate aluminum sulfate tin(IV) nitrate

Ag+

Ca2+

Al3+

Sn4+

NO3-

ClO3-

SO42-

NO3-

AgNO3

Ca(ClO3)2

Al2(SO4)3

Sn(NO3)4

These formulas are read aloud as:AgNO3 - "ay gee en oh three"Ca(ClO3)2 - "cee ay - cee ell oh three taken twice"

Page 29: CHM111LabGuide

Al2(SO4)3 - "ay ell two - ess oh four taken three times"Sn(NO3)4 - "ess en - en oh three taken four times."

The formulas and charges of the complex anions ending in "ate" should be memorized. Rules 2-4 above can then be applied to the memorized formulas to derive the other complex anions formed from the same central atom. For example:

ClO3- = "chlorate ion"

ClO2- has one less oxygen atom than the chorate ion; therefore it is the "chlorite ion."

(Rule 2)ClO- has two fewer oxygen atoms than the chlorate ion; therefore it is the "hypochlorite

ion." (Rule 3)ClO4

- has one more oxygen atom than the chlorate ion; therefore it is the "perchlorateion." (Rule 4)

Note that the charge on all of the complex anions formed from chlorine have the same ion charge of -1. This, generally, will be the case for all complex anions formed from the same central atom.

Because sulfur has the same outer electron configuration as oxygen, it can take the place of an oxygen ligand in a complex anion. The replacement of an oxygen atom by a sulfur atom is indicated by prefixing the name of the complex anion by "thio."

Examples: sulfate SO42- thiosulfate S2O3

2-

sulfite SO32- thiosulfite S2O2

2-

cyanate OCN- thiocyanate SCN-

There are many exceptions to the simplified nomenclature rules described here. The following list of complex ions ending in "ate" are commonly encountered in course and laboratory work. A few exceptions to the rules for naming complex anions are also noted. These should be memorized.

Page 30: CHM111LabGuide

Table 8 - Common Complex Anions Ending in "ate" and Exceptions to Rules

Name Formula Exceptions to Rules

chlorate ClO3-

bromate BrO3-

iodate IO3-

sulfate SO42- persulfate - S2O8

2-

thiosulfate S2O32-

selenate SeO42-

tellurate TeO42-

nitrate NO3-

phosphate PO43-

arsenate AsO43-

carbonate CO32-

acetate C2H3O2- or CH3COO-

oxalate C2O42-

cyanate OCN-

thiocyanate SCN-

chromate CrO42-

dichromate Cr2O72-

manganate MnO42- permanganate - MnO4

-

Exercise 5: Name the following compounds containing complex anions.

a. NaClO3

i. CsC2

Page 31: CHM111LabGuide

H3

O2

q. KNO2

b. Ca(ClO4)2 j. CuCrO4

r. Ag2SeO4

c. Fe(ClO2)3 k. BaCO3 s. Na2C2O4

d. Al(ClO)3 l. KMnO4 t. Au(OCN)3

e. KNO3 m. ZnCr2O7 u. AuSCNf. (NH4)2SO4 n. Pb(BrO3)2 v. Ni3(AsO4)2

g. (NH4)2SO3 o. Hg2(BrO2)2 h. (NH4)2S2O3 p. Na3PO4

Exercise 6: Write formulas for the following compounds containing complex anions.

a. sodium iodate l. copper(II) phosphiteb. zinc cyanate m. cobalt(II) thiocyanatec. ammonium carbonate n. mercury(I) chlorited. iron(III) bromate o. aluminum perchloratee. calcium arsenate p. sodium oxalatef. potassium persulfate q. calcium manganateg. nickel(IV) acetate r. potassium dichromateh. rubidium hyponitrite s. magnesium bromitei. ammonium nitrate t. silver chloratej. sodium thiosulfate u. barium selenatek. aluminum oxalate v. potassium acetate

G. Nomenclature of Acids

Compounds containing hydrogen which can be ionized to produce hydrogen ions (H+) when

Page 32: CHM111LabGuide

dissolved in water are named as acids when they are dissolved in water.

1. Binary Acids

HCl, a binary compound which exists by itself as a gas, will dissolve in water and form H+ ions and Cl- ions. The pure gas will have the name hydrogen chloride; an aqueous (water) solution of HCl is called hydrochloric acid.

Rule for binary acids: If a hydrogen containing binary compound is dissolved in water and if the compound produces H+ ions in solution the name for the solution will be formed by adding the prefix "hydro", changing the ending of the non-hydrogen element to "ic" and adding "acid" to the name.

Examples: HF(g) hydrogen fluorideHF(aq)hydrofluoric acidNote: the (g) and (aq) are added to indicate pure gas and

aqueous solution, respectively.HCN(g) hydrogen cyanideHCN(aq) hydrocyanic acid

If no indication is given as to whether or not the compound is dissolved in water, either name can be used.

Formulas for this type of compound are easily recognized as hydrogen will be written as the first element. For example, NH3 (ammonia) does not form an acid solution with water and does not have its component hydrogen written first in its formula.

2. Acids Containing Complex Anions (Ternary Acids)

Rule 1: A compound containing hydrogen as the only cation and a complex anionwith its name ending in "ate" will have the "ate" ending changed to "ic"and "acid" added to its name.

Rule 2: A compound containing hydrogen as the only cation and a complex anionwith its name ending in "ite" will have the "ite" ending changed to "ous"and "acid" added to its name.

Examples: H2SO4 sulfuric acid, or hydrogen sulfate HNO3 nitric acid, or hydrogen nitrate H2SO3 sulfurous acid, or hydrogen sulfite HClO hypochlorous acid, or hydrogen hypochlorite HClO4 perchloric acid, or hydrogen perchlorate HC2H3O2 acetic acid, or hydrogen acetate

If (aq) is included to indicate a water solution of the compound, the acid form of the name must

Page 33: CHM111LabGuide

be used. However, since these compounds are not commonly, and in some cases never, available in the absence of water, the acid name is usually given even when there is no indication of the compound being in solution.

Exercise 7. Give the name or write the formula for the following.

a. HI(aq) h. hyponitrous acidb. HNO2(aq) i. oxalic acidc. H2Se(aq) j. phosphoric acidd. H2CrO4(aq) k. hydrobromic acide. HBrO4(aq) l. bromic acidf. HSCN(aq) m. phosphorous acidg. HBrO2(aq) n. manganic acid

Page 34: CHM111LabGuide

H. Answers to Exercises

Exercise 1a. calcium oxide k. aluminum oxideb. potassium chloride l. chromium(VI) oxidec. mercury(I) oxide m. copper(II) oxided. zinc fluoride n. lead(IV) oxidee. barium hydroxide o. copper(II) cyanidef. sodium peroxide p. silver iodideg. chromium(III) bromide q. nickel(II) sulfideh. gold(III) cyanide r. mercury(II) nitridei. strontium phosphide s. lithium nitridej. cobalt(II) sulfide t. calcium carbide

Exercise 2.a. silicon dioxide f. nitrogen

trifluorideb. dichlorine monoxide g. carbon disulfidec. disulfur dichloride h. chlorine trifluorided. sulfur hexafluoride i. dinitrogen trioxidee. carbon tetrachloride j. xenon hexafluoride

Exercise 3.a. xenon tetrafluoride i. copper(II) sulfideb. copper(I) chloride j. sulfur dioxidec. magnesium cyanide k. dinitrogen tetraoxide d. gold(III) hydroxide l. silver oxidee. phosphorous trichloride m. manganese(IV) oxidef. cesium nitride n. lead(IV) oxideg. chromium(III) chloride o. mercury(I) oxideh. calcium peroxide

Exercise 4.a. MgI2 g. Ba(OH)2 n. OF2

b. ClO2 h. Sr3P2 o. K2O2

c. Cr2S3 i. CI4 p. AuCNd. AgBr j. IF7 q. ZnOe. HgH2 k. Au(OH)3 r. SeS2

f. (NH4)2S l. AlN s. U2O3

m. Fe3P2

Page 35: CHM111LabGuide

Exercise 5.a. sodium chlorate l. potassium permanganateb. calcium perchlorate m. zinc dichromatec. iron(III) chlorite n. lead(II) bromated. aluminum hypochlorite o. mercury(I) bromitee. potassium nitrate p. sodium phosphatef. ammonium sulfate q. potassium nitriteg. ammonium sulfite r. silver selenateh. ammonium thiosulfate s. sodium oxalatei. cesium acetate t. gold(III) cyanatej. copper(II) chromate u. gold(I) thiocyanatek. barium carbonate v. nickel(II) arsenate

Exercise 6.a. NaIO3 i. NH4NO3 p. Na2C2O4

b. Zn(OCN)2 j. Na2S2O3 q. CaMnO4

c. (NH4)2CO3 k. Al2(C2O4)3 r. K2Cr2O7

d. Fe(BrO3)3 l. Cu3(PO3)2 s. Mg(BrO2)2

e. Ca3(AsO4)2 m. Co(SCN)2 t. AgClO3

f. K2S2O8 n. Hg2(ClO2)2 u. BaSeO4

g. Ni(C2H3O2)4 o. Al(ClO4)3 v. KC2H3O2

h. Rb2(NO)2

Exercise 7.a. hydroiodic acid h. H2(NO)2(aq) or (HNO)2

b. nitrous acid i. H2C2O4(aq)c. hydroselenic acid j. H3PO4(aq)d. chromic acid k. HBr(aq)e. perbromic acid l. HBrO3(aq)f. thiocyanic acid m. H3PO3(aq)g. bromous acid n. H2MnO4(aq)

Page 36: CHM111LabGuide

Scientific Literature

Exercise 1: LIBRARY INFORMATION RETRIEVAL

Exercise 2: RESEARCH REPORT

Successful completion of this exercise demands that you demonstrate the ability to use both standard and electronic means of information retrieval. Several NVCC libraries provide self-guided information packages and staff who are prepared to demonstrate the use of the library facilities. However, if you have access to other libraries with significant holdings of scientific material and information retrieval technology, these libraries may be used to complete this exercise.

You may elect to complete Exercise 1 or Exercise 2 for one lab grade.

Page 37: CHM111LabGuide

Exercise 1. LIBRARY INFORMATION RETRIEVAL

Visit one of the Northern Virginia Community College libraries that have a self-directed library orientation tour. At present the libraries at the Annandale and Alexandria Campuses provide this service and the other campuses are in the process of developing it. There is a printed booklet in each library that is to be used in the self-directed orientation as well as an audio taped presentation at the Annandale Library.

If you have library privileges from the library of another college or university or from agovernment or industrial installation with an extensive science collection you mayundertake this assignment with personnel or library orientation materials from that library.Attach a copy of the materials provided by the library to Part I of this assignment.

Become familiar with the various electronic information retrieval systems that the NVCC campus libraries, or another library, have developed and installed. There are systems that allow access to remote Databases via modem and dial-up facilities as well as stand-alone CD-ROM systems that have periodic updates and renewals. The library catalogues, the newspaper indexes, magazine and journal indexes and other electronic databases serve as an excellent base for researching topics in areas ranging from science to current events to recent breakthroughs in medical or pharmacological areas.

Research and select one topic in science that is of current interest using the electronic retrieval systems. Use the researching capabilities of the systems to find and select a topic that you can use to a research report as described in Exercise 2. The topic can be in any area of science that interests you, not necessarily in Chemistry, though of course you may choose a topic that is specifically from Chemistry. You are to submit:

a) a cover sheet in the usual pre-lab report format as described in Appendix C. b) a topic in science that you have selected for research.

c) a list of information sources, in accepted bibliographic format, that you have referenced during the above selection of the topic. Organize and list the sources

according to the following categories:i. Four references to scientific journals; scientific journals are publications

of professional Scientific and Technological societies and organizations, such as “The Journal of Chemical Education” published by the American Chemical Society, “JAMA” The Journal of the American Medical Association.

ii. Four references to reference books, including encyclopedias. iii. Four references to newspapers and news magazines

iv. Four references to popular science publications such as “Scientific American”, “Discover”, “Omni,” “Science News”, etc.

Exercise 2: SCIENTIFIC RESEARCH REPORT

Page 38: CHM111LabGuide

Research the topic you have selected using the electronic information retrieval systems and paper searches. Use current and relevant references and present the information in an organized report format with an introduction, body and a conclusion. Submit the following: a) a cover sheet in the usual prelab report format as described in the Lab Guide. b) a two - five page, typed or computer printout research report on your topic.

c) a bibliography with at least three references from the list of sources consulted during the search for the topic in Assignment 1 above.

Page 39: CHM111LabGuide

Smithsonian InstitutionNational Museum of American History

Exercise 1: Hands-on Science Center

Exercise 2: “Science in American Life” Exhibit

These exercises may be undertaken at any time during your enrollment period. Each exercisewill earn a separate lab grade.

The exhibits you are directed to visit in these exercises are very popular, both with tourists and for school visits. Evenings during those times of the year when the museum has evening hours and Saturday mornings have been recommended as good times to plan to visit these exhibits.

Suggestion: Check with the Smithsonian before making the trip to be sure the museum and these exhibits in particular are open at the time and date you plan to visit.

Page 40: CHM111LabGuide

Exercise 1: Hands-on Science

The "Hands-On Science Center" is one part of the Smithsonian Institution's "Science in American Life" exhibition. This permanent exhibition is on the first floor, west wing of the National Museum of American History at 14th Street and Constitution Avenue. "Science in American Life" has been made possible by funding from the American Chemical Society and several other organizations.

The Hands-On Science Center is organized into several areas so that one can do activities on one's own or with a staff member.

The Lab Bench area has activities in the following areas:Food Additives Testing WaterUnraveling Genes An Oil SpillOzone Hole

There are Activity boxes for the following:Inspector Forensic Radioactivity Around YouSemiconductors and Radios Measuring MindsMagnets Plastics

And there are interactive setups for:Water Distillation StillLasersGlobal Temperature Changes

At present there are four different hands-on activities in the Lab Bench area in the Hands- On Science Center. They are presented by museum docents who are trained in demonstrating and conducting the experiments. These experiments may be modified or changed by the museum staff depending on staff scheduling, group reservations, and/or budget considerations

The current experiments are as follows:1. Food Additives 2. DNA Separation3. Water Pollution Testing 4. Properties of Carbon dioxide

Choose two of the four experiments and carry out the procedures with guidance from a museum docent. The museum may require you to work with a group of other participants.

Examine the other activities and resources available in the center. Submit:

1. a formal lab report (see general laboratory report format and guidelines in this Lab Guide) on the "Hands On Science" experiments performed.

2. a critique of the Hand-on Science center focusing on:a. the quality of the exhibits and activities;b. its potential for improving the scientific knowledge of the American public.

Exercise 2: “Science in American Life” Exhibit

Page 41: CHM111LabGuide

The Exhibition examines the interaction between science and American society from 1876 to today. Through artifacts, historical photographs, computer interactives, and multimedia technology, the exhibition brings to life many of the scientific issues, controversies, and achievements that have shaped modern American culture.

When the exhibit opened in 1995, it was considered controversial in its portrayal of the effects scientific discoveries, particularly those of American science, had on mankind and society. The historical accuracy of the exhibit was also questioned.

Tour the entire "Science in American Life" exhibition. Request information or research the controversy the exhibit raised.

Submit a typed or computer printout two to four page double-spaced written report:

1. on the science/society aspects of the exhibition;

2. evaluating the exhibit in terms of the controversial issues raised.

Page 42: CHM111LabGuide

Chromatography of Food Dyes

and

Determination of the Dyes Present

in M & M Candies

If you have elected to do this off-campus experiment, you will need to obtain chromatography paper or plates from your lab instructor when you come to campus for an on-campus lab. All other required materials are readily available at a grocery or drug store.

Page 43: CHM111LabGuide

Chromatography of Food Dyes and Determinationof the Dyes Present in M & M Candies1

I. Introduction

In this experiment you will use the technique of paper chromatography to separate mixtures of food dyes. Presently, the Food and Drug Administration approves only seven dyes for use in food products. These are FD&C yellows #5 and #6, reds #3 and #40, blues #1 and #2, and green #3 (FD&C dyes are those approved by for use in Foods, Drugs, and Cosmetics). These dyes are all large organic molecules. The dye yellow #5 (tartrazine) is known to cause allergic reactions in some people. It is found in many food sources such as banana cream pudding, lime Jell-O, and black jelly beans. An M & M package lists it as a dye present in the candies, but is it present in all the candies or only in those of certain colors? How about the food coloring and egg dyes? Do these contain yellow #5? The answers to these questions are important to a person who is allergic to yellow #5 since they need to know which candies they can eat and what colored foods to avoid because they can be expected to contain this food dye.

To attempt to answer these questions, a technique called chromatography can be used. This is a method of separating and identifying components of a mixture based on differential migration. The mixtures to be separated are spotted on a sheet of specialized paper or on coated plate.The paper or coating constitute the stationary phase of the system. This paper/plate is then placed into a container so that its lower edge is immersed in a solvent. The solvent travels up the paper by capillary action and constitutes the mobile phase of the chromatography system. Components of a mixture spotted on the stationary phase will have varying affinities for both the stationary phase and the mobile phase. Those with greater affinity for the moving phase spend longer in the moving phase. They move up the paper/plate with the solvent more rapidly than solutes which prefer the stationary phase. As the solvent wicks up through the stationary phase, the solutes (dyes) separate because of their different affinities for the water and the paper. This process is called chromatographic development. During this process, the solute is constantly redistributed between the stationary and mobile phases. A solute that spends most of the time in the stationary phase will remain near its original spot. One that spends most of its time in the mobile phase will move fairly close to the edge of the solvent line (called the solvent front.)

The distance each component in the mixture travels up the stationary phase is characterized by a retention factor, symbolized Rf:

The distance traveled by the solute is measured from the original spot to the center or highest

1 ? Adapted from: M. Kandel “Chromatography of M & M Candies” J. of Chem. Educ., 1992, 69(12)988._

Page 44: CHM111LabGuide

concentration of the solute. The distance traveled by the solvent is measured from the original solute spot to the limit of movement of the solvent on the paper. Rf values may change from day to day due to temperature differences, changes in humidity, or variations in the paper or solvent. Their relative values, however, remain very constant.

II. Safety precautions: The rubbing ethyl alcohol used is toxic if ingested. Otherwise, there are no special safety precautions for this experiment.

III. Waste disposal: Solutions can be poured down the drain; other materials can be placed in a garbage can. The chromatograms should be saved and taped onto a page of the submitted report.

Materials needed:

1 set food coloring dyes: red, yellow, blue and green liquid dye sets (for example: McCormick Food Coloring and Egg Dye) are available at most grocery stores.

1 package assorted color M and M candies;

chromatography paper or coated plate: obtain these from the lab instructor at an on-campus lab session if this experiment is among those you have elected to do;

Note: do not touch the chromatograph paper or plate with your fingers. Hold it only at the edge or upper corner.

toothpicks and a glass pie plate or other suitable flat container for the solvent;

sodium chloride (ordinary table salt) and water.

rubbingethyl alcohol - 70% (available at most drug stores; e.g. CVS)

paper towels, ruler, pencil, tape (plastic)

Procedure:

1. Prepare about 250 ml of 0.1% by weight aqueous sodium chloride solution. (If you do not have the tools at home to weight the salt and water required, simply take 1 standard 8 ounce measuring cup of water ( 225 ml) and a pinch of salt (the amount of salt you can pinch between your thumb and forefinger.) Stir the added salt into the water and add 1/4 C of the rubbing ethyl alcohol.

Page 45: CHM111LabGuide

2. Using a pencil, carefully draw a line 1 cm from the narrow edge of the chromatography paper. Make 10 marks along this line at least 1 cm apart. Also mark the distance about 2/3 of the height of the paper (see graphic at right).

3. Label each of the spots on the lower line to indicate one food dye color (b, y, r, g). Place the paper on one or two paper towels and use a toothpick to place a spot of the appropriate color food dye on each labeled mark. Make sure to use a different toothpick for each color dye. Allow the spots to dry and apply a second spot of the same color to each.

4. Select at least two of the yellow, red, green, blue, brown and orange M&Ms. Apply the colors as follows:a. Dip one end of a toothpick in water and rub along the shell to extract the dye. Do

not break the shell. Use one toothpick per color of shell. Blot the toothpick on the paper towel if there is excess water.

b. Quickly and carefully apply the dye on the appropriate mark on the chromatography paper.

c. Repeat steps a-b until the color is strong (3-5 times should be enough.) Allow the dot to dry each time before reapplying. This is a critical step. The dye from theM & Ms is not as concentrated as that of the food dyes. Repeat application as necessary to achieve sufficient concentration of the colored compound to be able to observe the components into which it may separate.

d. Allow all of the dots to dry before proceeding.

5. Roll the paper or gently bend the plate into a half cylinder or curved surface that will stand upright unsupported. Use the tape to maintain the shape, placing it slightly above the 2/3 distance mark. Do not allow the edges of the paper to touch each other.

6. Add the aqueous sodium chloride-ethanol solution to the glass pie plate to a depth of about 0.5 cm. The solution must not go above the 1cm mark on the chromatography paper or touch the dye spots when the paper is placed in the beaker. Do not allow the paper to touch the sides of the container.

7. Stand the circular chromatography paper in the solvent-containing plate. The solvent will

Page 46: CHM111LabGuide

wick up the paper and as it does so the dyes will resolve into their component colors.

7. When the solvent front reaches the line you have drawn 2/3 of the distance up the paper, remove the paper from the solvent. Remove the tape and lay the paper flat on a fresh paper towel. Immediately mark the position of each dye with the pencil. The solvent front will continue to move after removal from the beaker, so it is important to mark the dye positions immediately.

9. Measure the distance between the solvent front and the line marking the point of application of the dyes; also, measure the distance traveled by each component of each dye. Prepare and enter these measurements in a table which includes a column for each of the dyes used in the chromatogram.

10. Calculate the Rf values for each of the spots found in the chromatogram and enter these into your table.

11. Repeat the procedure (2-10) using a second piece of chromatography paper, the same food dyes and the same colors of M&Ms. Add the measurements and calculated Rf values to the table.

Post lab questions:

1. The food dyes contain propylene glycol in addition to the dyes and water. The candy shells contain sucrose (sugar), corn syrup, corn starch, and gum acacia. Do you think this affected the movement of the dyes on the chromatography paper? Hint: Compare the Rf values for the food dyes and candy shell dyes.

2. Which color food dyes should not be used by persons allergic to FD&C yellow #5(tartrazine)? Note that yellow #5 is yellow in color, but yellow #6 appears orange.

3. Which color M&Ms, if any, should be avoided by persons allergic to tartrazine?

4. How good were your original guesses concerning the makeup of the food dyes?

Submit a lab report consisting of:

a. cover sheet;

b. paragraph description of the procedure followed. Be specific concerningmethods used and adaptations which may have been necessary;

c. the chromatogram(s) prepared;

d. an analysis of the chromatogram(s) including measurements, Rf values and the calculations of these values;

Page 47: CHM111LabGuide

e. an analysis and evaluation of your results;

f. answers to the post-lab questions.