Top Banner
“Chirps” everywhere Patrick Flandrin* CNRS — ´ Ecole Normale Sup´ erieure de Lyon *thanks to Pierre-Olivier Amblard (LIS Grenoble), Fran¸ cois Auger (Univ. Nantes), Pierre Borgnat (ENS Ly on), Eric Chassande-Motti n (Obs. Nice), Franz Hlawatsch (TU Wien), Paulo Gon¸ calv` es (INRIAlp es), Olivier Michel (Univ. Nice) and Jerey C. O’Neill (iConverse)
50

chirp kteer

Apr 08, 2018

Download

Documents

Soha Mohamed
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: chirp kteer

8/7/2019 chirp kteer

http://slidepdf.com/reader/full/chirp-kteer 1/50

“Chirps” everywhere

Patrick Flandrin*

CNRS — Ecole Normale Superieure de Lyon

*thanks toPierre-Olivier Amblard (LIS Grenoble), Francois Auger (Univ. Nantes),

Pierre Borgnat (ENS Lyon), Eric Chassande-Mottin (Obs. Nice),

Franz Hlawatsch (TU Wien), Paulo Goncalves (INRIAlpes),Olivier Michel (Univ. Nice) and Jeffrey C. O’Neill (iConverse)

Page 2: chirp kteer

8/7/2019 chirp kteer

http://slidepdf.com/reader/full/chirp-kteer 2/50

observation

Page 3: chirp kteer

8/7/2019 chirp kteer

http://slidepdf.com/reader/full/chirp-kteer 3/50

Doppler effect

Motion of a monochromatic source ⇒ differential  perception of 

the emitted frequency ⇒ “chirp”.

f + ∆ f f - ∆ f "chirp"

Page 4: chirp kteer

8/7/2019 chirp kteer

http://slidepdf.com/reader/full/chirp-kteer 4/50

Page 5: chirp kteer

8/7/2019 chirp kteer

http://slidepdf.com/reader/full/chirp-kteer 5/50

Pendulum

¨θ(t) + (g/L) θ(t) = 0

Fixed length L = L0 — Small oscillations are sinusoıdal, withfixed  period T 0 = 2π 

L0/g.

“Slowly” varying length L = L(t) — Small oscillations are quasi-sinusoıdal, with time-varying  pseudo-period T (t) ∼ 2π L(t)/g.

Page 6: chirp kteer

8/7/2019 chirp kteer

http://slidepdf.com/reader/full/chirp-kteer 6/50

Gravitational waves

Theory  — Though predicted by general relativity, gravitational 

waves  have never been observed directly. They are “space-time

vibrations,” resulting from the acceleration of moving masses

⇒ most promising sources in astrophysics  (e.g., coalescence of binary neutrons stars).

Experiments  — Several large instruments (VIRGO project for

France and Italy, LIGO project for the USA) are currently under

construction for a direct terrestrial  evidence via laser interferom-

etry .

Page 7: chirp kteer

8/7/2019 chirp kteer

http://slidepdf.com/reader/full/chirp-kteer 7/50

Page 8: chirp kteer

8/7/2019 chirp kteer

http://slidepdf.com/reader/full/chirp-kteer 8/50

time

gravitational wave

Page 9: chirp kteer

8/7/2019 chirp kteer

http://slidepdf.com/reader/full/chirp-kteer 9/50

VIRGO

Page 10: chirp kteer

8/7/2019 chirp kteer

http://slidepdf.com/reader/full/chirp-kteer 10/50

Bat echolocation

System — Active  system for navigation, “natural sonar”.

Signals  — Ultrasonic acoustic waves, transient (some ms) and“wide band” (some tens of kHz between 40 and 100kHz).

Performance — Nearly optimal, with adaptation of emitted wave-

forms to multiple tasks (detection, estimation, classification, in-

terference rejection,. . . ).

Page 11: chirp kteer

8/7/2019 chirp kteer

http://slidepdf.com/reader/full/chirp-kteer 11/50

time

bat echolocation call + echo

time

bat echolocation call (heterodyned)

Page 12: chirp kteer

8/7/2019 chirp kteer

http://slidepdf.com/reader/full/chirp-kteer 12/50

More examples

Waves and vibrations — Bird songs, music (“glissando”), speech,

geophysics (“whistling atmospherics”, vibroseis), wide band pulsespropagating in a dispersive medium, radar, sonar,. . .

Biology and medicine  — EEG (seizure), uterine EMG (contrac-

tions),. . .

Desorder and critical phenomena — Coherent structures in tur-

bulence, accumulation of precursors in earthquakes, “speculativebubbles” prior a financial krach,. . .

Mathematics  — Riemann and Weierstrass functions, . . .

Page 13: chirp kteer

8/7/2019 chirp kteer

http://slidepdf.com/reader/full/chirp-kteer 13/50

Page 14: chirp kteer

8/7/2019 chirp kteer

http://slidepdf.com/reader/full/chirp-kteer 14/50

Chirps

Definition — We will call “chirp” any complex signal of the form

x(t) = a(t) exp{iϕ(t)}, where  a(t) ≥ 0 is a low-pass amplitude 

whose evolution is slow as compared to the oscillations of the 

phase  ϕ(t).

Slow evolution?  — Usual heuristic conditions assume that:

1. |a(t)/a(t)| |ϕ(t)| : the amplitude is quasi-constant  at the

scale of one pseudo-period T (t) = 2π/|ϕ(t)|.

2. |ϕ(t)|/ϕ2(t) 1 : the pseudo-period T (t) is itself  slowly 

varying  from one oscillation to the next.

Page 15: chirp kteer

8/7/2019 chirp kteer

http://slidepdf.com/reader/full/chirp-kteer 15/50

Chirp spectrum

Stationary phase  — In the case where the phase derivative ϕ(t)

is monotonic, one can approximate the chirp spectrum

X(f ) = +∞

−∞a(t) ei(ϕ(t)−2πf t) dt

by its stationary phase approximation X(f ). We get this way:

|X(f )|2 ∝a2(ts)

|ϕ(ts)|,

with ts such that ϕ(ts) = 2πf .

Interpretation — The “instantaneous frequency” curve ϕ(t) de-

fines a one-to-one correspondence between one time and one

frequency. The chirp spectrum follows by weighting the visited 

frequencies  by the corresponding times of occupancy .

Page 16: chirp kteer

8/7/2019 chirp kteer

http://slidepdf.com/reader/full/chirp-kteer 16/50

01020

Linear scale

Energy spectral density

-0.1

0

0.1

Real part

Signal in time

RSP, Lh=15, Nf=128, log. scale, Threshold=0.05%

Time [s]

Frequency [Hz]

50 100 150 200 2500

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Page 17: chirp kteer

8/7/2019 chirp kteer

http://slidepdf.com/reader/full/chirp-kteer 17/50

representation

Page 18: chirp kteer

8/7/2019 chirp kteer

http://slidepdf.com/reader/full/chirp-kteer 18/50

Time-frequency

Idea — Give a mathematical formulation to musical notation

Objective  — Write the “musical score” of a signal

Constraint  — Get a localized  representation in chirp cases:

ρ(t, f ) ∼ a2(t) δ (f  − ϕ(t)/2π) .

Page 19: chirp kteer

8/7/2019 chirp kteer

http://slidepdf.com/reader/full/chirp-kteer 19/50

Local methods and localization

The example of the short-time Fourier transform — One defines

the local  quantity:

F (h)x (t, f ) =

 ∞−∞

x(s) h(s − t) e−i2πf s ds.

Measure  — Such a representation results from an interaction

between the analyzed signal and some apparatus  (the window

h(t)).

Adaptation — Analysis adapted to impulses  if  h(t) → δ(t) and to

spectral lines  if  h(t) → 1 ⇒ adapting analysis to chirps  requires

h(t) to be (locally) dependent on the signal .

Page 20: chirp kteer

8/7/2019 chirp kteer

http://slidepdf.com/reader/full/chirp-kteer 20/50

Self-adaptation of local methods

Matched filtering — If the window h(t) is the time-reversed signal

x−(t) := x(−t), one gets F (x−)x (t, f ) = W x(t/2, f /2)/2, where

W x(t, f ) := +∞

−∞x(t + τ /2) x(t − τ /2) e−i2πf τ  dτ,

is the so-called Wigner-Ville Distribution (Wigner, ’32; Ville,

’48).

Linear chirps  — The WVD localizes perfectly  on straight lines 

in the TF plane:

x(t) = exp{i2π(f 0t + αt2/2)} ⇒ W x(t, f ) = δ (f  − (f 0 + αt)) .

Remark  — Localization via self-adaptation ends up in a quadratic 

transformation (energy distribution).

Page 21: chirp kteer

8/7/2019 chirp kteer

http://slidepdf.com/reader/full/chirp-kteer 21/50

Beyond linear chirps

Global approach — The principle of self-adaptation via phase 

compensation can be extended to non linear  chirps (Bertrand &

Bertrand, ’84 ; Goncalves et F., ’94).

Limitations  — Specific models and heavy computational burden.

Local approach — Spectrogram/scalogram = smoothed  WVD

⇒ localized distributions via reassignment towards local centroıds

(Kodera et al., ’76 ; Auger & F., ’94).

Page 22: chirp kteer

8/7/2019 chirp kteer

http://slidepdf.com/reader/full/chirp-kteer 22/50

128 points

signal model

Wigne

r-Ville

window = 21

spectro

window = 21

reass. spectro

63

63

127 points

127 points

Page 23: chirp kteer

8/7/2019 chirp kteer

http://slidepdf.com/reader/full/chirp-kteer 23/50

manipulation

Page 24: chirp kteer

8/7/2019 chirp kteer

http://slidepdf.com/reader/full/chirp-kteer 24/50

Chirps and dispersion

Example  — Acoustic backscattering of an ultrasonic wave on

a thin spherical shell ⇒ frequency dispersion of elastic surfacewaves.

time

acoustic backscaterring

Page 25: chirp kteer

8/7/2019 chirp kteer

http://slidepdf.com/reader/full/chirp-kteer 25/50

time

frequency

acoustic backscaterring

time

frequency

Page 26: chirp kteer

8/7/2019 chirp kteer

http://slidepdf.com/reader/full/chirp-kteer 26/50

time

frequ

ency

dispersion

time

frequ

ency

compression

Page 27: chirp kteer

8/7/2019 chirp kteer

http://slidepdf.com/reader/full/chirp-kteer 27/50

Pulse compression

Limitation — Correlation radius ∼ 1/spectral bandwidth, ∀ signal

duration.

“Reception” — Post-processing by matched filtering (radar, sonar,

vibroseismics, non destructive evaluation).

“Emission” — Pre-processing by dispersive grating  (productionof ultra-short laser pulses).

Page 28: chirp kteer

8/7/2019 chirp kteer

http://slidepdf.com/reader/full/chirp-kteer 28/50

Chirps and detection/estimation

Optimality — Matched filtering, maximum likelihood, contrast,. . . :basic ingredient = correlation “observation — template”.

Time-frequency interpretation — Unitarity  of a time-frequency

distribution ρx(t, f ) guarantees the equivalence:

|x, y|2 = ρx, ρy.

Chirps  — Unitarity + localization ⇒ detection/estimation via

path integration in the plane.

Page 29: chirp kteer

8/7/2019 chirp kteer

http://slidepdf.com/reader/full/chirp-kteer 29/50

Time-frequency detection?

Language  — Time-frequency offers a natural language  for deal-ing with detection/estimation problems beyond  nominal situa-

tions.

Robustness — Uncertainties in a chirp model can be incorporatedby replacing the integration curve  by a domain (example of post-newtonian approximations in the case of gravitational waves).

time

freque

ncy

gravitational wave

?

Page 30: chirp kteer

8/7/2019 chirp kteer

http://slidepdf.com/reader/full/chirp-kteer 30/50

Doppler tolerance

Signal design — Specification of performance by a geometrical 

interpretation of the time-frequency structure of a chirp.

time

frequency

linear chirp

time

frequency

hyperbolic chirp

Page 31: chirp kteer

8/7/2019 chirp kteer

http://slidepdf.com/reader/full/chirp-kteer 31/50

time

frequency

bat echolocation calls (+ echo)

time

frequency

Page 32: chirp kteer

8/7/2019 chirp kteer

http://slidepdf.com/reader/full/chirp-kteer 32/50

modeling

Page 33: chirp kteer

8/7/2019 chirp kteer

http://slidepdf.com/reader/full/chirp-kteer 33/50

Chirps and “atomic” decompositions

Fourier  — The usual Fourier Transform (FT) can be formally

written as (F x)(f ) := x, ef , with ef (t) := exp{i2πf t}, so that:

x(t) =  +∞

−∞x, e

f  e

f (t) df.

Extensions  — Replace complex exponentials by chirps, consid-

ered as warped versions of monochromatic waves, or by “chirplets”

(chirps of short duration) ⇒ modified short-time FTs or wavelet 

transforms modifiees .

Page 34: chirp kteer

8/7/2019 chirp kteer

http://slidepdf.com/reader/full/chirp-kteer 34/50

Modified TFs — Example

Mellin Transform — A Mellin Transform (MT) of a signal x(t) ∈L2(IR+, t−2α+1dt) can be defined as the projection:

(Mx)(s) := +∞

0x(t) t−i2πs−α dt = x, c.

• Analysis on hyperbolic  chirps c(t) := t−α

exp{i2πs log t}.

• ϕc(t)/2π = s/t ⇒, the Mellin parameter s can be interpreted

as a hyperbolic chirp rate .

• The MT can also be seen as a form of  warped  FT, since

x(t) := e(1−α)t x(et) ⇒ (Mx)(s) = (F x)(s).

Page 35: chirp kteer

8/7/2019 chirp kteer

http://slidepdf.com/reader/full/chirp-kteer 35/50

Page 36: chirp kteer

8/7/2019 chirp kteer

http://slidepdf.com/reader/full/chirp-kteer 36/50

“Chirplet” decomposition — An example

signal + noise 8 atoms

Page 37: chirp kteer

8/7/2019 chirp kteer

http://slidepdf.com/reader/full/chirp-kteer 37/50

Chirps and self-similarity

Dilation — Given H, λ > 0, let DH,λ be the operator acting on

processes {X(t), t > 0} as (DH,λX)(t) := λ−H  X(λt).

Self-similarity  — A process {X(t), t > 0} is said to be self-similar 

of parameter H  (or “H -ss”) if, for any λ > 0,

{(DH,λX)(t), t > 0}d

= {X(t), t > 0}.

Self-similarity and stationarity  — Self-similar processes and sta-tionary processes can be put in a one-to-one correspondence

(Lamperti, ’62).

Page 38: chirp kteer

8/7/2019 chirp kteer

http://slidepdf.com/reader/full/chirp-kteer 38/50

Lamperti

Definition — Given H > 0, the Lamperti transformation LH 

acts

on {Y (t), t ∈ IR} as:

(LH Y )(t) := tH  Y (log t), t > 0,

and its inverse L

−1

H  acts on {X(t), t > 0} as :(L−1

H  X)(t) := e−Ht X(et), t ∈ IR.

Theorem — If  {Y (t), t ∈ IR} is stationary, its Lamperti transform{(LH Y )(t), t > 0} is H -ss. Conversely, if  {X(t), t > 0} is H -ss, its

(inverse) Lamperti transform {(L−1H  X)(t), t ∈ IR} is stationary.

Page 39: chirp kteer

8/7/2019 chirp kteer

http://slidepdf.com/reader/full/chirp-kteer 39/50

tone

Lamperti

chirp

Page 40: chirp kteer

8/7/2019 chirp kteer

http://slidepdf.com/reader/full/chirp-kteer 40/50

“Spectral” representations

Fourier  — (Harmonisable) stationary  processes admit a spectral

representation based on Fourier modes (monochromatic waves):

Y (t) = +∞

−∞ei2πf t dξ(f ).

Mellin — (Multiplicatively harmonisable) self-similar  processes

admit a corresponding representation based on Mellin modes

(hyperbolic chirps):

X(t) = +∞

−∞tH +i2πf  dξ(f ).

Page 41: chirp kteer

8/7/2019 chirp kteer

http://slidepdf.com/reader/full/chirp-kteer 41/50

Page 42: chirp kteer

8/7/2019 chirp kteer

http://slidepdf.com/reader/full/chirp-kteer 42/50

Weierstrass function (H = 0.5)

"delampertized" Weierstrass function

Page 43: chirp kteer

8/7/2019 chirp kteer

http://slidepdf.com/reader/full/chirp-kteer 43/50

Weierstrass-Mandelbrot

Fourier  — In the case where g(t) = 1 − exp it, one gets the so-

called Weierstrass-Mandelbrot function, whose usual representa-

tion is given by a superposition of Fourier modes (in geometricalprogression).

Mellin — An equivalent representation exists (Berry and Lewis,

’80), as superposition of Mellin modes, i.e., of hyperbolic chirps.

Page 44: chirp kteer

8/7/2019 chirp kteer

http://slidepdf.com/reader/full/chirp-kteer 44/50

time

original

Weierstrass function (λ = 1.07; H = 0.3; tmax = 1; N = 1000;ν = 1)

time

detrended

Page 45: chirp kteer

8/7/2019 chirp kteer

http://slidepdf.com/reader/full/chirp-kteer 45/50

time

frequency

detrended Weierstrass function

Page 46: chirp kteer

8/7/2019 chirp kteer

http://slidepdf.com/reader/full/chirp-kteer 46/50

Chirps and power laws

A general model  — C α,β (t) = a tα exp{i(b tβ  + c)}.

Example  — Newtonian approximation of the inspiraling  part of 

gravitational waves → (α, β ) = (−1/4, 5/8).

Typology  — At t = 0: divergence of  amplitude  if  α < 0, of 

“instantaneous frequency” if  β < 1 and of  phase  if  β < 0.

Oscillating singularities . The case (α > 0, β < 0) is beyond asimple Holder characterization ⇒ development of specific tools

(2-microlocal analysis , wavelets ).

Page 47: chirp kteer

8/7/2019 chirp kteer

http://slidepdf.com/reader/full/chirp-kteer 47/50

The Riemann function as an example

Definition — σ(t) :=

∞n=1 n−2 sin πn2t

Differentiability  — σ(t) happens to be non-differentiable if  t =

t0 = (2p + 1)/(2q + 1), p, q ∈ IN (Hardy, ’16) but  differentiable in

t = t0 (Gerver, ’70).

Local chirps  — One can show (Meyer, ’96) that, in the vicinity

of  z = 1, the holomorphic version of Riemann function reads

σ(1 + z) = σ(1) − πz/2 +∞

n=1

K n(z) C 3/2,−1(z),

leading to σ(1 + t) = σ(1) − πt/2 + O(|t|3/2) when t → 0.

Page 48: chirp kteer

8/7/2019 chirp kteer

http://slidepdf.com/reader/full/chirp-kteer 48/50

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Riemann function

time

frequency

0.955 0.96 0.965 0.97

Page 49: chirp kteer

8/7/2019 chirp kteer

http://slidepdf.com/reader/full/chirp-kteer 49/50

conclusion

Page 50: chirp kteer

8/7/2019 chirp kteer

http://slidepdf.com/reader/full/chirp-kteer 50/50

Chirps and time-frequency

Signals  — Chirps “everywhere”

Representations  — Natural description framework = the time-

frequency plane

Models  — “Chirps = time-frequency trajectories” ⇒ the notion

of  instantaneous frequency can be approached as a by-product

of representations in the plane (e.g., “ridges”, or fixed points of reassignment operators)