Top Banner
ChipSat – a System-on-a-chip for Small Satellite Data Processing and Control Architectural Study and FPGA Implementation Dr Tanya Vladimirova Leader of the VLSI Systems Research Group Surrey Space Centre, University of Surrey Alex da Silva Curiel Head of R & D Surrey Satellite Technology Ltd. Microelectronics Presentation Days, 4-5 February 2004, ESTEC
30

ChipSat – a System-on-a-chip for Small Satellite Data ...microelectronics.esa.int/mpd2004/ChipSat_MPD_Feb_04.pdf · Satellite Data Processing and Control Architectural Study and

Mar 19, 2018

Download

Documents

phamxuyen
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: ChipSat – a System-on-a-chip for Small Satellite Data ...microelectronics.esa.int/mpd2004/ChipSat_MPD_Feb_04.pdf · Satellite Data Processing and Control Architectural Study and

ChipSat – a System-on-a-chip for Small Satellite Data Processing and Control

Architectural Study and FPGA Implementation

Dr Tanya VladimirovaLeader of the VLSI Systems Research Group

Surrey Space Centre, University of SurreyAlex da Silva Curiel

Head of R & DSurrey Satellite Technology Ltd.

Microelectronics Presentation Days, 4-5 February 2004, ESTEC

Page 2: ChipSat – a System-on-a-chip for Small Satellite Data ...microelectronics.esa.int/mpd2004/ChipSat_MPD_Feb_04.pdf · Satellite Data Processing and Control Architectural Study and

T.Vladimirova, A da Silva Curiel, MPD’04, ESTEC2

Outline! Single chip implementation of an on-board command and data

handling subsystem for a low-cost small satellite - mixed-mode ASIC. ! SoC design of an on-board computer for a small satellite - based on

integration of soft IP cores, compatible with the LEON microprocessor core.

! Downsized on-board computer implementation on a single programmable logic chip and a low-cost CCSDS-based communication system.

! Design and integration of a mathematical floating-point co-processor core, based on the CORDIC algorithm.

! Credit-card size on-board computer system using the SoC.! DMA controller and DDR SDRAM Controller core for the LEON CPU. ! Aspects of reconfigurability.

Page 3: ChipSat – a System-on-a-chip for Small Satellite Data ...microelectronics.esa.int/mpd2004/ChipSat_MPD_Feb_04.pdf · Satellite Data Processing and Control Architectural Study and

T.Vladimirova, A da Silva Curiel, MPD’04, ESTEC

SoC Research at SSC

SOC

Surrey Satellite Technology's (SSTL) On-Board Computer (OBC)Miniaturisation of the Small Satellite Platform

Credit-Card Size OBC System

1)

2)

Long-term

Page 4: ChipSat – a System-on-a-chip for Small Satellite Data ...microelectronics.esa.int/mpd2004/ChipSat_MPD_Feb_04.pdf · Satellite Data Processing and Control Architectural Study and

T.Vladimirova, A da Silva Curiel, MPD’04, ESTEC4

OBCDH Mixed-Mode SoCfor EO Small Satellite Missions

CAMERA

Wave le tCompre s s or Bit Sync Enc ode r

RS/Vite rbi Modulator

TX

FIR

De modulatorDe c ode r

Prog ramMe mory

DAC

FIR

FIR

UART PIO

NAVMAGX Y Z

Mag ne -torque rGPS

ADCSCo-Proc

NCO

Analog Mux

Slow ADCADC 20Ms ps

DS PCo-Proc

NCO

ADC ADC

FIR

RX

ROMBootload EDAC

Imag eMe mory

UART2 Channe ls CAN

GPT/WDT

SPI

PWM

Whe e l

DEBUG CAN I/ONETWORK EXPANSION

DMAMMU ICUSYNC/ASYCNRISC CORECACHE

Four subsystems:

• a 32-bit RISC processorcore modified for space use; • an image handlingsubsystem capable of capturing and compressing still or video-rate images; • a communication subsystem for the satellite uplink and downlink connection; and • a supporting peripheral subsystem.

Page 5: ChipSat – a System-on-a-chip for Small Satellite Data ...microelectronics.esa.int/mpd2004/ChipSat_MPD_Feb_04.pdf · Satellite Data Processing and Control Architectural Study and

5

System-on-a-Chip OBC

ESA Core

Debug

CAN Network >100Mbps

170MbyteMicrodrive

TX

TCSP1M*64SRAM

CAN Ethernet PHY

RX2RX1RX0

Linear Regulator

POR

+3.3V

EDACDECDED

ROM LUTBootstrap

AMBA APB

CANInterface

AMBA AHB

LEON Sparc V8 CORDICCoprocessor

AMBA AHB

AMBA AHB

HDLC TXController

AMBA AHB

HDLC RXController

FIFO

AMBA AHB

HDLC RXController

FIFO

AMBA AHB

HDLC RXController

FIFO

System Bus

CF+ I/FTrue IDE

FIFO

Ethernet MAC

UART

AMBA AHB

PIO

FIFO

AMBA AHB

+2.5V +3.3V

CLK CLK CLK CLK

XILINX Virtex XCV800 FPGA

SP

Page 6: ChipSat – a System-on-a-chip for Small Satellite Data ...microelectronics.esa.int/mpd2004/ChipSat_MPD_Feb_04.pdf · Satellite Data Processing and Control Architectural Study and

T.Vladimirova, A da Silva Curiel, MPD’04, ESTEC6

Downsized SoC - FPGA Implementation

LEONIU

AMBA AHBAHB

CONTROLLER

MEMORYCONTROLLER

AHB/APBBRIDGE

AMBA CANCONTROLLER

ABUS(19:1)

CAN TX

CAN RXSN65HVD2

32

EDAC(16,8)

DATA MEMORY512K *16 BITS

PARITYMEMORY

512K *16 BITS

RIGHT BANKLEFT BANK

DBUS

VIRTEX V800VIRTEX V800VIRTEX V800VIRTEX V800

UART A

UART B

CANTRANSCEIVER

MAX232CPE

SERIAL PORTTRANSCEIVER

CPLDXC95108

232ACBH

PCPCPCPC

COM 1 COM 2

CommunicationSoftware(Between PCand the Board):

Tera TermXESS GXLoad

SCOPE

Parallel Port

Integration of CAN, EDAC and LEON

Page 7: ChipSat – a System-on-a-chip for Small Satellite Data ...microelectronics.esa.int/mpd2004/ChipSat_MPD_Feb_04.pdf · Satellite Data Processing and Control Architectural Study and

T.Vladimirova, A da Silva Curiel, MPD’04, ESTEC7

FPGA Chip Usage

! Synthesis Tool: Synplify 6.0 +! LEON IP core + CAN IP core + EDAC IP core => 43% of XCV800! QPRO XILINX Virtex family of radiation hardened FPGAs:

– qualified for space use– guaranteed total ionising dose to 100K Rad (si)– latch-up immune to LET > 125 Mev cm2/mg @ +125 oC

0.010.04

0.04

0.430.48 LEON1- 2.4.0 + CAN + EDAC

FIFO

HDLC

IDE

IDLE

Virtex XCV-800 FPGA

Based on Synthesis Results

UNUSED

Page 8: ChipSat – a System-on-a-chip for Small Satellite Data ...microelectronics.esa.int/mpd2004/ChipSat_MPD_Feb_04.pdf · Satellite Data Processing and Control Architectural Study and

T.Vladimirova, A da Silva Curiel, MPD’04, ESTEC8

A CCSDS-Based Communication System for a Single-Chip OBC

" Implementation of a simplified yet RELIABLE Consultative Committee of Space Data Systems (CCSDS) TLM & TC space communication system satisfying the needs of a single chip on-board computer (OBC) of a small satellite.

" Simulation of the operation of the software on a single-chip OBC prototype.

SoC OBC

TC

TLM

GROUND SEGMENT

SPACECRAFT SEGMENT

Page 9: ChipSat – a System-on-a-chip for Small Satellite Data ...microelectronics.esa.int/mpd2004/ChipSat_MPD_Feb_04.pdf · Satellite Data Processing and Control Architectural Study and

T.Vladimirova, A da Silva Curiel, MPD’04, ESTEC9

CCSDS! Standard space industry communication protocol. ! Employed on numerous missions ranging from relatively simple low

earth missions to deep space probes.! Could lead to spacecraft interoperability, re-usable systems and

mission cross support – not just for in-house missions but across the CCSDS space agencies members.

Tx_Tc

TLM_Tx

FOP

TLM_Rx

Tc_Rx

FARM

TLMframes

CLTUs

CCSDSGround

CCSDSSpacecraft

R-SEncoder

R-SDecoder

TLMframes

Frame Acceptance and Report Mechanism

Frame Operation Protocol

Tx_Tc

TLM_Tx

FOP

TLM_Rx

Tc_Rx

FARM

TLMframes

CLTUs

CCSDSGround

CCSDSSpacecraft

R-SEncoder

R-SDecoder

TLMframes

Frame Acceptance and Report Mechanism

Frame Operation Protocol

Structure and Interfaces of the CCSDS Software Package

Page 10: ChipSat – a System-on-a-chip for Small Satellite Data ...microelectronics.esa.int/mpd2004/ChipSat_MPD_Feb_04.pdf · Satellite Data Processing and Control Architectural Study and

T.Vladimirova, A da Silva Curiel, MPD’04, ESTEC10

Simulation SchemeCCSDSCCSDSCCSDSCCSDSTC_TxTC_TxTC_TxTC_Tx

CCSDSCCSDSCCSDSCCSDSTLM_RxTLM_RxTLM_RxTLM_RxFOPFOPFOPFOP

Serial PortSerial PortSerial PortSerial Port

UARTUARTUARTUART

CCSDSCCSDSCCSDSCCSDSTC_RxTC_RxTC_RxTC_Rx

FARMFARMFARMFARM

CAN_Node1CAN_Node1CAN_Node1CAN_Node1(CAN_Core)(CAN_Core)(CAN_Core)(CAN_Core)

CAN_Node2CAN_Node2CAN_Node2CAN_Node2(CAN_Card)(CAN_Card)(CAN_Card)(CAN_Card)

R-SR-SR-SR-SDecoderDecoderDecoderDecoder

CCSDSCCSDSCCSDSCCSDSTLM_TxTLM_TxTLM_TxTLM_Tx

R-SR-SR-SR-SEncoderEncoderEncoderEncoder

CLTU

CLCWTLM_Frames

TC

TC

TLM

Space SegmentSpace SegmentSpace SegmentSpace Segment(XESS Prototyping Board)(XESS Prototyping Board)(XESS Prototyping Board)(XESS Prototyping Board)

Ground SegmentGround SegmentGround SegmentGround Segment(PC)(PC)(PC)(PC)

Single Chip OBCSingle Chip OBCSingle Chip OBCSingle Chip OBC

Page 11: ChipSat – a System-on-a-chip for Small Satellite Data ...microelectronics.esa.int/mpd2004/ChipSat_MPD_Feb_04.pdf · Satellite Data Processing and Control Architectural Study and

T.Vladimirova, A da Silva Curiel, MPD’04, ESTEC11

Downsized FPGA ImplementationSummary

! Processor - LEON 2-1.0.2a VHDL IP core (SPARC V8) (ESA)" Working Frequency – 25 MHz" UART Baud Rate – 38,400 bps" Internal S-Record Boot Loader

! On-Board Network (Node 1) - HurriCANe VHDL IP core (ESA)" Baud Rate: 312,500 bps

! EDAC – EDAC VHDL IP core (SSTL)" Double-bit correcting Quasi-Cyclic (16,8) shortened EDAC code

! Prototyping Board - XESS XSV800 (Xilinx Virtex XCV800 FPGA)" Up to 100 MHz programmable oscillator" 16M Bits SRAM (two banks - 512K x 16)" 16M Bits flash RAM

! On-Board Application Program – S-Record File" 160K Bytes (CCSDS_SC Software Package)

Page 12: ChipSat – a System-on-a-chip for Small Satellite Data ...microelectronics.esa.int/mpd2004/ChipSat_MPD_Feb_04.pdf · Satellite Data Processing and Control Architectural Study and

T.Vladimirova, A da Silva Curiel, MPD’04, ESTEC12

The CORDIC Algorithm1

0

n

i ii

θ δ α−

=

=∑ { }1, 1iδ ∈ −

1 2 ii i i ix x m y δ −+ = −

1 2 ii i i iy y x δ −+ = +

1i i i iz z δ α+ = −

( )( ) 4141

11tanh2lncoshsinhexp

coshsinhtanhcossintan

22

1

−=+=−=

−=+==+=

==

wyandwxwhereyxw

wyandwxwherexywzzz

zzzzz

0

0

n -1

K-1 = 1 / ΠΠΠΠ (1 - 2-2i)1/2 for n iterationsi=0

n -1

K1 = 1 / ΠΠΠΠ (1 + 2-2i)1/2 for n iterationsi=0

K1 (x cos z � y sin z)

K1 (y cos z + x sin z)

0

CIRCULAR (m=1), δδδδ = sgn z

x

y

z

x

y

z

CIRCULAR (m=1), δδδδ = - sgn y

x

y + xz

0

LINEAR (m=0), δδδδ = sgn z LINEAR (m=0), δδδδ = - sgn y

K-1 (x cosh z � y sinh z)

K-1 (y cosh z + x sinh z)

0

HYPERBOLIC (m=-1), δδδδ = sgn z HYPERBOLIC (m=-1), δδδδ = - sgn y

K1 (x2 + y2)1/2

0

z + tan-1(y/x)

0

z + y/x

K-1 (x2 - y2)1/2

z + tanh-1(y/x)

x

y

z

x

y

z

x

y

z

x

y

z

x

y

z

x

y

z

x

y

z

x

y

z

x

y

z

x

y

z

CORDIC equations:

CORDIC modes

)( ii zsign=δ 1,...,2,1,0 −= ni

[ ]Tyx 00,

Composite functions:

Page 13: ChipSat – a System-on-a-chip for Small Satellite Data ...microelectronics.esa.int/mpd2004/ChipSat_MPD_Feb_04.pdf · Satellite Data Processing and Control Architectural Study and

T.Vladimirova, A da Silva Curiel, MPD’04, ESTEC13

CORDIC Algorithm – Domain ExtensionIdenitity Domain

{ sin D if Q mod 4 = 0 }sin(Q 90 + D) = { cos D if Q mod 4 = 1 }

{ -sin D if Q mod 4 = 2 }{ -cos D if Q mod 4 = 3 }

|D| < 90

{ cos D if Q mod 4 = 0 }cos(Q 90 + D) = { -sin D if Q mod 4 = 1 }

{ -cos D if Q mod 4 = 2 }{ sin D if Q mod 4 = 3 }

|D| < 90

tan(Q 90 + D) = sin(Q 90 + D) / cos(Q 90 + D) |D| < 90

tan-1(1/y) = 90 � tan-1 (y) |y| < 1

sinh(Q loge 2 + D) = (2Q/2)[cosh D + sinh D � 2-2Q(cosh D � sinh D)] |D| < loge 2

cosh(Q loge 2 + D) = (2Q /2)[cosh D + sinh D + 2-2Q(cosh D � sinh D)] |D| < loge 2

tanh(Q loge 2 + D) = sinh(Q loge 2 + D) / cosh(Q loge 2 + D) |D| < loge 2

tanh-1(1 � M2-E) = tanh-1(T) + (E/2) loge 2where T = (2 � M � M2-E) / (2 + M � M2-E)

0.17 < T < 0.75for 0.5 ≤≤≤≤ M < 1, E ≥≥≥≥1

exp(Q loge 2 + D) = 2Q(cosh D + sinh D) |D| < loge 2

loge (M2E) = loge M + E loge 2 0.5 ≤≤≤≤ M < 1.0

sqrt(M2E) ={ 2E/2 sqrt(M) if E mod 2 = 0 }{ 2(E+1)/2 sqrt (M/2) if E mod 2 = 1 }

{0.5 ≤≤≤≤ M < 1.0{0.25≤≤≤≤ M/2 < 0.5

(Mx2Ex)(Mz2

Ez) = (MxMz)2Ex + Ez 0.5 ≤≤≤≤ Mz < 1.0

(My2Ey) / (Mx2

Ex) = (My / 2Mx)2Ey � Ex + 1 0.25 ≤≤≤≤ My / 2Mx < 1.0

Page 14: ChipSat – a System-on-a-chip for Small Satellite Data ...microelectronics.esa.int/mpd2004/ChipSat_MPD_Feb_04.pdf · Satellite Data Processing and Control Architectural Study and

T.Vladimirova, A da Silva Curiel, MPD’04, ESTEC14

32-Bit Floating Point Co-Processor Design

Function Group Number

sin 000 000

cos 000 001tan 000 010sinh 000 100

cosh 000 101tanh 000 110

exp 000 111

sin-1 001 000cos-1 001 010

tan-1 010 000

tanh-1 011 000

sqrt 100 000

multiplication 101 000

division 110 000

loge 111 000

Sign bit Exponent Mantissa Number represented

0 0 0 Zero

0 255 0 +∞

1 255 0 -∞

0 or 1 255 Not 0 Not-a-number (NaN)

Prescale000

Prescale001

CORDICModule

Postscale000

Postscale001

FiniteState

MachineGO Done

… …

Top-Level Block-Diagram

IEEE 754 standard compliance

Grouping of Functions

4 arithmetic + 13 elementary functions

Page 15: ChipSat – a System-on-a-chip for Small Satellite Data ...microelectronics.esa.int/mpd2004/ChipSat_MPD_Feb_04.pdf · Satellite Data Processing and Control Architectural Study and

T.Vladimirova, A da Silva Curiel, MPD’04, ESTEC15

CP Integration with LEON SPARC V8The LEON IP core

The Real Time Executive for Multiprocessor Systems (RTEMS) is an open source real-time operating system (RTOS), which provides a high performance environment for embedded systems

LEON with RTOS RTEMS

Page 16: ChipSat – a System-on-a-chip for Small Satellite Data ...microelectronics.esa.int/mpd2004/ChipSat_MPD_Feb_04.pdf · Satellite Data Processing and Control Architectural Study and

T.Vladimirova, A da Silva Curiel, MPD’04, ESTEC16

Interface with the LEON IP Core

Command 31-30 29-25 24-19 18-14 13-5 4-0

cpop1 10 rd 110110 rs1 opc rs2

cpop2 10 rd 110111 rs1 opc rs2

Math Library Example - module 7 of the Whetstone program

Format of the co-processor operate instructionsEnabling co-processor support in a user program

Page 17: ChipSat – a System-on-a-chip for Small Satellite Data ...microelectronics.esa.int/mpd2004/ChipSat_MPD_Feb_04.pdf · Satellite Data Processing and Control Architectural Study and

T.Vladimirova, A da Silva Curiel, MPD’04, ESTEC17

CP Performance Results

Page 18: ChipSat – a System-on-a-chip for Small Satellite Data ...microelectronics.esa.int/mpd2004/ChipSat_MPD_Feb_04.pdf · Satellite Data Processing and Control Architectural Study and

T.Vladimirova, A da Silva Curiel, MPD’04, ESTEC18

Co-processor Summary! A 32-bit maths co-processor VHDL core is developed for a SoC OBC

based on the LEON SPARC V8 IP core -– aimed at speeding up computationally intensive on-board

applications, traditionally implemented in software, e.g ADCS.! The co-processor is fully compliant with the IEEE 754 floating-point

standard and implements 17 functions:– add, sub, mul, div, + sqrt, + sin, cos, tan + sin-1, cos-1, tan-1 +

sinh, cosh, tanh, + tanh-1 + exp, ln.! The co-processor occupies half the size of a Virtex XCV800 chip.! The co-processor operates at 2.5MHz, when integrated with the LEON

IP core, at 25 MHz - when standalone.! The co-processor accelerates execution of floating-point calculations

on the Leon processor: – the Whetstone benchmark runs 70% faster on Leon+RTEMS+CP

compared with the time it takes on Leon+RTEMS.

Page 19: ChipSat – a System-on-a-chip for Small Satellite Data ...microelectronics.esa.int/mpd2004/ChipSat_MPD_Feb_04.pdf · Satellite Data Processing and Control Architectural Study and

T.Vladimirova, A da Silva Curiel, MPD’04, ESTEC19

Credit-Card Size OBC System

FPGA

1.5V Regulator

PROM

SDRAM16MByte

85

54

SpaceWire Connector

CAN Connector

Dual CAN transceiverJTAG connector

Power/PPS connectorHDLC/RS422 Connector

SDRAM16MByte

SDRAM16MByte

SDRAM16MByte

Requirements:Power consumption: 2WMass: 50gSize: 85mm ×××× 54mmTemperature range:

–20°C to +50°C

Components:FPGAMemoryClock GeneratorPower SupplyTransceivers

Xilinx XQR2V30003 x 106 sys. gates; 1.5 V

Actel RTAX2000S2 x 106 sys. gates; 1.5 V

Candidate FPGAs:

Page 20: ChipSat – a System-on-a-chip for Small Satellite Data ...microelectronics.esa.int/mpd2004/ChipSat_MPD_Feb_04.pdf · Satellite Data Processing and Control Architectural Study and

T.Vladimirova, A da Silva Curiel, MPD’04, ESTEC20

Onboard Computer

System on Chip / FPGA

FPU

Boot PROM

EDACController

HDLC1Up/Downlink

HDLC0Up/DownlinkSpaceWireRS422

1.5V Linear Regulator

+3.3V

+3.3V +1.5V

CLK Generator

Configuration PROM

JTAG

Jumper

PPS in PPS out

DMAController

HDLCController

CANController

SpaceWireController

HDLCController

CANSwitch

Dual CAN transceiver

CAN0 CAN1

MemoryController

Timers IRQCtrl

UART

AHB/APB Bridge

AMBA AHB

AMBA APB

Leon CPUI/O port

16MbyteSDRAM

16MbyteSDRAM

Data Memory Parity Memory

16MbyteSDRAM

16MbyteSDRAM

32bit Data bus

Address/Control bus

IP CoresLEON-2 CPU v.1.0.13Math Co-processor

DMA ControllerCAN Controller/Switch

EDAC UnitHDLC Interface RS422 Interface

SpaceWire InterfaceBoot Loader

Credit-Card SizeOBC System

Detailed Diagram

Page 21: ChipSat – a System-on-a-chip for Small Satellite Data ...microelectronics.esa.int/mpd2004/ChipSat_MPD_Feb_04.pdf · Satellite Data Processing and Control Architectural Study and

T.Vladimirova, A da Silva Curiel, MPD’04, ESTEC21

DMA Controller DMA Controller

Priority Arbiter

Channel 0DACK0

EOP0

DREQ0

APB Slave Interface

General Register

DACK1EOP1

DREQ1

DACKnEOPn

DREQn

AMBA AHB Master Interface

DMA Engine

IRQ

AMBA APB Slave Interface

Channel n

Channel 1

Mul

tiple

xer

Virtex-II V2MB1000 development board from Memec:•XC2V1000-4FG456C FPGA• 32 MByte DDR SDRAM (MT46V16M16TG-75 IC from Micron)• 24 & 100 MHz clock generator

HGRANT

HREADY

HRDATA[M-1:0]

HRESP

HCACHE

HBUSREQ

HLOCK

HTANS

HADDR[31:0]

HWDATA[M-1:0]

HWRITE

HSIZE[2:0]

HBURST[2:0]

HPROT[3:0]

PSEL

PENABLE

PADDR[31:0]

PWRITE

PWDATA[31:0]

PRDATA[31:0]

DMA controller

AM

BA

AH

B M

aste

r int

erfa

ce

AM

BA

APB

Sla

ve in

terfa

ce

DREQ[N-1:0]

DACK[N-1:0]

EOP[30:0]

IRQ

RESETn

CLK

N - number of channelsM - width of AMBA AHB

Page 22: ChipSat – a System-on-a-chip for Small Satellite Data ...microelectronics.esa.int/mpd2004/ChipSat_MPD_Feb_04.pdf · Satellite Data Processing and Control Architectural Study and

T.Vladimirova, A da Silva Curiel, MPD’04, ESTEC22

DMA Controller - Features

! Variable number of independent DMA channels (1 up to 32) -priority of the channels is fix; Channel 0 has the highest priority.

! Supports single transfer and block transfer! Supports burst transfer with programmable burst length to maximize

data bandwidth! Programmable data width! Supports both hardware initiated transfer and software initiated

transfer! Several transfer types:

• Peripheral →→→→ Memory• Memory →→→→ Peripheral• Peripheral →→→→ Peripheral• Memory →→→→ Memory

! Interrupt generation on transfer completion or on transfer error! Handles wait state insertion by any slave devices! Supports all slave device responses: OKAY, RETRY, SPLIT, and

ERROR! Designed for the AMBA® 2.0 Bus.

Page 23: ChipSat – a System-on-a-chip for Small Satellite Data ...microelectronics.esa.int/mpd2004/ChipSat_MPD_Feb_04.pdf · Satellite Data Processing and Control Architectural Study and

T.Vladimirova, A da Silva Curiel, MPD’04, ESTEC23

DMA Controller Integration Test

System on Chip

UARTDMA Controller

MemoryController

CPU

DREQ

AMBA AHB Bus

RS232

Page 24: ChipSat – a System-on-a-chip for Small Satellite Data ...microelectronics.esa.int/mpd2004/ChipSat_MPD_Feb_04.pdf · Satellite Data Processing and Control Architectural Study and

T.Vladimirova, A da Silva Curiel, MPD’04, ESTEC24

LEON-2 IP Core and DDR SDRAM

The memory controller integrated in the LEON core does not support DDR SDRAM memory.

DDR SDRAM controller from Array Electronics, Germany(OpenIPCore General Public License) • Integrated bank management; it does not need the CPU to initialise the memory IC.•Adjusted to the LEON memory interface via addition of a glue logic unit.

System on Chip

LEON core

DDR SDRAM controller

DDR SDRAM Bus

User Switch interface

CLK Resetn

UART1 UART2 DSU UART

7-Segment LED Display interface

DCM

IO

RAM CLKCPU CLK

Page 25: ChipSat – a System-on-a-chip for Small Satellite Data ...microelectronics.esa.int/mpd2004/ChipSat_MPD_Feb_04.pdf · Satellite Data Processing and Control Architectural Study and

T.Vladimirova, A da Silva Curiel, MPD’04, ESTEC25

DDR SDRAM Controller

The glue logic output signals to the memory controller are synchronous with a 100 MHz clock. The glue logic output signals to the LEON CPU are synchronous with a 24 MHz clock. Two finite state machines are included in the glue logic block to match the frequencies.

Page 26: ChipSat – a System-on-a-chip for Small Satellite Data ...microelectronics.esa.int/mpd2004/ChipSat_MPD_Feb_04.pdf · Satellite Data Processing and Control Architectural Study and

T.Vladimirova, A da Silva Curiel, MPD’04, ESTEC26

Reconfigurability

Server

Client 1 Client 2 Client n

Request

Respond

TCP/IP

On-Board SoCIn Virtex FPGA

TCP/IP Server

XHWIF Server

TCP/IP Client

XHWIF Net

TCP/IP Client

XHWIF Net

TCP/IP Client

XHWIF Net

Remote Hardware Configuration

! The SoC-OBC can be reconfigured remotely if implemented on a VirtexFPGA.

! The Java Runtime Environment JBits is used communicating with the ground station via Internet protocols (TCP/IP).

! The RSC-OBC acts as an equivalent to an application server allowing client Java programs to run on the server and use its resource.

Page 27: ChipSat – a System-on-a-chip for Small Satellite Data ...microelectronics.esa.int/mpd2004/ChipSat_MPD_Feb_04.pdf · Satellite Data Processing and Control Architectural Study and

06/02/2004T.Vladimirova, A da Silva Curiel, MPD’04, ESTEC

27

Summary of SoC Research! High-density FPGAs can serve as an appropriate medium for SoC

implementation.! A downsized configuration of the single-chip OBC consisting of

LEON+CAN+EDAC has been implemented on a Virtex FPGA.! The developed CCSDS s/w + single-chip OBC + a thin-layer h/w interface

can provide a cost-effective and flexible communication solution for low-cost small satellites.

! A 32-bit floating-point co-processor based on the CORDIC algorithm which is IEEE 754 compliant has been developed and integrated with the LEON CPU: " 17 functions - add, sub, mul and div + 13 elementary functions

! A credit-card size OBC system based on the SoC OBC has been specified.

! A 32-channel DMA controller has been designed and incorporated with the LEON CPU together with a DDR SDRAM controller.

! A feasibility study on the SoC remote reconfigurability via TCP/IP protocols using JBits is in progress.

! Specialised peripheral cores e.g, an image compression core, are in a process of development.

Page 28: ChipSat – a System-on-a-chip for Small Satellite Data ...microelectronics.esa.int/mpd2004/ChipSat_MPD_Feb_04.pdf · Satellite Data Processing and Control Architectural Study and

T.Vladimirova, A da Silva Curiel, MPD’04, ESTEC28

Acknowledgements! The research results included in this presentation would not have

been achieved without the financial support received from the following sponsors:– ESA– SSTL

! Thanks are due to the following individuals for their help and encouragement:– Hans Tiggeler – Saros Technology Ltd.– Sandi Habinc - Gaisler Research– Roland Weigand - ESA

! The following past and present students have contributed to thisresearch during their project work at the Surrey Space Centre, University of Surrey: – Jackie Rutter– Daixun Zheng– David Eamey– Sven Keller– Michael Meier

Page 29: ChipSat – a System-on-a-chip for Small Satellite Data ...microelectronics.esa.int/mpd2004/ChipSat_MPD_Feb_04.pdf · Satellite Data Processing and Control Architectural Study and

T.Vladimirova, A da Silva Curiel, MPD’04, ESTEC29

References

1. H.Tiggeler, T.Vladimirova, J.Gaisler. “Designing a System-on-a-chip for Small Satellite Data Processing and Control”, IIE Magazine on Engineering Technology, vol. 4, N 6, June 2001, pp. 38-42

2. I.Rutter, T.Vladimirova, H.Tiggeler. “A CCSDS Software System for a Single-Chip On-Board Computer of a Small Satellite” – 15th AIAA/Utah Sate University Conference on Small Satellites, Utah, USA, August 13-16 2001, SSC01-VI-4

3. D. Zheng, T. Vladimirova and Prof Sir M. Sweeting. “A CCSDS-Based Communication System for Single Chip On-Board Computer”, MAPLD’02 Conference, D5, September 2002

4. D.Zheng, T.Vladimirova, H.Tiggeler, M.N.Sweeting. “Reconfigurable Single-Chip On-Board Computer for a Small Satellite”, 52nd International Astronautical Congress, 2001, IAF-01-U3.09.

5. T. Vladimirova, D. Eamey, S. Keller and Prof Sir M. Sweeting. “Floating-Point Mathematical Co-Processor for a Single-Chip On-Board Computer”, MAPLD’03 Conference, D5, September 2003

6. T. Vladimirova, Prof Sir M. Sweeting. “System-on-a-Chip Development for Small Satellite Onboard Data Handling,” JACIC, AIAA, January 2004

7. M. Meier. “Credit-Card Size Onboard Computer”, Internal Report, SSC/SSTL, September 2003

8. M. Meier. “DMA Controller for a SoC OBC”, Internal Report, SSC/SSTL, 2003

Page 30: ChipSat – a System-on-a-chip for Small Satellite Data ...microelectronics.esa.int/mpd2004/ChipSat_MPD_Feb_04.pdf · Satellite Data Processing and Control Architectural Study and

T.Vladimirova, A da Silva Curiel, MPD’04, ESTEC30