Top Banner
Energy G eneration C arbon M anagem ent Methodology
35

Chen, T.; Barton, S.; Binyamin, G.; Gao, Z.; Zhang, Y.; Kim, H.-H.; Heller, A. J. Am. Chem. Soc. 2001, 123, 8630-8631. Miniature Biofuel Cells.

Dec 16, 2015

Download

Documents

Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Chen, T.; Barton, S.; Binyamin, G.; Gao, Z.; Zhang, Y.; Kim, H.-H.; Heller, A. J. Am. Chem. Soc. 2001, 123, 8630-8631. Miniature Biofuel Cells.

Energy Generation

Carbon Management

Methodology

Page 2: Chen, T.; Barton, S.; Binyamin, G.; Gao, Z.; Zhang, Y.; Kim, H.-H.; Heller, A. J. Am. Chem. Soc. 2001, 123, 8630-8631. Miniature Biofuel Cells.

Energy Generation

Biofuel Cells

Feedstocks

EtOH, H2, Biodiesel, CH4

Reactions

Page 3: Chen, T.; Barton, S.; Binyamin, G.; Gao, Z.; Zhang, Y.; Kim, H.-H.; Heller, A. J. Am. Chem. Soc. 2001, 123, 8630-8631. Miniature Biofuel Cells.

O

OH

OH

OH

OH

HO

O

O

OH

OH

OH

HO

Os+3Os+2

Os+3Os+2

H2O O2

e

7µm carbon fiber

7µm carbon fiber

laccase(ox) laccase(red)

glucose oxidase

(ox)

glucose oxidase

(red)

400µmanode

cathode

Chen, T.; Barton, S.; Binyamin, G.; Gao, Z.; Zhang, Y.; Kim, H.-H.; Heller, A. J. Am. Chem. Soc. 2001, 123, 8630-8631.

Miniature Biofuel Cells

Page 4: Chen, T.; Barton, S.; Binyamin, G.; Gao, Z.; Zhang, Y.; Kim, H.-H.; Heller, A. J. Am. Chem. Soc. 2001, 123, 8630-8631. Miniature Biofuel Cells.

O

O CO2

H

O2H2O

marine sediment

seawater

e

Desulfuromonas acetoxydans

Desulfuromonas acetoxidans

anode

cathode

Microbial Fuel Cells

Bond, D. R.; Holmes, D. E.; Tender, L. M.; Lovley, D. R. Science 2002, 295, 483-485.Reimers, C. E.; Tender, L. M.; Fertig, S.; Wang, W. Environ. Sci. Technol. 2001,35, 192-195.http://math.usc.edu/~grosen/mudfuelcell/Park, D. H.; Zeikus, J. G. Appl. Environ. Microbiol. 2000, 66, 1292-1297.

Page 5: Chen, T.; Barton, S.; Binyamin, G.; Gao, Z.; Zhang, Y.; Kim, H.-H.; Heller, A. J. Am. Chem. Soc. 2001, 123, 8630-8631. Miniature Biofuel Cells.

CO2

O

OH

OH

OH

OH

HO

OOH

OHHO

O

OH

OH

OH

OH

starch

hemicellulose

cellulose

CH3CH2OH or H2

D-glucose

D-xylose

L-arabinose

HO

Page 6: Chen, T.; Barton, S.; Binyamin, G.; Gao, Z.; Zhang, Y.; Kim, H.-H.; Heller, A. J. Am. Chem. Soc. 2001, 123, 8630-8631. Miniature Biofuel Cells.

O

H

HOOHH

OHH

1

HO

O

H

HOOHH

HH

O

OH

H

H

O O

H

HOOHH

OHH

H

O O

H

HOOHH

OHH

H

H

O

amylose

4

1

1

4

4

1

O

H

HOOHH

OHH

1

HO

O

H

HOOHH

HH

O

OH

H

O

4

1

O

H

HOOHH

OHH

H

H

O O

H

HOOHH

OHH

H

H

O O

H

HOOHH

HH

H

O

4

1

1

4

4

1O

CH2

H

6

1,6-link(a branch point)

amylopectin

4

H

4

1,4-link

Page 7: Chen, T.; Barton, S.; Binyamin, G.; Gao, Z.; Zhang, Y.; Kim, H.-H.; Heller, A. J. Am. Chem. Soc. 2001, 123, 8630-8631. Miniature Biofuel Cells.

O

H

O

H

HO

HOHH

OH

O

H

H

HH

HO

H

O

OH

H

O

H

H

HH

HO

H

O

OH

O

H

O

H

HO

HOHH

OHH

O

OH OH1

4

6

4 6 6

1 4

1 4

cellobiose unit

cellulose chain

1

n

6

Cellulase(1) Improve catalytic activity(2) Eliminate feedback inhibition

Cellulose SynthaseTemperature-sensitive rsw1 rsw2 alleles produce noncrystalline, soluble cellulose in Arabidopsis.

Lane, D. R.; Wiedemieier, A.; Peng, L.; Hofte, H.; Vernhettes, S.; Desprez, T.; Hocart, C. H.; Birch, R. J.;Baskin, T. I.; Burn, J. E.; Arioli, T.; Betzner, A. S.; Williamson, R. E. Plant Physiol. 2001, 126, 278-288.Arioli, T.; Peng, L.; Betzner, A. s.; Burn, J.; Wittke, W.; Herth, W. Camilleri, C.; Hofte, H.; Plazinski, J.;Birch, R.; Cook, A.; Glover, J.; Redmond, J.; Williamson, R. E. Science 1998, 279, 717-720.

Page 8: Chen, T.; Barton, S.; Binyamin, G.; Gao, Z.; Zhang, Y.; Kim, H.-H.; Heller, A. J. Am. Chem. Soc. 2001, 123, 8630-8631. Miniature Biofuel Cells.

O

O

HOOH

OO O

OH

O O

HOOH

OO

O

HOOH

OO O

OH

O O

HOOH

OO

OH

OHO

O

CH3O

HO

HO

CH3O

O

O

O

OH

OH

1

1

heteroxylan

3

44

Approximately 80% of the backbone xylose residues are substituted by side chains.Ferulic acid is attached to arabinose side chains.Dimerization of the ferulic acids contributes to the cross-linking.

Saulnier, L.; Thibault, J.-F. J. Sci. Food Agric. 1999, 79, 396-402.Zaldivar, J.; Ingram, L. O. Biotechnol. Bioeng. 1999, 66, 203-210.

Page 9: Chen, T.; Barton, S.; Binyamin, G.; Gao, Z.; Zhang, Y.; Kim, H.-H.; Heller, A. J. Am. Chem. Soc. 2001, 123, 8630-8631. Miniature Biofuel Cells.

CH3CH2OH

Carbon source product

D-glucose D-xylose L-arabinose

Zymomonas mobilis

Saccharomyces cerevisiae

Escherichia coli

+

+

+ + +

+

+

_

_

_

_

_

H3C CO2H

O

CO2H3C H

O

NADH

CH3CH2OH

BioEthanol: Before Biotechnology

fermentablecarbon source

Pdc Adh

Page 10: Chen, T.; Barton, S.; Binyamin, G.; Gao, Z.; Zhang, Y.; Kim, H.-H.; Heller, A. J. Am. Chem. Soc. 2001, 123, 8630-8631. Miniature Biofuel Cells.

CH3CH2OH

carbon source product

D-glucose D-xylose L-arabinose

Zymomonas mobilis

Saccharomyces cerevisiae

Escherichia coli

+

+

+ + +

+

+

+

+

+

+

+

BioEthanol: After Biotechnology

H3C CO2H

O

CO2H3C H

O

NADH

CH3CH2OHfermentablecarbon source

Pdc Adh

Ingram, L. O.; Conway, T.; Flavio, A. U.S. Patent 5 000 000, 1991.Zhang, M.; Eddy, C.; Deanda, K.; Finkelstein, F.; Picataggio, S. Science 1995, 267, 240-243.Walfridsson, M.; Hallborn, J.; Penttila, M.; Keranen, S.; Hahn-Hagerdahl, B. Appl. Environ. Microbiol.

1995, 4184-4190.Ho, N.W.Y.; Chen, Z.; Brainard, A. P. Appl. Environ. Microbiol. 1998, 64, 1852-1859.

Page 11: Chen, T.; Barton, S.; Binyamin, G.; Gao, Z.; Zhang, Y.; Kim, H.-H.; Heller, A. J. Am. Chem. Soc. 2001, 123, 8630-8631. Miniature Biofuel Cells.

H2O

O2

H2O

O2 CO2

[CH2O]2 NADPH

H2

H2

Direct Biophotolysis

Photosystems Ferredoxin Hydrogenase

Indirect Biophotolysis

Photosystems Ferredoxin Hydrogenase

Bio Hydrogen

Benemann, J. Nature Biotechnol. 1996, 14, 1101-1103.

Light Reactions

Page 12: Chen, T.; Barton, S.; Binyamin, G.; Gao, Z.; Zhang, Y.; Kim, H.-H.; Heller, A. J. Am. Chem. Soc. 2001, 123, 8630-8631. Miniature Biofuel Cells.

H2

2H+

H2ase

CO2H

O

OH

O

CO2

Fdox

Fdred

carbonsource

ClostridiaCitrobacterBacillusEscherichia

Options: 1) cogeneration

2) organic waste streams

3) stationary phase metabolism

Bio Hydrogen

Dark Reaction

Van Ginkel, S.; Sung, S.; Lay, J.-J. Environ. Sci. Technol. 2001, 35, 4726-4730.Woodward, J.; Orr, M.; Cordray, K.; Greenbaum Nature 2000, 405, 1014-1015.Adams, M. W. W.; Stiefel, E. I. Science 1998, 282, 1842-1843.

Page 13: Chen, T.; Barton, S.; Binyamin, G.; Gao, Z.; Zhang, Y.; Kim, H.-H.; Heller, A. J. Am. Chem. Soc. 2001, 123, 8630-8631. Miniature Biofuel Cells.

O

O

OX

O

"R

R'

O

ROH

HOOH

OH

RO2C(CH2)7CH CH(CH2)7CH3

RO2CCH2CH2(CH2)12CH3

RO2CCH2CH2CH2CH2(CH2)12CH3

RO2C(CH2)7CH CH

CH2 CH

CH(CH2)4CH3

RO2C(CH2)7CH CH

CH2 CH

CH

CH2 CH

CHCH2CH3

caustic soda160 C

palmitate ester

stearate ester

oleate ester

linoleate ester

linolenate ester

glycerol

Bio Diesel

Murray, S. Wall Str. J. 2002 (May 9), CCXXIX (91), A4.

Page 14: Chen, T.; Barton, S.; Binyamin, G.; Gao, Z.; Zhang, Y.; Kim, H.-H.; Heller, A. J. Am. Chem. Soc. 2001, 123, 8630-8631. Miniature Biofuel Cells.

H2O

H+

H2O

H+

CH3-S-CoM + HS-CoB

CoM-S-S-CoB

CH3-S-CoM

CO2 + MF

2e-, 2H+

formyl-MF

formyl-MF + H4MPT formyl-H4MPT + MF

formyl-H4MPT methenyl-H4MPT+

methenyl-H4MPT+ + F420H2 methylene-H4MPT + F420

methylene-H4MPT + F420H2 methyl-H4MPT + F420

methyl-H4MPT + HSCoM

CH4 + CoM-S-S-CoB

2e-, 2H+

HSCoM + HSCoB

CH4

Ferry, J. FEMS Microbiol. Rev. 1999, 23, 13-38.

Page 15: Chen, T.; Barton, S.; Binyamin, G.; Gao, Z.; Zhang, Y.; Kim, H.-H.; Heller, A. J. Am. Chem. Soc. 2001, 123, 8630-8631. Miniature Biofuel Cells.

Pyrococus furiosus

1 atm CO90 °C

B2H6

1 atm CO40 °C

Clostridium thermoaceticum

Ni or 2CuO•Cr2O3

200-300 atm H2150-250 °CRCO2H RCH2OH

Reactions:

Reduction

Huber, C.; Skopan, H.; Feicht, R.; White, H.; Simon, H. Arch. Microbiol. 1995, 164, 110. Simon, S.; White, H.; Lebertz, H.; Thanos, I. Angew. Chem. Int. Ed. Engl. 1987, 26, 785.White, H.; Strobl, G.; Feicht, R.; Simon, H. Eur. J. Biochem. 1989, 184, 89. White, H.; Feicht, R.; Huber, C.; Lottspeich, F.; Simon, H. Biol. Chem. Hoppe-Seyler 1991, 372, 999.Johnson, M. K.; Rees, D.C.; Adams, M.W.W. Chem. Rev. 1996, 96, 2817. Kletzin, A.; Adams, M. W. W. FEMS Microbiol. Rev. 1996, 18, 5.Adams, M. W. W.; Kletzin, A. Adv. Prot. Chem. 1996, 48, 101.Fraisse, L.; Simon, H. Arch. Microbiol. 1988, 150, 381.Huber, C.; Caldeira, J.; Jongejan, J. A.; Simon, H. Arch. Microbiol. 1994, 162, 303.van den Ban, E. C. D.; Willemen, H. M.; Wassink, H.; Laane, C.; Haaker, H. Enz. Microb. Technol. 1999, 25, 251.

Page 16: Chen, T.; Barton, S.; Binyamin, G.; Gao, Z.; Zhang, Y.; Kim, H.-H.; Heller, A. J. Am. Chem. Soc. 2001, 123, 8630-8631. Miniature Biofuel Cells.

NADH NAD

H2O

CH3OHCH4 + O2

methane monooxygenase

Reactions:

Oxidation

Merkx, M.; Kopp, D. A.; Sazinsky, M. H.; Blazyk, J. L.; Muller, J.; Lippard, S. J.Ang. Chem. Int. Ed. 2001, 40, 2782-2807.

Page 17: Chen, T.; Barton, S.; Binyamin, G.; Gao, Z.; Zhang, Y.; Kim, H.-H.; Heller, A. J. Am. Chem. Soc. 2001, 123, 8630-8631. Miniature Biofuel Cells.

Carbon Management

CO2 Fixation

CO2 Immobilization

Page 18: Chen, T.; Barton, S.; Binyamin, G.; Gao, Z.; Zhang, Y.; Kim, H.-H.; Heller, A. J. Am. Chem. Soc. 2001, 123, 8630-8631. Miniature Biofuel Cells.

CH2OPO32-

C

C

O

OH

C

H

H

CH2OPO32-

OH

CH2OPO32-

C

C

OH

OH

CH

CH2OPO32-

OH

CO2

O2

CH2OPO32-

C

C

CO2-

O

CH

CH2OPO32-

OH

HO H2O

CH2OPO32-

C

C

O

O

CH

CH2OPO32-

OH

HO OH H2O

CH2OPO32-

C

CO2-

OHH

CH2OPO32-

CO2-

CO2-

CH

CH2OPO32-

OH

ribulose 1,5-bisphosphate enediol

2

3-phosphoglycerate

3-phosphoglycerate

phosphoglycolate

CO2 Fixation

ribulose 1,5-bisphosphate carboxylas/oxygenase

Can Rubisco be improved?Stemmer, W. P.; Subramanian, V.; Selifonov, S. WO 00/2808, 2000.

Page 19: Chen, T.; Barton, S.; Binyamin, G.; Gao, Z.; Zhang, Y.; Kim, H.-H.; Heller, A. J. Am. Chem. Soc. 2001, 123, 8630-8631. Miniature Biofuel Cells.

CO2 Fixation

CO2-

OPO32-

HCO3-

CO2-

O-O2C P

HO O-O-

O+

phosphoenolpyruvate oxaloacetate

+

phosphoenolpyruvate carboxylase

pyruvate carboxylase

NHHN

S

O

Enzyme

NHN

S

O

Enzyme

-O

O

ATP

CO2-

O

HCO3-

SCoA

O Mg2+

NHN

S

O

Enzyme

-O

O

NHHN

S

O

Enzyme

ADP

CO2-

O-O2C

PHO O-

O-

O+ + + +

+

pyruvate

+

oxaloacetate

Peters-Wendisch, P. G.; Schiel, B.; Wendisch, V. F.; Katsoulidis, E.; Mockel, B.; Sahm, H.; Eikmanns, B. J.J. Mol. Microbiol. Biotechnol. 2001, 3, 295-300.

Vemuri, G. N.; Eiteman, M. A.; Altman, E. Appl. Environ. Microbiol. 2002, 68, 1715-1727.

Page 20: Chen, T.; Barton, S.; Binyamin, G.; Gao, Z.; Zhang, Y.; Kim, H.-H.; Heller, A. J. Am. Chem. Soc. 2001, 123, 8630-8631. Miniature Biofuel Cells.

CO2

O

O

O

O

O

OH

HO OHOH

OHOH

OH

O

starch

lactic acidglucose

Lactobacillus

ring-openingpolymerization

low molecular wt.polylactide prepolymer

high molecular wt.polylactide polymer

lactidedimer

H O CH

CH3

n

C OH

O

H O CH

CH3

n

C OH

O

CO2 Immobilization

PLA

Gruber, P. R. In Carbon Management: Implications for R&D in the Chemical Sciences and Technology;National Academy Press: Washington, 2001, Chap 11, p 166-184.

Kharas, G. B.; Sanchez-Riera, F.; Severson, D. K. in Plastics from Microbes; Mobley, D. P., Ed.; Hanser:New York, 1994, Chap 4, p 93137.

Page 21: Chen, T.; Barton, S.; Binyamin, G.; Gao, Z.; Zhang, Y.; Kim, H.-H.; Heller, A. J. Am. Chem. Soc. 2001, 123, 8630-8631. Miniature Biofuel Cells.

CO2

NH

NH2O

O

OH

HO OHOH

OH

NH

O

N CH2

H

CO2

NH3

NH3

C

O

starch

L-lysineglucose

+

-

+

5 n

-aminocaprolactam caprolactam nylon 6

CO2 Immobilization

BioNylon 6

Page 22: Chen, T.; Barton, S.; Binyamin, G.; Gao, Z.; Zhang, Y.; Kim, H.-H.; Heller, A. J. Am. Chem. Soc. 2001, 123, 8630-8631. Miniature Biofuel Cells.

CO2

CO2

H

N CH2

H

O CH

CH3

C

O

OHOH

O

NH

O

lactic acid

n

5 n

caprolactamBioNylon 6

PLA

monomerrecovery

bio-degradation

bio-degradation

monomerrecovery

C

O

OH

x x

Page 23: Chen, T.; Barton, S.; Binyamin, G.; Gao, Z.; Zhang, Y.; Kim, H.-H.; Heller, A. J. Am. Chem. Soc. 2001, 123, 8630-8631. Miniature Biofuel Cells.

If 1 x 109 lb of Nylon 6 were made from glucose:

petroleum equivalent 9 x 106 barrels of petroleum

If asphalt was replaced with BioNylon 6:

20 x 106 MT/yr of asphalt1.3 kg petroleum/kg asphalt

petroleum equivalent 140 x 106 barrels of petroleum

Lesson:(a) large-volume commodity chemical(b) multiple commodity chemicals(c) expand individual commodity chemical volumes

Page 24: Chen, T.; Barton, S.; Binyamin, G.; Gao, Z.; Zhang, Y.; Kim, H.-H.; Heller, A. J. Am. Chem. Soc. 2001, 123, 8630-8631. Miniature Biofuel Cells.

HO OH

OH

CO2H

HO2C

OHCH2 CH2O

R

N CH2

H

N C

H

CH2 C

O O

C

O

C O

O

glucose

1,3-propanediolnCorterra (Shell)

Sorona (Dupont)

glucose

adipic acid

( )6

( )4

Nylon 66

glucose

n

Bakelite resinsNovolac resins

CO2H

HOO C O

OO C C

O Oglucose

Xydar

CH2 O( )3

Skraly, F. A.; Lytle, B. L.; Cameron, D. C. Appl. Environ. Microbiol. 1998, 64, 98-105.Niu, W.; Draths, K. M.; Frost, J. W. Biotechnol. Prog. 2002, 18, 201-211.Gibson, J. M.; Thomas, P. S.; Thomas, J. D.; Barker, J. L.; Chandran, S. S.; Harrup, M. K.;

Draths, K. M.; Frost, J. W. Ang. Chemie Int. Ed. 2001, 40, 1945-1948.Amaratunga, M.; Lobos, J. H.; Johnson, B. F.; Williams, E. D. U. S. Patent 6 030 819, 2000.

Page 25: Chen, T.; Barton, S.; Binyamin, G.; Gao, Z.; Zhang, Y.; Kim, H.-H.; Heller, A. J. Am. Chem. Soc. 2001, 123, 8630-8631. Miniature Biofuel Cells.

Methodology

Metabolic Engineering

Directed Evolution

Page 26: Chen, T.; Barton, S.; Binyamin, G.; Gao, Z.; Zhang, Y.; Kim, H.-H.; Heller, A. J. Am. Chem. Soc. 2001, 123, 8630-8631. Miniature Biofuel Cells.

HO OH

OH

H2O3PO OHOH

CO2CO2H

HO2CO

glycerolglycerolfacilitator ATP ADP glycerol

3-phosphate

oxaloacetateATP ADPcarbondioxide

C6

C5

C5

C3

C1

ADPATP

D-xylose

O

OHOH

OHOH

cytoplasmperiplasm

O

OH

OH

OH

OHH2O3PO

D-glucose

O

OH

OHHO

OH

OH

pyruvic acidPEP

O

HOOH

OHHO

L-arabinose

carbohydrate phospho- transferase

high-affinity permease

D-glucose 6-phosphate

ATP ADP

high-affinity permease

H2O3PO OHO

OH

OH

D-xylulose 5-phosphate

ATP

ADPXylA XylB

AraD

ATP ADP

AraA

AraB

pyruvic acid

Yield and Titer

Page 27: Chen, T.; Barton, S.; Binyamin, G.; Gao, Z.; Zhang, Y.; Kim, H.-H.; Heller, A. J. Am. Chem. Soc. 2001, 123, 8630-8631. Miniature Biofuel Cells.

D-glucose

O

OHHO OH

OHOH

O

OHHO OH

OHOH

O

OHHO OH

OHOH

O

OH

OH

OHOH

H2O3PO

D-glucose 6-phosphate

periplasm cytoplasm

carbohydratephosphotransferase system

facilitatedglucosediffusion

pts

glf

CO 2H

OPO 3H2

CO 2H

O

CO 2

glk

ADP

ATP

PEP pyruvate

Yield and Titer

Patnaik, R.; Liao, J. C. Appl. Environ. Microbiol. 1994, 60, 3903-3908Snoep, J. L.; Arfman, N.; Yomano, L. P.; Fliege, R. K.; Conway, T.;

Ingram, L. O. J. Bacteriol. 1994, 176, 2133.

Page 28: Chen, T.; Barton, S.; Binyamin, G.; Gao, Z.; Zhang, Y.; Kim, H.-H.; Heller, A. J. Am. Chem. Soc. 2001, 123, 8630-8631. Miniature Biofuel Cells.

Yield and Titer

Product Toxicity

Product Export

“A New Type of Transporter with a New Type of Cellular Function: L-Lysine Export from Corynebacterium glutamicum” Vrljic, M.; Sahm, H.; Eggeling, L. Molecular Microbiol. 1996, 22, 815.

“Unbalance of L-Lysine Flux in Corynebacterium glutamicum and Its Use for the Isolation of Excretion Defective Mutants” Vrljic, M.; Kronemeyer, W.; Sahm, H.; Eggeling, L. J. Bacteriol. 1995, 177, 4021.

mechanism-based

osmotolerance

Page 29: Chen, T.; Barton, S.; Binyamin, G.; Gao, Z.; Zhang, Y.; Kim, H.-H.; Heller, A. J. Am. Chem. Soc. 2001, 123, 8630-8631. Miniature Biofuel Cells.

0

10

20

30

40

50

60

0 12 18 24 30 36 42 480

10

20

30

40

50

glucose

O

OH

OHOH

HO OH OHHO OH

CO2HHO

quinate

QP1.1/pKD12.138

Glucose-Rich Culture of QP1.1/pKD12.138

QA

, DH

Q (

g/L

)

dry

ce

ll w

eig

ht

(g/L

)

time (h)

25 g/L 7 %

titer:yield:

OHOH

CO2HHO

O

3-dehydroquinate

46 g/L14 %

Catalytic Lifetime

Kolter, R. J. Bacteriol. 1999, 181, 697-699.Schellhorn, H. E.; Audia, J. P.; Wei, L. I. C.; Chang, L. J. Bacteriol. 1998, 180, 6283-6291.Rowe, D. C. D.; Summers, D. K. Appl. Environ. Microbiol. 1999, 65, 2710-2715.Yamada, M.; Talukder, A. A.; Nitta, T. J. Bacteriol. 1999, 181, 1838-1846.

Page 30: Chen, T.; Barton, S.; Binyamin, G.; Gao, Z.; Zhang, Y.; Kim, H.-H.; Heller, A. J. Am. Chem. Soc. 2001, 123, 8630-8631. Miniature Biofuel Cells.

Transcriptome and Proteome Analysis

mRNA cDNA hybridization radiolabeled cDNAw/ arrayed genomic ORFs

transcript quantitation

reverse

transcriptase

[-33P]-dCTP

Tao, H.; Gonzalez, R.; Martinez, A.; Rodriguez, M.; Ingram, L. O.; Preston, J. F.; Shanmugam, K. T.J. Bacteriol. 2001, 183, 2979-2988.

Gonzalez, R.; Tao, H.; Shanmugam, K. T.; York, S. W.; Ingram, L. O. Biotechnol. Prog. 2002, 18, 6-20.

Page 31: Chen, T.; Barton, S.; Binyamin, G.; Gao, Z.; Zhang, Y.; Kim, H.-H.; Heller, A. J. Am. Chem. Soc. 2001, 123, 8630-8631. Miniature Biofuel Cells.

Expression

Promoters

inducers

host range

mRNA stability

“all or none”

Transcription/Translation

codon usage

folding

proteolysis

Smolke, C. D.; Khlebnikov, A.; Keasling, J. D. Appl. Microbiol. Biotechnol. 2001, 57, 689-696.Jahng, D.; Wood, T. K. Appl. Environ. Microbiol. 1994, 60, 2473-2482.

Page 32: Chen, T.; Barton, S.; Binyamin, G.; Gao, Z.; Zhang, Y.; Kim, H.-H.; Heller, A. J. Am. Chem. Soc. 2001, 123, 8630-8631. Miniature Biofuel Cells.

xx x

x xx

xx

xxxx

xx x

fragmentwith DNAseI

xx x

x xx

xx

xxxx

xx x

reassemblefragments

xx x

x xx

xx

xxxx

xx x

xxx x x xxx

select bestrecombinants

repeat for multiple cycles

Stemmer, W. P. Proc. Natl. Acad. Sci. 1994, 91, 10747-10751Zhao, H.; Giver, L.; Shao, Z.; Affholter, J. A.; Arnold, F. H. Nature Biotechnol. 1998, 16, 258-261.

Gene Shuffling

Page 33: Chen, T.; Barton, S.; Binyamin, G.; Gao, Z.; Zhang, Y.; Kim, H.-H.; Heller, A. J. Am. Chem. Soc. 2001, 123, 8630-8631. Miniature Biofuel Cells.

Citrobacter freundii

Klebsiella pneumoniaeEnterobacter cloacae

Yersinia enterocolitica

Cephalosporinase Genes

8-fold increased resistance8-fold increased resistance8-fold increased resistance

8-fold increased resistance

Plate on moxalactam Select best mutants

Single gene shuffling

Multi-gene shuffling

Library of point mutants

Library of chimaeras

Plate on MoxalactamSelect best mutant:270-540-fold increased resistance

Family Shuffling

Crameri, A.; Raillard, S.-A.; Bermudez, E.; Stemmer, W. P. C. Nature 1998, 391, 288-291.

Page 34: Chen, T.; Barton, S.; Binyamin, G.; Gao, Z.; Zhang, Y.; Kim, H.-H.; Heller, A. J. Am. Chem. Soc. 2001, 123, 8630-8631. Miniature Biofuel Cells.

SF1

SF21

NTGNTGNTGNTGNTGNTGNTGNTGNTGNTGUVUVUVNSHNO2HNO2HNO2UVHNO2HNO2

GS1, GS2

GS

GS

NTG

Classicalstrainimprovement

(20 years106 assays)

Genomeschuffling

(1 year24,000 assays)

Strain

SF1

SF21

GS1

GS2

titre (rel. g l-1)

+_

+_+_

+_ 0.11.0

6.2

8.1

6.2 +_

2.4

1.2

1.2

Genome Shuffling

Zhang, Y.-X.; Perry, K.; Vinci, V. A.; Powell, K.; Stemmer, W. P. C.; del Cardayre, S. B. Nature 2002, 415, 644-646.

Page 35: Chen, T.; Barton, S.; Binyamin, G.; Gao, Z.; Zhang, Y.; Kim, H.-H.; Heller, A. J. Am. Chem. Soc. 2001, 123, 8630-8631. Miniature Biofuel Cells.

Energy Generation

Carbon Management

Methodology