Top Banner
CHE 242 Unit V Structure and Reactions of Alcohols, Ethers and Epoxides; Basic Principles of NMR Spectroscopy CHAPTER TEN Terrence P. Sherlock Burlington County College 2004
38

CHE 242 Unit V Structure and Reactions of Alcohols, Ethers and Epoxides; Basic Principles of NMR Spectroscopy CHAPTER TEN Terrence P. Sherlock Burlington.

Dec 16, 2015

Download

Documents

Gloria Douglas
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: CHE 242 Unit V Structure and Reactions of Alcohols, Ethers and Epoxides; Basic Principles of NMR Spectroscopy CHAPTER TEN Terrence P. Sherlock Burlington.

CHE 242Unit V

Structure and Reactions of Alcohols, Ethers and

Epoxides; Basic Principles of NMR Spectroscopy

CHAPTER TEN

Terrence P. Sherlock

Burlington County College

2004

Page 2: CHE 242 Unit V Structure and Reactions of Alcohols, Ethers and Epoxides; Basic Principles of NMR Spectroscopy CHAPTER TEN Terrence P. Sherlock Burlington.

Chapter 10 2

Classify these:

CH3 CH

CH3

CH2OH CH3 C

CH3

CH3

OH

OH

CH3 CH

OH

CH2CH3 =>

Page 3: CHE 242 Unit V Structure and Reactions of Alcohols, Ethers and Epoxides; Basic Principles of NMR Spectroscopy CHAPTER TEN Terrence P. Sherlock Burlington.

Chapter 10 3

Name these:

CH3 CH

CH3

CH2OH

CH3 C

CH3

CH3

OH

CH3 CH

OH

CH2CH32-methyl-1-propanol

2-methyl-2-propanol

2-butanol

OH

Br CH3

3-bromo-3-methylcyclohexanol =>

Page 4: CHE 242 Unit V Structure and Reactions of Alcohols, Ethers and Epoxides; Basic Principles of NMR Spectroscopy CHAPTER TEN Terrence P. Sherlock Burlington.

Chapter 10 4

Naming Priority

• Acids• Esters• Aldehydes• Ketones• Alcohols• Amines

• Alkenes• Alkynes• Alkanes• Ethers• Halides

=>

Page 5: CHE 242 Unit V Structure and Reactions of Alcohols, Ethers and Epoxides; Basic Principles of NMR Spectroscopy CHAPTER TEN Terrence P. Sherlock Burlington.

Chapter 10 5

Hydroxy Substituent

• When -OH is part of a higher priority class of compound, it is named as hydroxy.

• Example:

CH2CH2CH2COOH

OH

4-hydroxybutanoic acid

also known as GHB

=>

Page 6: CHE 242 Unit V Structure and Reactions of Alcohols, Ethers and Epoxides; Basic Principles of NMR Spectroscopy CHAPTER TEN Terrence P. Sherlock Burlington.

Chapter 10 6

Glycols

• 1, 2 diols (vicinal diols) are called glycols.• Common names for glycols use the name of

the alkene from which they were made.

CH2CH2

OH OH

CH2CH2CH3

OH OH

1,2-ethanediol

ethylene glycol

1,2-propanediol

propylene glycol =>

Page 7: CHE 242 Unit V Structure and Reactions of Alcohols, Ethers and Epoxides; Basic Principles of NMR Spectroscopy CHAPTER TEN Terrence P. Sherlock Burlington.

Chapter 10 7

Naming Phenols

• -OH group is assumed to be on carbon 1.• For common names of disubstituted phenols,

use ortho- for 1,2; meta- for 1,3; and para- for 1,4.

• Methyl phenols are cresols.OH

Cl

3-chlorophenol

meta-chlorophenol

OH

H3C

4-methylphenolpara-cresol =>

Page 8: CHE 242 Unit V Structure and Reactions of Alcohols, Ethers and Epoxides; Basic Principles of NMR Spectroscopy CHAPTER TEN Terrence P. Sherlock Burlington.

Chapter 10 8

Physical Properties

• Unusually high boiling points due to hydrogen bonding between molecules.

• Small alcohols are miscible in water, but solubility decreases as the size of the alkyl group increases.

=>

Page 9: CHE 242 Unit V Structure and Reactions of Alcohols, Ethers and Epoxides; Basic Principles of NMR Spectroscopy CHAPTER TEN Terrence P. Sherlock Burlington.

Chapter 10 9

Boiling Points

=>

Page 10: CHE 242 Unit V Structure and Reactions of Alcohols, Ethers and Epoxides; Basic Principles of NMR Spectroscopy CHAPTER TEN Terrence P. Sherlock Burlington.

Chapter 10 10

Solubility in Water

Solubility decreases as the size of the alkyl group increases.

=>

Page 11: CHE 242 Unit V Structure and Reactions of Alcohols, Ethers and Epoxides; Basic Principles of NMR Spectroscopy CHAPTER TEN Terrence P. Sherlock Burlington.

Chapter 10 11

Acidity of Alcohols

• pKa range: 15.5-18.0 (water: 15.7)• Acidity decreases as alkyl group

increases.• Halogens increase the acidity.• Phenol is 100 million times more acidic

than cyclohexanol!

=>

Page 12: CHE 242 Unit V Structure and Reactions of Alcohols, Ethers and Epoxides; Basic Principles of NMR Spectroscopy CHAPTER TEN Terrence P. Sherlock Burlington.

Chapter 10 12

Table of Ka Values

=>

CH3 OH

Page 13: CHE 242 Unit V Structure and Reactions of Alcohols, Ethers and Epoxides; Basic Principles of NMR Spectroscopy CHAPTER TEN Terrence P. Sherlock Burlington.

Chapter 10 13

Formation of Alkoxide Ions

React methanol and ethanol with sodium metal (redox reaction).

CH3CH2OH + Na CH3CH2O Na + 1/2 H2

React less acidic alcohols with more reactive potassium.

+ K (CH3)3CO K + 1/2 H2)3C OH(CH3

=>

Page 14: CHE 242 Unit V Structure and Reactions of Alcohols, Ethers and Epoxides; Basic Principles of NMR Spectroscopy CHAPTER TEN Terrence P. Sherlock Burlington.

Chapter 10 14

Formation of Phenoxide Ion

Phenol reacts with hydroxide ions to form phenoxide ions - no redox is necessary.

O H

+ OH

O

+ HOH

pK a = 10pK a = 15.7

=>

Page 15: CHE 242 Unit V Structure and Reactions of Alcohols, Ethers and Epoxides; Basic Principles of NMR Spectroscopy CHAPTER TEN Terrence P. Sherlock Burlington.

Chapter 10 15

Synthesis (Review)

• Nucleophilic substitution of OH- on alkyl halide

• Hydration of alkeneswater in acid solution (not very effective)oxymercuration - demercurationhydroboration - oxidation

=>

Page 16: CHE 242 Unit V Structure and Reactions of Alcohols, Ethers and Epoxides; Basic Principles of NMR Spectroscopy CHAPTER TEN Terrence P. Sherlock Burlington.

Chapter 10 16

Glycols (Review)

• Syn hydroxylation of alkenesosmium tetroxide, hydrogen peroxidecold, dilute, basic potassium

permanganate

• Anti hydroxylation of alkenesperoxyacids, hydrolysis

=>

Page 17: CHE 242 Unit V Structure and Reactions of Alcohols, Ethers and Epoxides; Basic Principles of NMR Spectroscopy CHAPTER TEN Terrence P. Sherlock Burlington.

Chapter 10 17

Organometallic Reagents

• Carbon is bonded to a metal (Mg or Li).

• Carbon is nucleophilic (partially negative).

• It will attack a partially positive carbon.C - XC = O

• A new carbon-carbon bond forms. =>

Page 18: CHE 242 Unit V Structure and Reactions of Alcohols, Ethers and Epoxides; Basic Principles of NMR Spectroscopy CHAPTER TEN Terrence P. Sherlock Burlington.

Chapter 10 18

Grignard Reagents

• Formula R-Mg-X (reacts like R:- +MgX)• Stabilized by anhydrous ether• Iodides most reactive• May be formed from any halide

primarysecondarytertiaryvinylaryl =>

Page 19: CHE 242 Unit V Structure and Reactions of Alcohols, Ethers and Epoxides; Basic Principles of NMR Spectroscopy CHAPTER TEN Terrence P. Sherlock Burlington.

Chapter 10 19

Some Grignard Reagents

Br

+ Mgether MgBr

CH3CHCH2CH3

Clether

+ Mg CH3CHCH2CH3

MgCl

CH3C CH2

Br + Mgether

CH3C CH2

MgBr =>

Page 20: CHE 242 Unit V Structure and Reactions of Alcohols, Ethers and Epoxides; Basic Principles of NMR Spectroscopy CHAPTER TEN Terrence P. Sherlock Burlington.

Chapter 10 20

Organolithium Reagents

• Formula R-Li (reacts like R:- +Li)• Can be produced from alkyl, vinyl, or aryl

halides, just like Grignard reagents.• Ether not necessary, wide variety of

solvents can be used.

=>

Page 21: CHE 242 Unit V Structure and Reactions of Alcohols, Ethers and Epoxides; Basic Principles of NMR Spectroscopy CHAPTER TEN Terrence P. Sherlock Burlington.

Chapter 10 21

Reaction with Carbonyl

• R:- attacks the partially positive carbon in the carbonyl.

• The intermediate is an alkoxide ion.• Addition of water or dilute acid protonates the

alkoxide to produce an alcohol.

RC O R C O

HOHR C OH

OH=>

Page 22: CHE 242 Unit V Structure and Reactions of Alcohols, Ethers and Epoxides; Basic Principles of NMR Spectroscopy CHAPTER TEN Terrence P. Sherlock Burlington.

Chapter 10 22

Synthesis of 1° Alcohols

Grignard + formaldehyde yields a primary alcohol with one additional carbon.

C OH

HC

CH3

H3C CH2 C MgBr

H

HH

CH3 CH

CH3

CH2 CH2 C

H

H

O MgBr

HOHCH3 CH

CH3

CH2 CH2 C

H

H

O H

=>

Page 23: CHE 242 Unit V Structure and Reactions of Alcohols, Ethers and Epoxides; Basic Principles of NMR Spectroscopy CHAPTER TEN Terrence P. Sherlock Burlington.

Chapter 10 23

Synthesis of 2º Alcohols

Grignard + aldehyde yields a secondary alcohol.

MgBrCH3 CH

CH3

CH2 CH2 C

CH3

H

OC

CH3

H3C CH2 C MgBr

H

HH

C OH

H3C

CH3 CH

CH3

CH2 CH2 C

CH3

H

O HHOH

=>

Page 24: CHE 242 Unit V Structure and Reactions of Alcohols, Ethers and Epoxides; Basic Principles of NMR Spectroscopy CHAPTER TEN Terrence P. Sherlock Burlington.

Chapter 10 24

Synthesis of 3º Alcohols

Grignard + ketone yields a tertiary alcohol.

MgBrCH3 CH

CH3

CH2 CH2 C

CH3

CH3

OC

CH3

H3C CH2 C MgBr

H

HH

C OH3C

H3C

CH3 CH

CH3

CH2 CH2 C

CH3

CH3

O HHOH

=>

Page 25: CHE 242 Unit V Structure and Reactions of Alcohols, Ethers and Epoxides; Basic Principles of NMR Spectroscopy CHAPTER TEN Terrence P. Sherlock Burlington.

Chapter 10 25

How would you synthesize…

CH3CH2CHCH2CH2CH3

OH CH2OH

OH

CH3C

OH

CH2CH3

CH3 =>

Page 26: CHE 242 Unit V Structure and Reactions of Alcohols, Ethers and Epoxides; Basic Principles of NMR Spectroscopy CHAPTER TEN Terrence P. Sherlock Burlington.

Chapter 10 26

Grignard Reactions with Acid Chlorides

and Esters• Use two moles of Grignard reagent.

• The product is a tertiary alcohol with two identical alkyl groups.

• Reaction with one mole of Grignard reagent produces a ketone intermediate, which reacts with the second mole of Grignard reagent. =>

Page 27: CHE 242 Unit V Structure and Reactions of Alcohols, Ethers and Epoxides; Basic Principles of NMR Spectroscopy CHAPTER TEN Terrence P. Sherlock Burlington.

Chapter 10 27

Grignard + Acid Chloride (1)

C OCl

H3C

MgBrR MgBr C

CH3

Cl

OR

C

CH3

Cl

OR MgBr C

CH3

RO

+ MgBrCl

Ketone intermediate =>

• Grignard attacks the carbonyl.• Chloride ion leaves.

Page 28: CHE 242 Unit V Structure and Reactions of Alcohols, Ethers and Epoxides; Basic Principles of NMR Spectroscopy CHAPTER TEN Terrence P. Sherlock Burlington.

Chapter 10 28

Grignard and Ester (1)

• Grignard attacks the carbonyl.

• Alkoxide ion leaves! ? !

C OCH3O

H3C

MgBrR MgBr C

CH3

OCH3

OR

C

CH3

OCH3

OR MgBr C

CH3

RO

+ MgBrOCH3

Ketone intermediate =>

Page 29: CHE 242 Unit V Structure and Reactions of Alcohols, Ethers and Epoxides; Basic Principles of NMR Spectroscopy CHAPTER TEN Terrence P. Sherlock Burlington.

Chapter 10 29

Second step of reaction• Second mole of Grignard reacts with the

ketone intermediate to form an alkoxide ion.• Alkoxide ion is protonated with dilute acid.

C

CH3

RO

R MgBr + C

CH3

R

OR MgBr

HOH

C

CH3

R

OHR

=>

Page 30: CHE 242 Unit V Structure and Reactions of Alcohols, Ethers and Epoxides; Basic Principles of NMR Spectroscopy CHAPTER TEN Terrence P. Sherlock Burlington.

Chapter 10 30

How would you synthesize...

CH3CH2CCH3

OH

CH3

C

OH

CH3

Using an acid chloride or ester.

CH3CH2CHCH2CH3

OH

=>

Page 31: CHE 242 Unit V Structure and Reactions of Alcohols, Ethers and Epoxides; Basic Principles of NMR Spectroscopy CHAPTER TEN Terrence P. Sherlock Burlington.

Chapter 10 31

Grignard Reagent + Ethylene Oxide

• Epoxides are unusually reactive ethers.

• Product is a 1º alcohol with 2 additional carbons.

MgBr + CH2 CH2

OCH2CH2

O MgBr

HOH

CH2CH2

O H

=>

Page 32: CHE 242 Unit V Structure and Reactions of Alcohols, Ethers and Epoxides; Basic Principles of NMR Spectroscopy CHAPTER TEN Terrence P. Sherlock Burlington.

Chapter 10 32

Limitations of Grignard

• No water or other acidic protons like O-H, N-H, S-H, or -C—C-H. Grignard reagent is destroyed, becomes an alkane.

• No other electrophilic multiple bonds, like C=N, C—N, S=O, or N=O.

=>

Page 33: CHE 242 Unit V Structure and Reactions of Alcohols, Ethers and Epoxides; Basic Principles of NMR Spectroscopy CHAPTER TEN Terrence P. Sherlock Burlington.

Chapter 10 33

Reduction of Carbonyl

• Reduction of aldehyde yields 1º alcohol.• Reduction of ketone yields 2º alcohol.• Reagents:

Sodium borohydride, NaBH4

Lithium aluminum hydride, LiAlH4

Raney nickel

=>

Page 34: CHE 242 Unit V Structure and Reactions of Alcohols, Ethers and Epoxides; Basic Principles of NMR Spectroscopy CHAPTER TEN Terrence P. Sherlock Burlington.

Chapter 10 34

Sodium Borohydride

• Hydride ion, H-, attacks the carbonyl carbon, forming an alkoxide ion.

• Then the alkoxide ion is protonated by dilute acid.

• Only reacts with carbonyl of aldehyde or ketone, not with carbonyls of esters or carboxylic acids.

HC

O

HC

H

OHC

H

OH HH3O+

=>

Page 35: CHE 242 Unit V Structure and Reactions of Alcohols, Ethers and Epoxides; Basic Principles of NMR Spectroscopy CHAPTER TEN Terrence P. Sherlock Burlington.

Chapter 10 35

Lithium Aluminum Hydride

• Stronger reducing agent than sodium borohydride, but dangerous to work with.

• Converts esters and acids to 1º alcohols.

CO

OCH3C

OH H

HH3O+

LAH =>

Page 36: CHE 242 Unit V Structure and Reactions of Alcohols, Ethers and Epoxides; Basic Principles of NMR Spectroscopy CHAPTER TEN Terrence P. Sherlock Burlington.

Chapter 10 36

Comparison of Reducing Agents

• LiAlH4 is stronger.

• LiAlH4 reduces more stable compounds which are resistant to reduction. =>

Page 37: CHE 242 Unit V Structure and Reactions of Alcohols, Ethers and Epoxides; Basic Principles of NMR Spectroscopy CHAPTER TEN Terrence P. Sherlock Burlington.

Chapter 10 37

Catalytic Hydrogenation

• Add H2 with Raney nickel catalyst.

• Also reduces any C=C bonds.

O

H2, Raney Ni

OH

NaBH4

OH

=>

Page 38: CHE 242 Unit V Structure and Reactions of Alcohols, Ethers and Epoxides; Basic Principles of NMR Spectroscopy CHAPTER TEN Terrence P. Sherlock Burlington.

Chapter 10 38

POWER POINT IMAGES FROM “ORGANIC CHEMISTRY, 5TH EDITION”

L.G. WADEALL MATERIALS USED WITH PERMISSION OF AUTHOR

PRESENTATION ADAPTED FOR BURLINGTON COUNTY COLLEGEORGANIC CHEMISTRY COURSE

BY:ANNALICIA POEHLER STEFANIE LAYMAN CALY MARTIN