Top Banner
Characterizing exoplanets’ atmospheres and surfaces Thérèse Encrenaz LESIA, Observatoire de Paris Pathways Toward Habitable Planets Barcelona, 14-18 September 2009
24

Characterizing exoplanets atmospheres and surfaces Thérèse Encrenaz LESIA, Observatoire de Paris Pathways Toward Habitable Planets Barcelona, 14-18 September.

Mar 27, 2015

Download

Documents

Destiny Orr
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Characterizing exoplanets atmospheres and surfaces Thérèse Encrenaz LESIA, Observatoire de Paris Pathways Toward Habitable Planets Barcelona, 14-18 September.

Characterizing exoplanets’ atmospheres and surfaces

Thérèse EncrenazLESIA, Observatoire de Paris

Pathways Toward Habitable Planets

Barcelona, 14-18 September 2009

Page 2: Characterizing exoplanets atmospheres and surfaces Thérèse Encrenaz LESIA, Observatoire de Paris Pathways Toward Habitable Planets Barcelona, 14-18 September.

Outline

• The planetary zoo• Rocky Exoplanets (warm)

– Spectral variations with spectral type, RH, abundances – Atmosphere: constraints on resolving power– Surface: mineralogy, Red Vegetation Edge

• Icy Exoplanets (cold)– Atmosphere: constraint on R– Surface: ices

• Giant Exoplanets (from hot to very cold)– Atmosphere: importance of thermal profile, constraint on R

• Conclusions

Page 3: Characterizing exoplanets atmospheres and surfaces Thérèse Encrenaz LESIA, Observatoire de Paris Pathways Toward Habitable Planets Barcelona, 14-18 September.

Spectroscopy of an exoplanet

• Reflected starlight component (UV, visible, near-IR)– Albedo is about 0.3 for most of solar-system planets– Absorption lines or bands in front of stellar blackbody

• Thermal component (IR, submm & mm)– Mostly depends upon the temperature of the emitting region– Emission lines in the stratosphere, absorption lines in the troposphere

(function of T(P)) • Fluorescence emission (UV, visible, near-IR)

– Emission lines in the upper atmospheres (H, H2, N2, radicals)

• The IR range is best suited for probing exoplanets’ neutral atmospheres

Page 4: Characterizing exoplanets atmospheres and surfaces Thérèse Encrenaz LESIA, Observatoire de Paris Pathways Toward Habitable Planets Barcelona, 14-18 September.

The Solar System: A planetary zoo• Planets with an atmosphere• Rocky planets (warm)

– Mars-type (CO2, N2 + H2O) No stratosphere– Earth-type (N2, O2 + H2O) Stratosphere (O3)  

• Icy planets (cold)– Titan-type (N2, CH4 + CO) Stratosphere (hydrocarbons, nitriles)

• Giant planets (cold to very cold)– Jupiter-type (H2, CH4, NH3 +H2O) Stratosphere (hydrocarbons)– Neptune-type (H2, CH4) « 

• Bare planets – Mercury/asteroid-type (refractories) – TNO-type (ices)

Page 5: Characterizing exoplanets atmospheres and surfaces Thérèse Encrenaz LESIA, Observatoire de Paris Pathways Toward Habitable Planets Barcelona, 14-18 September.

Te (K) 1200 850 460 220 120 50Stellar distance (AU) 0.05 0.1 0.3 1.5 5.0 20.0(solar-type star)Small Exoplanet < ROCKY PLANETS > <ICY PLANETS >

(WARM) (COLD)

(0.01 - 10 ME) No atmosphere Atmosphere Atmosphere

(Mercury-type) N2, CO2, CO, H2 N2, CH4(+CO)

(Mars-Venus type) hydrocarbons, nitrilesif O2 -> O3 (Earth-type) (Titan-type)STRATOSPHERE STRATOSPHERE

Giant Exoplanet <PEGASIDES>< GASEOUS GIANTS > <ICY GIANTS> (HOT) (WARM) (COLD)

(10 - 1000 ME) Atmosphere Atmosphere Atmosphere

H2,CO,N2,H2O H2,CH4,NH3,H2O H2,CH4

hydrocarbons hydrocarbons (Jupiter-type) (Neptune-type)STRATOSPHERE STRATOSPHERE

What kind of exoplanet can we expect? [F*/D2](1-a) = 4 Te4

Page 6: Characterizing exoplanets atmospheres and surfaces Thérèse Encrenaz LESIA, Observatoire de Paris Pathways Toward Habitable Planets Barcelona, 14-18 September.

Te (K) 1200 850 460 273 220 120 50

Stellar typeA 0.15 0.3 0.9 3.0 4.5 15.0 60.0(T=10000 K)F 0.08 0.16 0.5 1.6 2.4 8.0 32.0(T=7000 K)G 0.05 0.1 0.3 1.0 1.5 5.0 20.0(T=5700 K)K 0.04 0.12 0.4 0.6 2.0 8.0(T=4200 K)M 0.04 0.14 0.2 0.4 1.4(T=3200 K)

HZ

Variations of asterocentric distances with the stellar type

Page 7: Characterizing exoplanets atmospheres and surfaces Thérèse Encrenaz LESIA, Observatoire de Paris Pathways Toward Habitable Planets Barcelona, 14-18 September.

However, this is not so simple! Why?

• Other parameters are involved:– Albedo -> effect on Te– Rotation period -> effect on Te

• Phase-locked planets -> strong day/night contrasts

– Possible greenhouse effect -> may increase Ts vs Te• Earth: 15 K; Venus: over 200 K

– Obliquity• Atmospheric dynamics -> may change day/night contrasts

– Magnetic field -> may prevent atmospheric escape

• Migration is possible!

Page 8: Characterizing exoplanets atmospheres and surfaces Thérèse Encrenaz LESIA, Observatoire de Paris Pathways Toward Habitable Planets Barcelona, 14-18 September.

Rocky PlanetsThe IR spectrum of Mars (ISO-SWS)

Spectral signatures: CO2, H2O, CO (+ traces H2O2, CH4)

H2O

CO2 CO2

COCO2

Lellouch et al., 2000

Hydrated silicates

CO2

Ps = 6 mb

Page 9: Characterizing exoplanets atmospheres and surfaces Thérèse Encrenaz LESIA, Observatoire de Paris Pathways Toward Habitable Planets Barcelona, 14-18 September.

Variation of a Mars-type spectrum as a function of the stellar type (D = 1 UA)

StellarTypeA(10000 K)

F(7000 K)

G(5700 K)K(4200 K)

Te (K)

476

346

273

174

Page 10: Characterizing exoplanets atmospheres and surfaces Thérèse Encrenaz LESIA, Observatoire de Paris Pathways Toward Habitable Planets Barcelona, 14-18 September.

Variation of a Mars-type spectrum as a function of the asterocentric distance D

(solar-type star)

D = 0.07, 0.1, 0.3, 1.0 UATe = 1000, 863, 496, 273 K

NB: For small D, the reflected component dominates-> Atmospheric signatures mostly in absorption

Page 11: Characterizing exoplanets atmospheres and surfaces Thérèse Encrenaz LESIA, Observatoire de Paris Pathways Toward Habitable Planets Barcelona, 14-18 September.

Variation with atmospheric composition: H2O-dominated (Earth-like) spectrum (above clouds)

H2O H2O

H2O CO2

CO2

H2Oice

Pcl = 10 mb

Page 12: Characterizing exoplanets atmospheres and surfaces Thérèse Encrenaz LESIA, Observatoire de Paris Pathways Toward Habitable Planets Barcelona, 14-18 September.

The infrared spectrum of the Earth as seen by the NIMS instrument aboard Galileo (Earth flyby, December 1990)

Drossart et al., 1993

Page 13: Characterizing exoplanets atmospheres and surfaces Thérèse Encrenaz LESIA, Observatoire de Paris Pathways Toward Habitable Planets Barcelona, 14-18 September.

The thermal spectrum of telluric planets

Venus

Earth

Mars

Hanel et al., 1992

Page 14: Characterizing exoplanets atmospheres and surfaces Thérèse Encrenaz LESIA, Observatoire de Paris Pathways Toward Habitable Planets Barcelona, 14-18 September.

Thermal spectra of rocky planets

Resolving power required :CO2 = 3 m R = 3O3 = 1 m R = 10CH4 = 0.15m R = 50

EarthMarsVenus

EarthR=70,10,5

Page 15: Characterizing exoplanets atmospheres and surfaces Thérèse Encrenaz LESIA, Observatoire de Paris Pathways Toward Habitable Planets Barcelona, 14-18 September.

Hanel et al., 1992

Solid signatures in rocky planets

Mid-latitudesTsurf > Tatm

Polar capTsurf < Tatm

Silicates: 1000 - 1200 cm-1(broad)Water ice: 700 - 900 cm-1 (broad)

Reflected spectrum: H2O ice 1.25, 1.5, 2.0 mSilicates 1.0, 2.0 m (broad)Ferric oxides 1.0 m Carbonates 2.35, 2.5 mHydrated silicates 3.0-3.5 m (broad)

Thermal spectrum:

H2O ice

silicates

Page 16: Characterizing exoplanets atmospheres and surfaces Thérèse Encrenaz LESIA, Observatoire de Paris Pathways Toward Habitable Planets Barcelona, 14-18 September.

The Red Vegetation Edge (Earth spectrum)

Seager et al. 2005

Page 17: Characterizing exoplanets atmospheres and surfaces Thérèse Encrenaz LESIA, Observatoire de Paris Pathways Toward Habitable Planets Barcelona, 14-18 September.

RVE : Earthshine observations

Seager et al. 2005

Problems:-partial coverage of the vegetation-clouds (20-30% ofthe disk)

Page 18: Characterizing exoplanets atmospheres and surfaces Thérèse Encrenaz LESIA, Observatoire de Paris Pathways Toward Habitable Planets Barcelona, 14-18 September.

The reflected spectrumof a CH4-dominatedplanet(icy or giant)

Larson, 1980

Page 19: Characterizing exoplanets atmospheres and surfaces Thérèse Encrenaz LESIA, Observatoire de Paris Pathways Toward Habitable Planets Barcelona, 14-18 September.

The atmosphere of an icy planet:The thermal component

Titan - SWS: CH4, hydrocarbons, nitriles

Resolving power required: R > 5 ( C2H2-C2H6) ; R > 10 (CH4)

CH4

C2H6

HCN, C2H2

Page 20: Characterizing exoplanets atmospheres and surfaces Thérèse Encrenaz LESIA, Observatoire de Paris Pathways Toward Habitable Planets Barcelona, 14-18 September.

Solid signatures on icy planets

H2O ice H2O, CH4, CO, N2

(Ganymede) (Pluto)

Page 21: Characterizing exoplanets atmospheres and surfaces Thérèse Encrenaz LESIA, Observatoire de Paris Pathways Toward Habitable Planets Barcelona, 14-18 September.

The atmosphere of two gaseous giants: The thermal component Jupiter & Saturn - ISO-SWS

CH4

CH3D, PH3 NH3

C2H6

Jupiter

Saturn

NB: Jupiter and Saturn are VERY different!

PH3

Page 22: Characterizing exoplanets atmospheres and surfaces Thérèse Encrenaz LESIA, Observatoire de Paris Pathways Toward Habitable Planets Barcelona, 14-18 September.

Jupiter -SWS The 6-12-m range: CH4, CH3D, C2H6, NH3, PH3

Resolving power required:- for NH3 detection: R > 100- for CH4 detection: R > 150-for C2H6 detection: R > 20

Page 23: Characterizing exoplanets atmospheres and surfaces Thérèse Encrenaz LESIA, Observatoire de Paris Pathways Toward Habitable Planets Barcelona, 14-18 September.

The atmosphere of an icy giant Neptune - SWS The 2-18- range: CH4, CH3D, C2H2, C2H6

Resolving power required: R > 5 ( C2H2-C2H6) ; R > 10 (CH4)

CH4 C2H6 C2H2

Page 24: Characterizing exoplanets atmospheres and surfaces Thérèse Encrenaz LESIA, Observatoire de Paris Pathways Toward Habitable Planets Barcelona, 14-18 September.

In summary…

• The diversity in solar-system bodies opens the same possibilities for exoplanets

• A resolving power higher than 10 is required for the identification of major gaseous and solid signatures

• In the thermal range, hydrocarbons (C2H2, C2H6) are easier to detect than methane

• Knowing the thermal structure is essential for interpreting thermal spectra

• No stratosphere expected for Rocky Exoplanets (N2, CO2, H2O) except if O2 is present

• A stratosphere is expected for Icy Exoplanets (N2, CH4) and Giant Exoplanets (H2, CH4,…)