Top Banner
(L) (L’) CHARACTERISING SINGULAR VERONESE VARIETIES Buildings 2017 ANNELEEN DE SCHEPPER
106

CHARACTERISING SINGULAR VERONESE VARIETIEScage.ugent.be/~ads/links/MagicPrism.pdf · 2017. 10. 4. · veronese varieties buildings 2017 anneleen de schepper. 0 origin. the magic square

Aug 03, 2021

Download

Documents

dariahiddleston
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: CHARACTERISING SINGULAR VERONESE VARIETIEScage.ugent.be/~ads/links/MagicPrism.pdf · 2017. 10. 4. · veronese varieties buildings 2017 anneleen de schepper. 0 origin. the magic square

𝓥(L)𝓥(L’)

CHARACTERISING SINGULAR VERONESE VARIETIES

Buildings 2017

ANNELEEN DE SCHEPPER

Page 2: CHARACTERISING SINGULAR VERONESE VARIETIEScage.ugent.be/~ads/links/MagicPrism.pdf · 2017. 10. 4. · veronese varieties buildings 2017 anneleen de schepper. 0 origin. the magic square

0 Origin

Page 3: CHARACTERISING SINGULAR VERONESE VARIETIEScage.ugent.be/~ads/links/MagicPrism.pdf · 2017. 10. 4. · veronese varieties buildings 2017 anneleen de schepper. 0 origin. the magic square

THE MAGIC SQUARE

A1 A2 C3 F4

A2

C3

F4

A5

A5

A2×A2 E6

E6

D5 E7

E7 E8

Page 4: CHARACTERISING SINGULAR VERONESE VARIETIEScage.ugent.be/~ads/links/MagicPrism.pdf · 2017. 10. 4. · veronese varieties buildings 2017 anneleen de schepper. 0 origin. the magic square

THE MAGIC SQUARE: 2ND ROW

A2 A5A2×A2 E6

Page 5: CHARACTERISING SINGULAR VERONESE VARIETIEScage.ugent.be/~ads/links/MagicPrism.pdf · 2017. 10. 4. · veronese varieties buildings 2017 anneleen de schepper. 0 origin. the magic square

THE MAGIC SQUARE: 2ND ROW

A2

A5

A2×A2

E6

Page 6: CHARACTERISING SINGULAR VERONESE VARIETIEScage.ugent.be/~ads/links/MagicPrism.pdf · 2017. 10. 4. · veronese varieties buildings 2017 anneleen de schepper. 0 origin. the magic square

THE MAGIC SQUARE: 2ND ROW

A2

A5

A2×A2

E6

A2×A2

A5

E6

Split Nonsplit

Page 7: CHARACTERISING SINGULAR VERONESE VARIETIEScage.ugent.be/~ads/links/MagicPrism.pdf · 2017. 10. 4. · veronese varieties buildings 2017 anneleen de schepper. 0 origin. the magic square

THE MAGIC SQUARE: 2ND ROW

A2

A5

A2×A2

E6

A2×A2

A5

E6

Split

Severi varieties PG(2,K)

Segre variety S2,2(K) Line Grassmannian of A5(K)

E6,1(K) variety

Nonsplit

Moufang projective planes PG(2,K) PG(2,L) PG(2,H) PG(2,O)

Page 8: CHARACTERISING SINGULAR VERONESE VARIETIEScage.ugent.be/~ads/links/MagicPrism.pdf · 2017. 10. 4. · veronese varieties buildings 2017 anneleen de schepper. 0 origin. the magic square

Split

Severi varieties PG(2,K)

Segre variety S2,2(K) Line Grassmannian of A5(K)

E6,1(K) variety

Nonsplit

Moufang projective planes PG(2,K) PG(2,L) PG(2,H) PG(2,O)

THE MAGIC SQUARE: 2ND ROW

Page 9: CHARACTERISING SINGULAR VERONESE VARIETIEScage.ugent.be/~ads/links/MagicPrism.pdf · 2017. 10. 4. · veronese varieties buildings 2017 anneleen de schepper. 0 origin. the magic square

Split

Severi varieties PG(2,K)

Segre variety S2,2(K) Line Grassmannian of A5(K)

E6,1(K) variety

Nonsplit

Moufang projective planes PG(2,K) PG(2,L) PG(2,H) PG(2,O)

set of points and quadrics + some axioms

THE MAGIC SQUARE: 2ND ROW

Page 10: CHARACTERISING SINGULAR VERONESE VARIETIEScage.ugent.be/~ads/links/MagicPrism.pdf · 2017. 10. 4. · veronese varieties buildings 2017 anneleen de schepper. 0 origin. the magic square

1 Axiomatisation

Page 11: CHARACTERISING SINGULAR VERONESE VARIETIEScage.ugent.be/~ads/links/MagicPrism.pdf · 2017. 10. 4. · veronese varieties buildings 2017 anneleen de schepper. 0 origin. the magic square

A2A2×A2A5E6 A5A2×A2 E6

Axiomatic description Nonsplit

Page 12: CHARACTERISING SINGULAR VERONESE VARIETIEScage.ugent.be/~ads/links/MagicPrism.pdf · 2017. 10. 4. · veronese varieties buildings 2017 anneleen de schepper. 0 origin. the magic square

A2A2×A2A5E6 A5A2×A2 E6

Axiomatic description

points spanning PG(N,K) X 𝚵 d-spaces 𝝽 in PG(N,K)

s.th. 𝝽 ∩ X is:

Nonsplit

K field, kar(K) ≠ 2 (for simplicity)

a quadric of minimal

Witt index

Page 13: CHARACTERISING SINGULAR VERONESE VARIETIEScage.ugent.be/~ads/links/MagicPrism.pdf · 2017. 10. 4. · veronese varieties buildings 2017 anneleen de schepper. 0 origin. the magic square

A2A2×A2A5E6 A5A2×A2 E6

Axiomatic description

each two points of X belong to a [d] of 𝚵

two [d]s of 𝚵 intersect in points of X

the tangent space of a point of X is contained in a [2(d-1)]

MM1 MM2 MM3

points spanning PG(N,K) X 𝚵 d-spaces 𝝽 in PG(N,K)

s.th. 𝝽 ∩ X is:

Nonsplit

K field, kar(K) ≠ 2 (for simplicity)

quadric Qmin(d,K) of minimal Witt index

Page 14: CHARACTERISING SINGULAR VERONESE VARIETIEScage.ugent.be/~ads/links/MagicPrism.pdf · 2017. 10. 4. · veronese varieties buildings 2017 anneleen de schepper. 0 origin. the magic square

A2A2×A2A5E6 A5A2×A2 E6

Axiomatic description

each two points of X belong to a [d] of 𝚵

two [d]s of 𝚵 intersect in points of X

the tangent space of a point of X is contained in a [2(d-1)]

MM1 MM2 MM3

points spanning PG(N,K) X 𝚵 d-spaces 𝝽 in PG(N,K)

s.th. 𝝽 ∩ X is:

Nonsplit

K field, kar(K) ≠ 2 (for simplicity)

The pair (X, 𝚵) together with MM1, MM2 and MM3 is called a Mazzocca Melone (MM) set with quadrics

of minimal Witt index

quadric Qmin(d,K) of minimal Witt index

Page 15: CHARACTERISING SINGULAR VERONESE VARIETIEScage.ugent.be/~ads/links/MagicPrism.pdf · 2017. 10. 4. · veronese varieties buildings 2017 anneleen de schepper. 0 origin. the magic square

A2A2×A2A5E6 A5A2×A2 E6

Axiomatic description

each two points of X belong to a [d] of 𝚵

two [d]s of 𝚵 intersect in points of X

the tangent space of a point of X is contained in a [2(d-1)]

MM1 MM2 MM3

points spanning PG(N,K) X 𝚵 d-spaces 𝝽 in PG(N,K)

s.th. 𝝽 ∩ X is:

d 2 3 5 9(X, 𝚵) isomorphic to PG(2,K) PG(2,L) PG(2,H) PG(2,O)geometry in PG(N,K) 𝓥(K) (5) 𝓥(L) (8) 𝓥(H) (14) 𝓥(O) (26)

Schillewaert, Van Maldeghem, Krauss (2015) For any field K, d ∈ {2,3,5,9} and, per d, (X, 𝚵) is projectively unique.

Nonsplit

K field, kar(K) ≠ 2 (for simplicity)

quadric Qmin(d,K) of minimal Witt index

Page 16: CHARACTERISING SINGULAR VERONESE VARIETIEScage.ugent.be/~ads/links/MagicPrism.pdf · 2017. 10. 4. · veronese varieties buildings 2017 anneleen de schepper. 0 origin. the magic square

The pair (X, 𝚵) together with MM1, MM2 and MM3 is called a Mazzocca Melone (MM) set with quadrics

of maximal Witt index

A2A2×A2A5E6 A5A2×A2 E6

Axiomatic description

each two points of X belong to a [d] of 𝚵

two [d]s of 𝚵 intersect in points of X

the tangent space of a point of X is contained in a [2(d-1)]

MM1 MM2 MM3

points spanning PG(N,K) X 𝚵 d-spaces 𝝽 in PG(N,K)

s.th. 𝝽 ∩ X is:

Split

quadric Qmax(d,K) of maximal Witt index

K field, kar(K) ≠ 2 (for simplicity)

Page 17: CHARACTERISING SINGULAR VERONESE VARIETIEScage.ugent.be/~ads/links/MagicPrism.pdf · 2017. 10. 4. · veronese varieties buildings 2017 anneleen de schepper. 0 origin. the magic square

A2A2×A2A5E6 A5A2×A2 E6

Axiomatic description

each two points of X belong to a [d] of 𝚵

two [d]s of 𝚵 intersect in points of X

the tangent space of a point of X is contained in a [2(d-1)]

MM1 MM2 MM3

points spanning PG(N,K) X 𝚵 d-spaces 𝝽 in PG(N,K)

s.th. 𝝽 ∩ X is:

d 2 3 5 9(X, 𝚵) isomorphic to PG(2,K) A2×A2(K) A5,2(K) E6,1(K)geometry in PG(N,K) 𝓥(K)’ (5) 𝓥(L)’ (8) 𝓥(H)’ (14) 𝓥(O)’ (26)

Schillewaert, Van Maldeghem (2015) For any field K, if N > 3d +1, d ∈ {2,3,5,9} and, per d, (X, 𝚵) is projectively unique.

Split

quadric Qmax(d,K) of maximal Witt index

K field, kar(K) ≠ 2 (for simplicity)

Page 18: CHARACTERISING SINGULAR VERONESE VARIETIEScage.ugent.be/~ads/links/MagicPrism.pdf · 2017. 10. 4. · veronese varieties buildings 2017 anneleen de schepper. 0 origin. the magic square

Axiomatic description

each two points of X belong to a [d] of 𝚵

two [d]s of 𝚵 intersect in points of X

the tangent space of a point of X is contained in a [2(d-1)]

MM1 MM2 MM3

points spanning PG(N,K) X 𝚵 d-spaces 𝝽 in PG(N,K)

s.th. 𝝽 ∩ X is: some quadric

MM SETS WITH OTHER QUADRICS

?

?? ??? ?

Page 19: CHARACTERISING SINGULAR VERONESE VARIETIEScage.ugent.be/~ads/links/MagicPrism.pdf · 2017. 10. 4. · veronese varieties buildings 2017 anneleen de schepper. 0 origin. the magic square

Axiomatic description

each two points of X belong to a [d] of 𝚵

two [d]s of 𝚵 intersect in points of X

the tangent space of a point of X is contained in a [2(d-1)]

MM1 MM2 MM3

points spanning PG(N,K) X 𝚵 d-spaces 𝝽 in PG(N,K)

s.th. 𝝽 ∩ X is: ?

Conjecture: There are no MM sets with

quadrics of intermediate Witt index

MM SETS WITH OTHER QUADRICS

some quadric

?? ??? ?

Page 20: CHARACTERISING SINGULAR VERONESE VARIETIEScage.ugent.be/~ads/links/MagicPrism.pdf · 2017. 10. 4. · veronese varieties buildings 2017 anneleen de schepper. 0 origin. the magic square

Axiomatic description

each two points of X belong to a [d] of 𝚵

two [d]s of 𝚵 intersect in points of X

the tangent space of a point of X is contained in a [2(d-1)]

MM1 MM2 MM3

points spanning PG(N,K) X 𝚵 d-spaces 𝝽 in PG(N,K)

s.th. 𝝽 ∩ X is: ?

Yet There are MM sets with

singular quadrics

MM SETS WITH OTHER QUADRICS

some quadric

?? ??? ?

Page 21: CHARACTERISING SINGULAR VERONESE VARIETIEScage.ugent.be/~ads/links/MagicPrism.pdf · 2017. 10. 4. · veronese varieties buildings 2017 anneleen de schepper. 0 origin. the magic square

Axiomatic description

each two points of X belong to a [3] of 𝚵

two [3]s of 𝚵 intersect in points of X

the tangent space of a point of X is contained in a [2(3-1)]

MM1 MM2 MM3

points spanning PG(N,K) X 𝚵 3-spaces 𝝽 in PG(N,K)

s.th. 𝝽 ∩ X is:a point-cone

over Qmin(2,K); without vertex

SINGULAR MM SETS: A FIRST EXAMPLE

(2,0)-tube

Page 22: CHARACTERISING SINGULAR VERONESE VARIETIEScage.ugent.be/~ads/links/MagicPrism.pdf · 2017. 10. 4. · veronese varieties buildings 2017 anneleen de schepper. 0 origin. the magic square

Axiomatic description

each two points of X belong to a [3] of 𝚵

two [3]s of 𝚵 intersect in points of X

the tangent space of a point of X is contained in a [2(3-1)]

MM1 MM2 MM3

𝚵 3-spaces 𝝽 in PG(N,K) s.th. 𝝽 ∩ X is:

SINGULAR MM SETS: A FIRST EXAMPLE

points spanning PG(N,K) Xvertices Y

(2,0)-tube

a point-cone over Qmin(2,K); without vertex

Page 23: CHARACTERISING SINGULAR VERONESE VARIETIEScage.ugent.be/~ads/links/MagicPrism.pdf · 2017. 10. 4. · veronese varieties buildings 2017 anneleen de schepper. 0 origin. the magic square

Axiomatic description

each two points of X belong to a [3] of 𝚵

the tangent space of a point of X is contained in a [2(3-1)]

MM1 MM2’ MM3

𝚵 3-spaces 𝝽 in PG(N,K) s.th. 𝝽 ∩ X is:

SINGULAR MM SETS: A FIRST EXAMPLE

points spanning PG(N,K) Xvertices Y

two [3]s of 𝚵 intersect in points of X∪Y

but never in Y only

(2,0)-tube

a point-cone over Qmin(2,K); without vertex

Page 24: CHARACTERISING SINGULAR VERONESE VARIETIEScage.ugent.be/~ads/links/MagicPrism.pdf · 2017. 10. 4. · veronese varieties buildings 2017 anneleen de schepper. 0 origin. the magic square

Axiomatic description

each two points of X belong to a [3] of 𝚵

the tangent space of a point of X is contained in a [2(3-1)]

MM1 MM2’ MM3

𝚵 3-spaces 𝝽 in PG(N,K) s.th. 𝝽 ∩ X is:

SINGULAR MM SETS: A FIRST EXAMPLE

points spanning PG(N,K) Xvertices Y

two [3]s of 𝚵 intersect in points of X∪Y

but never in Y only

The pair (X, 𝚵) together with MM1, MM2’ and MM3 is called a singular MM-set with (2,0)-tubes.

(2,0)-tube

a point-cone over Qmin(2,K); without vertex

Page 25: CHARACTERISING SINGULAR VERONESE VARIETIEScage.ugent.be/~ads/links/MagicPrism.pdf · 2017. 10. 4. · veronese varieties buildings 2017 anneleen de schepper. 0 origin. the magic square

Axiomatic description

𝚵 3-spaces 𝝽 in PG(N,K) s.th. 𝝽 ∩ X is:

Schillewaert, Van Maldeghem (2015) If nontrivial, (X, 𝚵) is projectively unique and isomorphic to

a Hjelmslevian projective plane.

each two points of X belong to a [3] of 𝚵

the tangent space of a point of X is contained in a [2(3-1)]

MM1 MM2 MM3

SINGULAR MM SETS: A FIRST EXAMPLE

points spanning PG(N,K) Xvertices Y

two [3]s of 𝚵 intersect in points of X∪Y

but never in Y only

(2,0)-tube

a point-cone over Qmin(2,K); without vertex

Page 26: CHARACTERISING SINGULAR VERONESE VARIETIEScage.ugent.be/~ads/links/MagicPrism.pdf · 2017. 10. 4. · veronese varieties buildings 2017 anneleen de schepper. 0 origin. the magic square

2

Trivial: (X, 𝚵) is a cone with vertex a point and base 𝓥(K)

2

A Hjelmslevian projective plane: (X, 𝚵) is something with vertices in a plane and base 𝓥(K)

(to be continued)

𝓥(K) 𝓥(K)

Schillewaert, Van Maldeghem (2015) If nontrivial, (X, 𝚵) is projectively unique and isomorphic to

a Hjelmslevian projective plane.

SINGULAR MM SETS: A FIRST EXAMPLE

(MM set with Qmin(2,K)s) (MM set with Qmin(2,K)s)

Page 27: CHARACTERISING SINGULAR VERONESE VARIETIEScage.ugent.be/~ads/links/MagicPrism.pdf · 2017. 10. 4. · veronese varieties buildings 2017 anneleen de schepper. 0 origin. the magic square

type

nonsplitPG(2,K)

projective plane, field K

PG(2,L) projective plane quadr. div. ext. L

PG(2,H) projective plane H quat. div. alg.

PG(2,O) projective plane O oct. div. alg.

split (A2 x A2)(K) Segre variety S2,2

A5,2(K) line Grassmannian E6,1(K)

WHY DOES THIS WORK?Algebraic explanation.

Page 28: CHARACTERISING SINGULAR VERONESE VARIETIEScage.ugent.be/~ads/links/MagicPrism.pdf · 2017. 10. 4. · veronese varieties buildings 2017 anneleen de schepper. 0 origin. the magic square

Algebraic explanation.

type

nonsplitPG(2,K)

projective plane, field K

PG(2,L) projective plane quadr. div. ext. L

PG(2,H) projective plane H quat. div. alg.

PG(2,O) projective plane O oct. div. alg.

split proj. remoteness plane over KxK

proj. remoteness plane over split quaternion alg.

proj. remoteness plane over split

octonion alg.

WHY DOES THIS WORK?

Page 29: CHARACTERISING SINGULAR VERONESE VARIETIEScage.ugent.be/~ads/links/MagicPrism.pdf · 2017. 10. 4. · veronese varieties buildings 2017 anneleen de schepper. 0 origin. the magic square

Algebraic explanation.

type

nonsplitPG(2,K)

projective plane, field K

PG(2,L) projective plane quadr. div. ext. L

PG(2,H) projective plane H quat. div. alg.

PG(2,O) projective plane O oct. div. alg.

split proj. remoteness plane over KxK

proj. remoteness plane over split quaternion alg.

proj. remoteness plane over split

octonion alg.

These are Cayley-Dickson algebras.

WHY DOES THIS WORK?

Page 30: CHARACTERISING SINGULAR VERONESE VARIETIEScage.ugent.be/~ads/links/MagicPrism.pdf · 2017. 10. 4. · veronese varieties buildings 2017 anneleen de schepper. 0 origin. the magic square

Algebraic explanation.

type

nonsplitPG(2,K)

projective plane, field K

PG(2,L) projective plane quadr. div. ext. L

PG(2,H) projective plane H quat. div. alg.

PG(2,O) projective plane O oct. div. alg.

split proj. remoteness plane over KxK

proj. remoteness plane over split quaternion alg.

proj. remoteness plane over split

octonion alg.

These are Cayley-Dickson algebras.

The Hjelmslevian projective plane is a proj. remoteness plane over the dual numbers over K, which can also be seen as a Cayley-Dickson algebra.

WHY DOES THIS WORK?

Page 31: CHARACTERISING SINGULAR VERONESE VARIETIEScage.ugent.be/~ads/links/MagicPrism.pdf · 2017. 10. 4. · veronese varieties buildings 2017 anneleen de schepper. 0 origin. the magic square

2 Cayley Dickson algebras

Page 32: CHARACTERISING SINGULAR VERONESE VARIETIEScage.ugent.be/~ads/links/MagicPrism.pdf · 2017. 10. 4. · veronese varieties buildings 2017 anneleen de schepper. 0 origin. the magic square

THE CAYLEY-DICKSON PROCESSLet K be a field with kar(K) ≠ 2 (for simplicity)

Page 33: CHARACTERISING SINGULAR VERONESE VARIETIEScage.ugent.be/~ads/links/MagicPrism.pdf · 2017. 10. 4. · veronese varieties buildings 2017 anneleen de schepper. 0 origin. the magic square

THE CAYLEY-DICKSON PROCESSLet K be a field with kar(K) ≠ 2 (for simplicity)Algebra A Involution x ↦ x

K x = x

L (a,b) +L (c,d) (a,b) ∙L (c,d) (a,b)

K × K (a+c, b+d) (ac + 𝞯db, ad +cb) (a,-b)𝞯 ∈ K\{0}➜➜➜

➜➜➜

Page 34: CHARACTERISING SINGULAR VERONESE VARIETIEScage.ugent.be/~ads/links/MagicPrism.pdf · 2017. 10. 4. · veronese varieties buildings 2017 anneleen de schepper. 0 origin. the magic square

THE CAYLEY-DICKSON PROCESS

L comes with a norm function

nL : L→ L : (a,b) ↦ (a,b) ∙L (a, b)

Let K be a field with kar(K) ≠ 2 (for simplicity)Algebra A Involution x ↦ x

K x = x

L (a,b) +L (c,d) (a,b) ∙L (c,d) (a,b)

K × K (a+c, b+d) (ac + 𝞯db, ad +cb) (a,-b)𝞯 ∈ K\{0}➜➜➜

➜➜➜

(a,b) ∙L (a, b) = (aa - 𝞯bb, 0) = (nK(a) - 𝞯nK(b),0)

Page 35: CHARACTERISING SINGULAR VERONESE VARIETIEScage.ugent.be/~ads/links/MagicPrism.pdf · 2017. 10. 4. · veronese varieties buildings 2017 anneleen de schepper. 0 origin. the magic square

THE CAYLEY-DICKSON PROCESS

L comes with a norm function

nL : L→ K : (a,b) ↦ nK(a) - 𝞯nK(b)

Algebra A Involution x ↦ x

K x = x

L (a,b) +L (c,d) (a,b) ∙L (c,d) (a,b)

K × K (a+c, b+d) (ac + 𝞯db, ad +cb) (a,-b)𝞯 ∈ K\{0}➜➜➜

➜➜➜

Let K be a field with kar(K) ≠ 2 (for simplicity)

Page 36: CHARACTERISING SINGULAR VERONESE VARIETIEScage.ugent.be/~ads/links/MagicPrism.pdf · 2017. 10. 4. · veronese varieties buildings 2017 anneleen de schepper. 0 origin. the magic square

THE CAYLEY-DICKSON PROCESS

L comes with a norm function

nL : L→ K : (a,b) ↦ nK(a) - 𝞯nK(b)

Now (a,b) ≠ (0,0) invertible ⟺ nL((a,b)) ≠ 0 (since (a,b)-1 = (a,b) / nL(a,b))

Algebra A Involution x ↦ x

K x = x

L (a,b) +L (c,d) (a,b) ∙L (c,d) (a,b)

K × K (a+c, b+d) (ac + 𝞯db, ad +cb) (a,-b)𝞯 ∈ K\{0}➜➜➜

➜➜➜

Let K be a field with kar(K) ≠ 2 (for simplicity)

Page 37: CHARACTERISING SINGULAR VERONESE VARIETIEScage.ugent.be/~ads/links/MagicPrism.pdf · 2017. 10. 4. · veronese varieties buildings 2017 anneleen de schepper. 0 origin. the magic square

THE CAYLEY-DICKSON PROCESS

L comes with a norm function

nL : L→ K : (a,b) ↦ nK(a) - 𝞯nK(b)

Now (a,b) ≠ (0,0) invertible ⟺ nL((a,b)) ≠ 0 ⟺ nK(a) ≠ 𝞯nK(b) ⟺ nK(ab-1) ≠ 𝞯

Algebra A Involution x ↦ x

K x = x

L (a,b) +L (c,d) (a,b) ∙L (c,d) (a,b)

K × K (a+c, b+d) (ac + 𝞯db, ad +cb) (a,-b)𝞯 ∈ K\{0}➜➜➜

➜➜➜

Let K be a field with kar(K) ≠ 2 (for simplicity)

Page 38: CHARACTERISING SINGULAR VERONESE VARIETIEScage.ugent.be/~ads/links/MagicPrism.pdf · 2017. 10. 4. · veronese varieties buildings 2017 anneleen de schepper. 0 origin. the magic square

THE CAYLEY-DICKSON PROCESS

This yields two possibilities for the algebra L:

L comes with a norm function

nL : L→ K : (a,b) ↦ nK(a) - 𝞯nK(b)

Now (a,b) ≠ (0,0) invertible ⟺ nL((a,b)) ≠ 0 ⟺ nK(a) ≠ 𝞯nK(b) ⟺ nK(ab-1) ≠ 𝞯

Algebra A Involution x ↦ x

K x = x

L (a,b) +L (c,d) (a,b) ∙L (c,d) (a,b)

K × K (a+c, b+d) (ac + 𝞯db, ad +cb) (a,-b)𝞯 ∈ K\{0}➜➜➜

➜➜➜

Let K be a field with kar(K) ≠ 2 (for simplicity)

Page 39: CHARACTERISING SINGULAR VERONESE VARIETIEScage.ugent.be/~ads/links/MagicPrism.pdf · 2017. 10. 4. · veronese varieties buildings 2017 anneleen de schepper. 0 origin. the magic square

THE CAYLEY-DICKSON PROCESS

This yields two possibilities for the algebra L:

L comes with a norm function

nL : L→ K : (a,b) ↦ nK(a) - 𝞯nK(b)

Now (a,b) ≠ (0,0) invertible ⟺ nL((a,b)) ≠ 0 ⟺ nK(a) ≠ 𝞯nK(b) ⟺ nK(ab-1) ≠ 𝞯

Algebra A Involution x ↦ x

K x = x

L (a,b) +L (c,d) (a,b) ∙L (c,d) (a,b)

K × K (a+c, b+d) (ac + 𝞯db, ad +cb) (a,-b)𝞯 ∈ K\{0}➜➜➜

➜➜➜

L split algebra

𝞯 = s2 (s ∈ K\{0})

nL((a,b)) = (a - sb)(a + sb)

nL splits

Let K be a field with kar(K) ≠ 2 (for simplicity)

L division algebra

𝞯 ∉ nK(K) = K2

nL((a,b)) = a2 - 𝞯 b2

nL anisotropic

Page 40: CHARACTERISING SINGULAR VERONESE VARIETIEScage.ugent.be/~ads/links/MagicPrism.pdf · 2017. 10. 4. · veronese varieties buildings 2017 anneleen de schepper. 0 origin. the magic square

L split algebra

𝞯 = s2 (s ∈ K\{0})

nL((a,b)) = (a - sb)(a + sb)

nL splits

THE GENERALISED CAYLEY-DICKSON PROCESS

This yields two possibilities for the algebra L:

L comes with a norm function

nL : L→ K : (a,b) ↦ nK(a) - 𝞯nK(b)

Now (a,b) ≠ (0,0) invertible ⟺ nL((a,b)) ≠ 0 ⟺ nK(a) ≠ 𝞯nK(b) ⟺ nK(ab-1) ≠ 𝞯

Algebra A Involution x ↦ x

K x = x

L (a,b) +L (c,d) (a,b) ∙L (c,d) (a,b)

K × K (a+c, b+d) (ac + 𝞯db, ad +cb) (a,-b)𝞯 ∈ K\{0}➜➜➜

➜➜➜

Let K be a field with kar(K) ≠ 2 (for simplicity)

L division algebra

𝞯 ∉ nK(K) = K2

nL((a,b)) = a2 - 𝞯 b2

nL anisotropic

Page 41: CHARACTERISING SINGULAR VERONESE VARIETIEScage.ugent.be/~ads/links/MagicPrism.pdf · 2017. 10. 4. · veronese varieties buildings 2017 anneleen de schepper. 0 origin. the magic square

THE GENERALISED CAYLEY-DICKSON PROCESS

This yields two possibilities for the algebra L:

L comes with a norm function

nL : L→ K : (a,b) ↦ nK(a) - 𝞯nK(b)

Now (a,b) ≠ (0,0) invertible ⟺ nL((a,b)) ≠ 0 ⟺ nK(a) ≠ 𝞯nK(b) ⟺ nK(ab-1) ≠ 𝞯

Algebra A Involution x ↦ x

K x = x

L (a,b) +L (c,d) (a,b) ∙L (c,d) (a,b)

K × K (a+c, b+d) (ac + 𝞯db, ad +cb) (a,-b)𝞯 = 0➜➜➜

➜➜➜

L split algebra

𝞯 = s2 (s ∈ K\{0})

nL((a,b)) = (a - sb)(a + sb)

nL splits

Let K be a field with kar(K) ≠ 2 (for simplicity)

L division algebra

𝞯 ∉ nK(K) = K2

nL((a,b)) = a2 - 𝞯 b2

nL anisotropic

Page 42: CHARACTERISING SINGULAR VERONESE VARIETIEScage.ugent.be/~ads/links/MagicPrism.pdf · 2017. 10. 4. · veronese varieties buildings 2017 anneleen de schepper. 0 origin. the magic square

THE GENERALISED CAYLEY-DICKSON PROCESS

This yields two possibilities for the algebra L:

L comes with a degenerate norm function

nL : L→ K : (a,b) ↦ nK(a) - 0nK(b)

Now (a,b) ≠ (0,0) invertible ⟺ nL((a,b)) ≠ 0 ⟺ nK(a) ≠ 𝞯nK(b) ⟺ nK(ab-1) ≠ 𝞯

Algebra A Involution x ↦ x

K x = x

L (a,b) +L (c,d) (a,b) ∙L (c,d) (a,b)

K × K (a+c, b+d) (ac + 𝞯db, ad +cb) (a,-b)𝞯 = 0➜➜➜

➜➜➜

L split algebra

𝞯 = s2 (s ∈ K\{0})

nL((a,b)) = (a - sb)(a + sb)

nL splits

Let K be a field with kar(K) ≠ 2 (for simplicity)

L division algebra

𝞯 ∉ nK(K) = K2

nL((a,b)) = a2 - 𝞯 b2

nL anisotropic

Page 43: CHARACTERISING SINGULAR VERONESE VARIETIEScage.ugent.be/~ads/links/MagicPrism.pdf · 2017. 10. 4. · veronese varieties buildings 2017 anneleen de schepper. 0 origin. the magic square

THE GENERALISED CAYLEY-DICKSON PROCESS

This yields two possibilities for the algebra L:

L comes with a degenerate norm function

nL : L→ K : (a,b) ↦ nK(a) - 0nK(b)

Now (a,b) ≠ (0,0) invertible ⟺ nL((a,b)) ≠ 0 ⟺ nK(a) ≠ 0

Algebra A Involution x ↦ x

K x = x

L (a,b) +L (c,d) (a,b) ∙L (c,d) (a,b)

K × K (a+c, b+d) (ac + 𝞯db, ad +cb) (a,-b)𝞯 = 0➜➜➜

➜➜➜

L split algebra

𝞯 = s2 (s ∈ K\{0})

nL((a,b)) = (a - sb)(a + sb)

nL splits

Let K be a field with kar(K) ≠ 2 (for simplicity)

L division algebra

𝞯 ∉ nK(K) = K2

nL((a,b)) = a2 - 𝞯 b2

nL anisotropic

Page 44: CHARACTERISING SINGULAR VERONESE VARIETIEScage.ugent.be/~ads/links/MagicPrism.pdf · 2017. 10. 4. · veronese varieties buildings 2017 anneleen de schepper. 0 origin. the magic square

L split algebra

𝞯 = s2 (s ∈ K\{0})

nL((a,b)) = (a - sb)(a + sb)

nL splits

L singular algebra

𝞯 = 0 nL((a,b)) = a2

nL degenerate

THE GENERALISED CAYLEY-DICKSON PROCESS

This yields three possibilities for the algebra L:

L comes with a degenerate norm function

nL : L→ K : (a,b) ↦ nK(a) - 0nK(b)

Now (a,b) ≠ (0,0) invertible ⟺ nL((a,b)) ≠ 0 ⟺ nK(a) ≠ 0

Algebra A Involution x ↦ x

K x = x

L (a,b) +L (c,d) (a,b) ∙L (c,d) (a,b)

K × K (a+c, b+d) (ac + 𝞯db, ad +cb) (a,-b)𝞯 = 0➜➜➜

➜➜➜

Let K be a field with kar(K) ≠ 2 (for simplicity)

L division algebra

𝞯 ∉ nK(K) = K2

nL((a,b)) = a2 - 𝞯 b2

nL anisotropic

Page 45: CHARACTERISING SINGULAR VERONESE VARIETIEScage.ugent.be/~ads/links/MagicPrism.pdf · 2017. 10. 4. · veronese varieties buildings 2017 anneleen de schepper. 0 origin. the magic square

K

THE GENERALISED CAYLEY-DICKSON PROCESS

Page 46: CHARACTERISING SINGULAR VERONESE VARIETIEScage.ugent.be/~ads/links/MagicPrism.pdf · 2017. 10. 4. · veronese varieties buildings 2017 anneleen de schepper. 0 origin. the magic square

K

K[0] L’L

𝞯 ∉ nK(K) 𝞯 = s2, s≠0

𝞯 = 0

THE GENERALISED CAYLEY-DICKSON PROCESS

Page 47: CHARACTERISING SINGULAR VERONESE VARIETIEScage.ugent.be/~ads/links/MagicPrism.pdf · 2017. 10. 4. · veronese varieties buildings 2017 anneleen de schepper. 0 origin. the magic square

K

K[0] L’L

𝞯 ∉ nK(K) 𝞯 = s2, s≠0

𝞯 = 0

H K[0,0] H’L[0] L’[0]

THE GENERALISED CAYLEY-DICKSON PROCESS

Page 48: CHARACTERISING SINGULAR VERONESE VARIETIEScage.ugent.be/~ads/links/MagicPrism.pdf · 2017. 10. 4. · veronese varieties buildings 2017 anneleen de schepper. 0 origin. the magic square

K

K[0] L’L

𝞯 ∉ nK(K) 𝞯 = s2, s≠0

𝞯 = 0

H K[0,0] H’L[0] L’[0]

K[0,0,0]O O’H[0] H’[0]L[0,0] L’[0,0]

THE GENERALISED CAYLEY-DICKSON PROCESS

Page 49: CHARACTERISING SINGULAR VERONESE VARIETIEScage.ugent.be/~ads/links/MagicPrism.pdf · 2017. 10. 4. · veronese varieties buildings 2017 anneleen de schepper. 0 origin. the magic square

3 Veronese varieties

Page 50: CHARACTERISING SINGULAR VERONESE VARIETIEScage.ugent.be/~ads/links/MagicPrism.pdf · 2017. 10. 4. · veronese varieties buildings 2017 anneleen de schepper. 0 origin. the magic square

Let K be a field. The Veronese variety 𝓥(K) is defined as follows K

CD ALGEBRA ➜ VERONESE VAR

Page 51: CHARACTERISING SINGULAR VERONESE VARIETIEScage.ugent.be/~ads/links/MagicPrism.pdf · 2017. 10. 4. · veronese varieties buildings 2017 anneleen de schepper. 0 origin. the magic square

Let K be a field. The Veronese variety 𝓥(K) is defined as follows K

ρ: PG(2,K) → PG(5,K): (x,y,z) ↦ (x2, y2, z2; yz, zx, xy)

point → point line → conic in a plane (Qmin(2,K))(0,y,z) ↦ (0, y2, z2; yz, 0, 0) satisfies X1X2=X3 , X0=X4=X5=0 2

CD ALGEBRA ➜ VERONESE VAR

Page 52: CHARACTERISING SINGULAR VERONESE VARIETIEScage.ugent.be/~ads/links/MagicPrism.pdf · 2017. 10. 4. · veronese varieties buildings 2017 anneleen de schepper. 0 origin. the magic square

Let K be a field. The Veronese variety 𝓥(K) is defined as follows K

ρ: PG(2,K) → PG(5,K): (x,y,z) ↦ (x2, y2, z2; yz, zx, xy)

(0,y,z) ↦ (0, y2, z2; yz, 0, 0) satisfies X1X2=X3 , X0=X4=X5=0 2

The variety (X,𝚵) = (im(points),im(lines)) satisfies i.e., 𝓥(K) is a MM set with Qmin(2,K)s

MM1 MM2 MM3

CD ALGEBRA ➜ VERONESE VAR

point → point line → conic in a plane (Qmin(2,K))

Page 53: CHARACTERISING SINGULAR VERONESE VARIETIEScage.ugent.be/~ads/links/MagicPrism.pdf · 2017. 10. 4. · veronese varieties buildings 2017 anneleen de schepper. 0 origin. the magic square

Let K be a field. The Veronese variety 𝓥(K) is defined as follows K

ρ: PG(2,K) → PG(5,K): (x,y,z) ↦ (x2, y2, z2; yz, zx, xy)

(0,y,z) ↦ (0, y2, z2; yz, 0, 0) satisfies X1X2=X3 , X0=X4=X5=0 2

Similarly, for R =CD(K,𝞯) we have the Veronese variety 𝓥(R) K[0] L’L

CD ALGEBRA ➜ VERONESE VAR

𝞯 ∉ K2 𝞯 = 0 𝞯 ∈ K2

point → point line → conic in a plane (Qmin(2,K))

Page 54: CHARACTERISING SINGULAR VERONESE VARIETIEScage.ugent.be/~ads/links/MagicPrism.pdf · 2017. 10. 4. · veronese varieties buildings 2017 anneleen de schepper. 0 origin. the magic square

Let K be a field. The Veronese variety 𝓥(K) is defined as follows K

ρ: PG(2,K) → PG(5,K): (x,y,z) ↦ (x2, y2, z2; yz, zx, xy)

(0,y,z) ↦ (0, y2, z2; yz, 0, 0) satisfies X1X2=X3 , X0=X4=X5=0 2

K[0] L’L➜ rewrite ρ, using that xx = x2 = n(x) for x ∈ K

CD ALGEBRA ➜ VERONESE VAR

𝞯 ∉ K2 𝞯 = 0 𝞯 ∈ K2

point → point line → conic in a plane (Qmin(2,K))

Similarly, for R =CD(K,𝞯) we have the Veronese variety 𝓥(R)

Page 55: CHARACTERISING SINGULAR VERONESE VARIETIEScage.ugent.be/~ads/links/MagicPrism.pdf · 2017. 10. 4. · veronese varieties buildings 2017 anneleen de schepper. 0 origin. the magic square

(0,y,z) ↦ (0, yy, zz; yz, 0, 0) satisfies X1X2=n(X3) , X0=X4=X5=0

Let K be a field. The Veronese variety 𝓥(K) is defined as follows K

K[0] L’L➜ rewrite ρ, using that xx = x2 = n(x) for x ∈ K

ρ: PG(2,K) → PG(5,K): (x,y,z) ↦ (xx, yy, zz; yz, zx, xy)

CD ALGEBRA ➜ VERONESE VAR

𝞯 ∉ K2 𝞯 = 0 𝞯 ∈ K2

point → point line → conic in a plane (Qmin(2,K))

Similarly, for R =CD(K,𝞯) we have the Veronese variety 𝓥(R)

Page 56: CHARACTERISING SINGULAR VERONESE VARIETIEScage.ugent.be/~ads/links/MagicPrism.pdf · 2017. 10. 4. · veronese varieties buildings 2017 anneleen de schepper. 0 origin. the magic square

(0,y,z) ↦ (0, yy, zz; yz, 0, 0) satisfies X1X2=n(X3) , X0=X4=X5=0

ρ: PG(2,R) → PG(8,K): (x,y,z) ↦ (xx, yy, zz; yz , zx , xy )

Let K be a field. The Veronese variety 𝓥(K) is defined as follows K

K[0] L’L

ρ: PG(2,K) → PG(5,K): (x,y,z) ↦ (xx, yy, zz; yz, zx, xy)

X0 X1 X2 (X3, X4) (X5, X6) (X7, X8)

CD ALGEBRA ➜ VERONESE VAR

𝞯 ∉ K2 𝞯 = 0 𝞯 ∈ K2

point → point line → conic in a plane (Qmin(2,K))

Similarly, for R =CD(K,𝞯) we have the Veronese variety 𝓥(R)

Page 57: CHARACTERISING SINGULAR VERONESE VARIETIEScage.ugent.be/~ads/links/MagicPrism.pdf · 2017. 10. 4. · veronese varieties buildings 2017 anneleen de schepper. 0 origin. the magic square

(0,y,z) ↦ (0, yy, zz; yz, 0, 0) satisfies X1X2=n(X3) , X0=X4=X5=0

ρ: PG(2,R) → PG(8,K): (x,y,z) ↦ (xx, yy, zz; yz , zx , xy )

Let K be a field. The Veronese variety 𝓥(K) is defined as follows K

K[0] L’L

ρ: PG(2,K) → PG(5,K): (x,y,z) ↦ (xx, yy, zz; yz, zx, xy)

X0 X1 X2 (X3, X4) (X5, X6) (X7, X8)

Warning: if R = L’ or K[0], there is no projective plane over it.

CD ALGEBRA ➜ VERONESE VAR

𝞯 ∉ K2 𝞯 = 0 𝞯 ∈ K2

point → point line → conic in a plane (Qmin(2,K))

Similarly, for R =CD(K,𝞯) we have the Veronese variety 𝓥(R)

Page 58: CHARACTERISING SINGULAR VERONESE VARIETIEScage.ugent.be/~ads/links/MagicPrism.pdf · 2017. 10. 4. · veronese varieties buildings 2017 anneleen de schepper. 0 origin. the magic square

(0,y,z) ↦ (0, yy, zz; yz, 0, 0) satisfies X1X2=n(X3) , X0=X4=X5=0

ρ: PG(2,R) → PG(8,K): (x,y,z) ↦ (xx, yy, zz; yz , zx , xy )

Let K be a field. The Veronese variety 𝓥(K) is defined as follows K

K[0] L’L

ρ: PG(2,K) → PG(5,K): (x,y,z) ↦ (xx, yy, zz; yz, zx, xy)

X0 X1 X2 (X3, X4) (X5, X6) (X7, X8)

Warning: if R = L’ or K[0], there is no projective plane over it. ➜ take a ring geometry G(2,R) instead:

points : {(x,y,z)R* | x, y, z ∈ R & (x,y,z)r = 0 for r ∈ R implies r = 0} lines : {R*[a,b,c] | a, b, c ∈ R & r[a,b,c] = 0 for r ∈ R implies r = 0} incidence: ax + by + cz = 0

If R = L, then G(2,L)=PG(2,L)

CD ALGEBRA ➜ VERONESE VAR

𝞯 ∉ K2 𝞯 = 0 𝞯 ∈ K2

point → point line → conic in a plane (Qmin(2,K))

Similarly, for R =CD(K,𝞯) we have the Veronese variety 𝓥(R)

Page 59: CHARACTERISING SINGULAR VERONESE VARIETIEScage.ugent.be/~ads/links/MagicPrism.pdf · 2017. 10. 4. · veronese varieties buildings 2017 anneleen de schepper. 0 origin. the magic square

(0,y,z) ↦ (0, yy, zz; yz, 0, 0) satisfies X1X2=n(X3) , X0=X4=X5=0

ρ: G(2,R) → PG(8,K): (x,y,z) ↦ (xx, yy, zz; yz , zx , xy )

Let K be a field. The Veronese variety 𝓥(K) is defined as follows K

K[0] L’L

ρ: PG(2,K) → PG(5,K): (x,y,z) ↦ (xx, yy, zz; yz, zx, xy)

X0 X1 X2 (X3, X4) (X5, X6) (X7, X8)

CD ALGEBRA ➜ VERONESE VAR

𝞯 ∉ K2 𝞯 = 0 𝞯 ∈ K2

point → point line → conic in a plane (Qmin(2,K))

Similarly, for R =CD(K,𝞯) we have the Veronese variety 𝓥(R)

Page 60: CHARACTERISING SINGULAR VERONESE VARIETIEScage.ugent.be/~ads/links/MagicPrism.pdf · 2017. 10. 4. · veronese varieties buildings 2017 anneleen de schepper. 0 origin. the magic square

(0,y,z) ↦ (0, yy, zz; yz, 0, 0) satisfies X1X2=n(X3) , X0=X4=X5=0

ρ: G(2,R) → PG(8,K): (x,y,z) ↦ (xx, yy, zz; yz , zx , xy )

Let K be a field. The Veronese variety 𝓥(K) is defined as follows K

K[0] L’L

ρ: PG(2,K) → PG(5,K): (x,y,z) ↦ (xx, yy, zz; yz, zx, xy)

X0 X1 X2 (X3, X4) (X5, X6) (X7, X8)

(0,y,z) ↦ (0, yy, zz; yz, 0, 0) satisfies X1X2 = n(X3, X4) = X3 - 𝞯X4 2 2

L K[0] L’

Qmin(3,K) cone in PG(3,K) point — Qmin(2,K) Qmax(3,K)

CD ALGEBRA ➜ VERONESE VAR

𝞯 ∉ K2 𝞯 = 0 𝞯 ∈ K2

point → point line → conic in a plane (Qmin(2,K))

Similarly, for R =CD(K,𝞯) we have the Veronese variety 𝓥(R)

Page 61: CHARACTERISING SINGULAR VERONESE VARIETIEScage.ugent.be/~ads/links/MagicPrism.pdf · 2017. 10. 4. · veronese varieties buildings 2017 anneleen de schepper. 0 origin. the magic square

(0,y,z) ↦ (0, yy, zz; yz, 0, 0) satisfies X1X2=n(X3) , X0=X4=X5=0

ρ: G(2,R) → PG(8,K): (x,y,z) ↦ (xx, yy, zz; yz , zx , xy )

Let K be a field. The Veronese variety 𝓥(K) is defined as follows K

K[0] L’L

ρ: PG(2,K) → PG(5,K): (x,y,z) ↦ (xx, yy, zz; yz, zx, xy)

X0 X1 X2 (X3, X4) (X5, X6) (X7, X8)

(0,y,z) ↦ (0, yy, zz; yz, 0, 0) satisfies X1X2 = n(X3, X4) = X3 - 𝞯X4 2 2

L K[0] L’

Qmin(3,K) cone in PG(3,K) point — Qmin(2,K) Qmax(3,K)

CD ALGEBRA ➜ VERONESE VAR

𝞯 ∉ K2 𝞯 = 0 𝞯 ∈ K2

Again, (im(points),im(lines)) satisfies the MM axioms so 𝓥(R) is an MM set.

point → point line → conic in a plane (Qmin(2,K))

Similarly, for R =CD(K,𝞯) we have the Veronese variety 𝓥(R)

Page 62: CHARACTERISING SINGULAR VERONESE VARIETIEScage.ugent.be/~ads/links/MagicPrism.pdf · 2017. 10. 4. · veronese varieties buildings 2017 anneleen de schepper. 0 origin. the magic square

Let A be a Cayley Dickson algebra with dim(A/K) = d. The Veronese variety 𝓥(A) is defined similarly (ignore details).

K[0,0]

K[0,0,0]

level

0

level

1

level

2lev

el 3level 3

level 2level 1

level 0

L[0] L’[0]

H[0] H’[0]L[0,0] L’[0,0]

K

K[0] L’

H H’

L

O O’

X1X2 = nA((X3,…,Xd+1))

CD ALGEBRA ➜ VERONESE VAR

Page 63: CHARACTERISING SINGULAR VERONESE VARIETIEScage.ugent.be/~ads/links/MagicPrism.pdf · 2017. 10. 4. · veronese varieties buildings 2017 anneleen de schepper. 0 origin. the magic square

K[0,0]

K[0,0,0]

level

0

level

1

level

2lev

el 3level 3

level 2level 1

level 0

L[0] L’[0]

H[0] H’[0]L[0,0] L’[0,0]

1 free coordinate

2

3

5

9

minimal Witt index

d3

5

9

0

2 maximal Witt index

d

CD ALGEBRA ➜ VERONESE VARLet A be a Cayley Dickson algebra with dim(A/K) = d. The Veronese variety 𝓥(A) is defined similarly (ignore details).

X1X2 = nA((X3,…,Xd+1))

Page 64: CHARACTERISING SINGULAR VERONESE VARIETIEScage.ugent.be/~ads/links/MagicPrism.pdf · 2017. 10. 4. · veronese varieties buildings 2017 anneleen de schepper. 0 origin. the magic square

K[0,0,0]

level

0

level

1

level

2lev

el 3level 3

level 2level 1

level 0

H[0] H’[0]L[0,0] L’[0,0]

1 free coordinate

2 more free

2

3

5

9

3

5

9

0

2

3

1

2

2

3

1

minimal Witt index

d

maximal Witt index

d

CD ALGEBRA ➜ VERONESE VARLet A be a Cayley Dickson algebra with dim(A/K) = d. The Veronese variety 𝓥(A) is defined similarly (ignore details).

X1X2 = nA((X3,…,Xd+1))

Page 65: CHARACTERISING SINGULAR VERONESE VARIETIEScage.ugent.be/~ads/links/MagicPrism.pdf · 2017. 10. 4. · veronese varieties buildings 2017 anneleen de schepper. 0 origin. the magic square

maximal Witt index

d

level

0

level

1

level

2lev

el 3level 3

level 2level 1

level 0

1 free coordinate

2 more free

3

1

2

2

3

1

2

3

5

9

3

5

9

0

2

3

5

2

6

3

5

5

3

5

3

minimal Witt index

d

4 more free

CD ALGEBRA ➜ VERONESE VARLet A be a Cayley Dickson algebra with dim(A/K) = d. The Veronese variety 𝓥(A) is defined similarly (ignore details).

X1X2 = nA((X3,…,Xd+1))

Page 66: CHARACTERISING SINGULAR VERONESE VARIETIEScage.ugent.be/~ads/links/MagicPrism.pdf · 2017. 10. 4. · veronese varieties buildings 2017 anneleen de schepper. 0 origin. the magic square

3

1

2

2

3

1

level

1

level

2lev

el 3level 3

level 2 level

0level 1

level 0

1 free coordinate

2 more free

MM sets with ✔

MM sets with ✔

2

3

5

9

3

5

9

0

2

3

5

2

6

3

5

5

3

5

3

d

d

4 more free

CD ALGEBRA ➜ VERONESE VARLet A be a Cayley Dickson algebra with dim(A/K) = d. The Veronese variety 𝓥(A) is defined similarly (ignore details). standard CD algebras

⇵ second row geometries

⇵ MM sets

Page 67: CHARACTERISING SINGULAR VERONESE VARIETIEScage.ugent.be/~ads/links/MagicPrism.pdf · 2017. 10. 4. · veronese varieties buildings 2017 anneleen de schepper. 0 origin. the magic square

3

1

2

2

3

1

level

1

level

2lev

el 3level 3

level 2 level

0level 1

level 0

1 free coordinate

2 more free

MM sets with ✔

MM sets with ✔

2

3

5

9

3

5

9

0

2

3

5

2

6

3

5

5

3

5

3

d

d

MM set with ✔2

4 more free

CD ALGEBRA ➜ VERONESE VARLet A be a Cayley Dickson algebra with dim(A/K) = d. The Veronese variety 𝓥(A) is defined similarly (ignore details). generalised CD algebras

⇵ all second row geometries

⇵ modified MM sets

?

?

Page 68: CHARACTERISING SINGULAR VERONESE VARIETIEScage.ugent.be/~ads/links/MagicPrism.pdf · 2017. 10. 4. · veronese varieties buildings 2017 anneleen de schepper. 0 origin. the magic square

level

1

level

2lev

el 3level 3

level 2 level

0level 1

level 0

1 free coordinate

2 more free

2

3

5

9

3

5

9

0

2

3

1

5

3

2

2

3

1

2

6

3

5

5

3

3

5

MM set with ((d,v) general) d

v

4 more free

CD ALGEBRA ➜ VERONESE VARLet A be a Cayley Dickson algebra with dim(A/K) = d. The Veronese variety 𝓥(A) is defined similarly (ignore details). generalised CD algebras

⇵ all second row geometries

⇵ modified MM sets

MM set with ((d,v) general) d

v

LEVEL 1

Page 69: CHARACTERISING SINGULAR VERONESE VARIETIEScage.ugent.be/~ads/links/MagicPrism.pdf · 2017. 10. 4. · veronese varieties buildings 2017 anneleen de schepper. 0 origin. the magic square

4 Results

Page 70: CHARACTERISING SINGULAR VERONESE VARIETIEScage.ugent.be/~ads/links/MagicPrism.pdf · 2017. 10. 4. · veronese varieties buildings 2017 anneleen de schepper. 0 origin. the magic square

Axiomatic description

points spanning PG(N,K) X 𝚵 d’-spaces 𝝽 in PG(N,K)

s.th. 𝝽 ∩ X is:

(d’=d+v+1)

MM SETS WITH (D,V)-TUBES

Qmin(d,K)

v-dim vertex (excluded)

vertices Y

➜➜➜

➜➜➜

(d,v)-tube

d

vLEVEL 1 NONSPLIT

Page 71: CHARACTERISING SINGULAR VERONESE VARIETIEScage.ugent.be/~ads/links/MagicPrism.pdf · 2017. 10. 4. · veronese varieties buildings 2017 anneleen de schepper. 0 origin. the magic square

Axiomatic description

each two points of X belong to a [d’] of 𝚵

the tangent space of a point of X is contained in a [2(d’-1)]

MM1 MM2’ MM3

points spanning PG(N,K) X 𝚵 d’-spaces 𝝽 in PG(N,K)

s.th. 𝝽 ∩ X is:

(d’=d+v+1)

v-dim vertex (excluded)

vertices Y

➜➜➜

➜➜➜

(d,v)-tube

two [d’]s of 𝚵 intersect in points of X∪Y

but never in Y only

MM SETS WITH (D,V)-TUBES d

vLEVEL 1 NONSPLIT

Qmin(d,K)

Page 72: CHARACTERISING SINGULAR VERONESE VARIETIEScage.ugent.be/~ads/links/MagicPrism.pdf · 2017. 10. 4. · veronese varieties buildings 2017 anneleen de schepper. 0 origin. the magic square

Axiomatic description

each two points of X belong to a [d’] of 𝚵

the tangent space of a point of X is contained in a [2(d’-1)]

MM1 MM2’ MM3

points spanning PG(N,K) X 𝚵 d’-spaces 𝝽 in PG(N,K)

s.th. 𝝽 ∩ X is:

(d’=d+v+1)

v-dim vertex (excluded)

vertices Y

➜➜➜

➜➜➜

(d,v)-tube

two [d’]s of 𝚵 intersect in points of X∪Y

but never in Y only

The pair (X, 𝚵) together with MM1, MM2’ and MM3 is called a singular MM-set with (d,v)-tubes.

MM SETS WITH (D,V)-TUBES d

vLEVEL 1 NONSPLIT

Qmin(d,K)

Page 73: CHARACTERISING SINGULAR VERONESE VARIETIEScage.ugent.be/~ads/links/MagicPrism.pdf · 2017. 10. 4. · veronese varieties buildings 2017 anneleen de schepper. 0 origin. the magic square

MM SETS WITH (D,V)-TUBES: RESULTS

For any field K, let (X, 𝚵) be a singular MM-set with (d,0)-tubes. Case 1: the vertex is only a point (v=0)

d

vLEVEL 1 NONSPLIT

Page 74: CHARACTERISING SINGULAR VERONESE VARIETIEScage.ugent.be/~ads/links/MagicPrism.pdf · 2017. 10. 4. · veronese varieties buildings 2017 anneleen de schepper. 0 origin. the magic square

MM SETS WITH (D,V)-TUBES: RESULTS

For any field K, let (X, 𝚵) be a singular MM-set with (d,0)-tubes.

d=2

Case 1: the vertex is only a point (v=0)

Schillewaert, Van Maldeghem (2015) If nontrivial, (X, 𝚵) is projectively unique and isomorphic to

a Hjelmslevian projective plane.

2

𝓥(K)

d

𝓥(A)

d

vLEVEL 1 NONSPLIT

Page 75: CHARACTERISING SINGULAR VERONESE VARIETIEScage.ugent.be/~ads/links/MagicPrism.pdf · 2017. 10. 4. · veronese varieties buildings 2017 anneleen de schepper. 0 origin. the magic square

MM SETS WITH (D,V)-TUBES: RESULTS

For any field K, let (X, 𝚵) be a singular MM-set with (d,0)-tubes.

d=2

Case 1: the vertex is only a point (v=0)

2

𝓥(K)

d

𝓥(A)

d>2ADS, Van Maldeghem (2017)

(X, 𝚵) is always trivial.

Schillewaert, Van Maldeghem (2015) If nontrivial, (X, 𝚵) is projectively unique and isomorphic to

a Hjelmslevian projective plane.

d

vLEVEL 1 NONSPLIT

Page 76: CHARACTERISING SINGULAR VERONESE VARIETIEScage.ugent.be/~ads/links/MagicPrism.pdf · 2017. 10. 4. · veronese varieties buildings 2017 anneleen de schepper. 0 origin. the magic square

HJELMSLEVIAN PROJECTIVE PLANES

2

A Hjelmslevian projective plane: (X, 𝚵) is something with vertices in a plane and base an MM set with Qmin(2,K)s

𝓥(K)

Page 77: CHARACTERISING SINGULAR VERONESE VARIETIEScage.ugent.be/~ads/links/MagicPrism.pdf · 2017. 10. 4. · veronese varieties buildings 2017 anneleen de schepper. 0 origin. the magic square

2

PG(2,K)

The vertices form a projective plane over K.

HJELMSLEVIAN PROJECTIVE PLANES

𝓥(K)

A Hjelmslevian projective plane: (X, 𝚵) is something with vertices in a plane and base an MM set with Qmin(2,K)s

Page 78: CHARACTERISING SINGULAR VERONESE VARIETIEScage.ugent.be/~ads/links/MagicPrism.pdf · 2017. 10. 4. · veronese varieties buildings 2017 anneleen de schepper. 0 origin. the magic square

2

PG(2,K)

The vertices form a projective plane over K.In a complementary subspace, the points of X form the Veronese variety 𝓥(K).

HJELMSLEVIAN PROJECTIVE PLANES

8

𝓥(K)5𝓥(K)

A Hjelmslevian projective plane: (X, 𝚵) is something with vertices in a plane and base an MM set with Qmin(2,K)s

2

Page 79: CHARACTERISING SINGULAR VERONESE VARIETIEScage.ugent.be/~ads/links/MagicPrism.pdf · 2017. 10. 4. · veronese varieties buildings 2017 anneleen de schepper. 0 origin. the magic square

2

The vertices form a projective plane over K.

conic

its vertex

𝞆

point

vertices of the conics through it

𝞆

PG(2,K)28

In a complementary subspace, the points of X form the Veronese variety 𝓥(K). The mapping 𝞆 is a linear duality between 𝓥(K) and PG(2,K).

𝓥(K) ≈ PG(2,K)

HJELMSLEVIAN PROJECTIVE PLANES

𝓥(K)5

A Hjelmslevian projective plane: (X, 𝚵) is something with vertices in a plane and base an MM set with Qmin(2,K)s

Page 80: CHARACTERISING SINGULAR VERONESE VARIETIEScage.ugent.be/~ads/links/MagicPrism.pdf · 2017. 10. 4. · veronese varieties buildings 2017 anneleen de schepper. 0 origin. the magic square

2

The vertices form a projective plane over K.

conic

its vertex

𝞆

point

vertices of the conics through it

𝞆

PG(2,K)28

In a complementary subspace, the points of X form the Veronese variety 𝓥(K). The mapping 𝞆 is a linear duality between 𝓥(K) and PG(2,K).

𝓥(K) ≈ PG(2,K)

HJELMSLEVIAN PROJECTIVE PLANES

𝓥(K)5

The union of the affine planes x𝞆(x)\𝞆(x), with x in 𝓥(K), equals X.

A Hjelmslevian projective plane: (X, 𝚵) is something with vertices in a plane and base an MM set with Qmin(2,K)s

Page 81: CHARACTERISING SINGULAR VERONESE VARIETIEScage.ugent.be/~ads/links/MagicPrism.pdf · 2017. 10. 4. · veronese varieties buildings 2017 anneleen de schepper. 0 origin. the magic square

9

𝓥(O)26

A SIMILAR CONSTRUCTION

2

5

8

𝓥(K)

PG(2,K)

3

PG(2,L) PG(2,H)

PG(2,O)

3

𝓥(L)8

5

𝓥(H)14

Page 82: CHARACTERISING SINGULAR VERONESE VARIETIEScage.ugent.be/~ads/links/MagicPrism.pdf · 2017. 10. 4. · veronese varieties buildings 2017 anneleen de schepper. 0 origin. the magic square

9

𝓥(O)26

A SIMILAR CONSTRUCTION

2

5

8

𝓥(K)

PG(2,K)

3

PG(2,L) PG(2,H)

PG(2,O)

3

𝓥(L)8

5

𝓥(H)14

dim quadric total dim

2 5

3 8

5 14

9 26

d=2a+1 3d-1

Page 83: CHARACTERISING SINGULAR VERONESE VARIETIEScage.ugent.be/~ads/links/MagicPrism.pdf · 2017. 10. 4. · veronese varieties buildings 2017 anneleen de schepper. 0 origin. the magic square

9

𝓥(O)26

A SIMILAR CONSTRUCTION

2

5

8

𝓥(K)

PG(2,K)

3

PG(2,L) PG(2,H)

PG(2,O)

3

𝓥(L)8

5

𝓥(H)14

dim quadric total dim

2 5

3 8

5 14

9 26

d=2a+1 3d-1

Page 84: CHARACTERISING SINGULAR VERONESE VARIETIEScage.ugent.be/~ads/links/MagicPrism.pdf · 2017. 10. 4. · veronese varieties buildings 2017 anneleen de schepper. 0 origin. the magic square

9

𝓥(O)

50

26

A SIMILAR CONSTRUCTION

2

5

8

𝓥(K)

dim quadric total dim

2 5

3 8

5 14

9 26

d=2a+1 3d-1

PG(2,K)

3

PG(2,L) PG(2,H)

PG(2,O)

3

𝓥(L)8

14

5

𝓥(H)

26

14

5

5

9

11

17

23

Page 85: CHARACTERISING SINGULAR VERONESE VARIETIEScage.ugent.be/~ads/links/MagicPrism.pdf · 2017. 10. 4. · veronese varieties buildings 2017 anneleen de schepper. 0 origin. the magic square

3

𝓥(L)8

14

9

𝓥(O)

50

26

A SIMILAR CONSTRUCTION

2

5

8

𝓥(K)

PG(2,K)

3

PG(2,L) PG(2,H)

PG(2,O)

5

𝓥(H)

26

14

5

5

9

11

17

23Why isomorphic to PG(2,L)?

5

PG(2,L) — V(3,L) — V(6,K) — PG(5,K) point — vector line — vector plane — line line — regular line-spread in 3-space

Page 86: CHARACTERISING SINGULAR VERONESE VARIETIEScage.ugent.be/~ads/links/MagicPrism.pdf · 2017. 10. 4. · veronese varieties buildings 2017 anneleen de schepper. 0 origin. the magic square

3

𝓥(L)8

14

9

𝓥(O)

50

26

A SIMILAR CONSTRUCTION

2

5

8

𝓥(K)

PG(2,K)

3

PG(2,L) PG(2,H)

PG(2,O)

5

𝓥(H)

26

14

5

5

9

11

17

23

What is wrong with the last one?

PG(2,O)

23

The regular 7-spread defines a Desarguesian plane.

𝓥(O)26

𝓥(O) is a representation of a non-Desarguesian plane.

Page 87: CHARACTERISING SINGULAR VERONESE VARIETIEScage.ugent.be/~ads/links/MagicPrism.pdf · 2017. 10. 4. · veronese varieties buildings 2017 anneleen de schepper. 0 origin. the magic square

MM SETS WITH (D,V)-TUBES: RESULTS

For any field K, let (X, 𝚵) be a singular MM-set with (d,v)-tubes. Case 2: the vertex is higher dimensional (v > 0)

Page 88: CHARACTERISING SINGULAR VERONESE VARIETIEScage.ugent.be/~ads/links/MagicPrism.pdf · 2017. 10. 4. · veronese varieties buildings 2017 anneleen de schepper. 0 origin. the magic square

MM SETS WITH (D,V)-TUBES: RESULTS

For any field K, let (X, 𝚵) be a singular MM-set with (d,v)-tubes. We need to change MM2’

MM2*

two [d’]s of 𝚵 intersect in points of X∪Y

and always contain a point of X

MM2’

two [d’]s of 𝚵 intersect in points of X∪Y

but never in Y only

Case 2: the vertex is higher dimensional (v > 0)

Page 89: CHARACTERISING SINGULAR VERONESE VARIETIEScage.ugent.be/~ads/links/MagicPrism.pdf · 2017. 10. 4. · veronese varieties buildings 2017 anneleen de schepper. 0 origin. the magic square

3

𝓥(L)8

14

MM SETS WITH (D,V)-TUBES: RESULTS

For any field K, let (X, 𝚵) be a singular MM-set with (d,v)-tubes. With MM1, MM2* and MM3 we obtain:

ADS, Van Maldeghem (2017) If nontrivial, (X, 𝚵) is projectively unique and isomorphic to

a Hjelmslevian projective plane:

2

5

8

𝓥(K)

5

𝓥(H)

26

14

𝓥(K[0]) 𝓥(L[0]) 𝓥(H[0])

Case 2: the vertex is higher dimensional (v > 0)

5 11

Page 90: CHARACTERISING SINGULAR VERONESE VARIETIEScage.ugent.be/~ads/links/MagicPrism.pdf · 2017. 10. 4. · veronese varieties buildings 2017 anneleen de schepper. 0 origin. the magic square

level

1

level

2lev

el 3level 3

level 2 level

0level 1

level 0

1 free coordinate

2 more free

2

3

5

9

3

5

9

0

2

3

1

5

3

2

2

3

1

2

6

3

5

5

3

3

5

MM set with ((d,v) general) d

v

Let A be a Cayley Dickson algebra with dim(A/K) = d. The Veronese variety 𝓥(A) is defined similarly (ignore details).

MM set with ((d,v) general) d

v

LEVEL 1

CD ALGEBRA ➜ VERONESE VAR

Page 91: CHARACTERISING SINGULAR VERONESE VARIETIEScage.ugent.be/~ads/links/MagicPrism.pdf · 2017. 10. 4. · veronese varieties buildings 2017 anneleen de schepper. 0 origin. the magic square

level

1

level

2lev

el 3level 3

level 2 level

0level 1

level 0

1 free coordinate

2 more free

2

3

5

9

3

5

9

0

2

3

1

5

3

2

2

3

1

2

6

3

5

5

3

3

5

MM set with ((d,v) general) d

v

Let A be a Cayley Dickson algebra with dim(A/K) = d. The Veronese variety 𝓥(A) is defined similarly (ignore details).

MM set with ((d,v) general) d

v

LEVEL 1

CD ALGEBRA ➜ VERONESE VAR

Page 92: CHARACTERISING SINGULAR VERONESE VARIETIEScage.ugent.be/~ads/links/MagicPrism.pdf · 2017. 10. 4. · veronese varieties buildings 2017 anneleen de schepper. 0 origin. the magic square

level

1

level

2lev

el 3level 3

level 2 level

0level 1

level 0

1 free coordinate

2 more free

2

3

5

9

3

5

9

0

2

3

1

5

3

2

2

3

1

2

6

3

5

5

3

3

5

Take this one as a test case

MM set with ((d,v) general) d

v

Let A be a Cayley Dickson algebra with dim(A/K) = d. The Veronese variety 𝓥(A) is defined similarly (ignore details).

MM set with ((d,v) general) d

v

LEVEL 1

CD ALGEBRA ➜ VERONESE VAR

Page 93: CHARACTERISING SINGULAR VERONESE VARIETIEScage.ugent.be/~ads/links/MagicPrism.pdf · 2017. 10. 4. · veronese varieties buildings 2017 anneleen de schepper. 0 origin. the magic square

MM SETS WITH (3,1)-SYMPS

Axiomatic description

each two points of X belong to a [5] of 𝚵

the tangent space of a point of X is contained in a [2(5-1)]

MM1 MM2 MM3

points spanning PG(14,K) X 𝚵 5-spaces 𝝽 in PG(14,K)

s.th. 𝝽 ∩ X is:1-dim vertex

(excluded)

vertices Y

➜➜➜

➜➜➜

(3,1)-symp

3

1LEVEL 1 SPLIT

Qmax(3,K)

two [5]s of 𝚵 intersect in points of X∪Y

but never in Y only

Page 94: CHARACTERISING SINGULAR VERONESE VARIETIEScage.ugent.be/~ads/links/MagicPrism.pdf · 2017. 10. 4. · veronese varieties buildings 2017 anneleen de schepper. 0 origin. the magic square

MM SETS WITH (3,1)-SYMPS

Axiomatic description

each two points of X belong to a [5] of 𝚵

the tangent space of a point of X is contained in a [2(5-1)]

MM1 MM2 MM3

points spanning PG(14,K) X 𝚵 5-spaces 𝝽 in PG(14,K)

s.th. 𝝽 ∩ X is:

Qmax(3,K)

1-dim vertex (excluded)

vertices Y

➜➜➜

(3,1)-symp

3

1

Surprise: The Veronese variety 𝓥(L’[0]) does not satisfy axioms MM1 and MM2!

➜➜➜

LEVEL 1 SPLIT

two [5]s of 𝚵 intersect in points of X∪Y

but never in Y only

Page 95: CHARACTERISING SINGULAR VERONESE VARIETIEScage.ugent.be/~ads/links/MagicPrism.pdf · 2017. 10. 4. · veronese varieties buildings 2017 anneleen de schepper. 0 origin. the magic square

MM SETS WITH (3,1)-SYMPS

Axiomatic description

each two points of X belong to a [5] of 𝚵

MM1

points spanning PG(14,K) X 𝚵 5-spaces 𝝽 in PG(14,K)

s.th. 𝝽 ∩ X is:

Qmax(3,K)

1-dim vertex (excluded)

vertices Y

➜➜➜

(3,1)-symp

3

1

➜➜➜

LEVEL 1 SPLIT

Yet, each two points not belonging to a [5] of 𝚵, belong to a supersymp:

5

1 1-dim vertex (excl.)➜

Surprise: The Veronese variety 𝓥(L’[0]) does not satisfy axioms MM1 and MM2!

Qmax(5,K) 1 MSS `missing’

Page 96: CHARACTERISING SINGULAR VERONESE VARIETIEScage.ugent.be/~ads/links/MagicPrism.pdf · 2017. 10. 4. · veronese varieties buildings 2017 anneleen de schepper. 0 origin. the magic square

MM SETS WITH (3,1)-SYMPS

Axiomatic description

each two points of X belong to a [5] of 𝚵

MM1

points spanning PG(14,K) X 𝚵 5-spaces 𝝽 in PG(14,K)

s.th. 𝝽 ∩ X is:

Qmax(3,K)

1-dim vertex (excluded)

vertices Y

➜➜➜

(3,1)-symp

3

1

➜➜➜

LEVEL 1 SPLIT

Yet, each two points not belonging to a [5] of 𝚵, belong to a supersymp:

5

1 1-dim vertex (excl.)➜

7-spaces 𝝽’ in PG(14,K) s.th. 𝝽’ ∩ X is a supersymp

Surprise: The Veronese variety 𝓥(L’[0]) does not satisfy axioms MM1 and MM2!

Qmax(5,K) 1 MSS `missing’

Page 97: CHARACTERISING SINGULAR VERONESE VARIETIEScage.ugent.be/~ads/links/MagicPrism.pdf · 2017. 10. 4. · veronese varieties buildings 2017 anneleen de schepper. 0 origin. the magic square

MM SETS WITH (3,1)-SYMPS

Axiomatic description

MM1

points spanning PG(14,K) X 𝚵 5-spaces 𝝽 in PG(14,K)

s.th. 𝝽 ∩ X is:

Qmax(3,K)

1-dim vertex (excluded)

vertices Y

➜➜➜

(3,1)-symp

3

1

➜➜➜

LEVEL 1 SPLIT

Yet, each two points not belonging to a [5] of 𝚵, belong to a supersymp:

5

1 1-dim vertex (excl.)➜

Surprise: The Veronese variety 𝓥(L’[0]) does not satisfy axioms MM1 and MM2!

7-spaces 𝝽’ in PG(14,K) s.th. 𝝽’ ∩ X is a supersymp

each two points of X belong to a member of 𝚵

Qmax(5,K) 1 MSS `missing’

Page 98: CHARACTERISING SINGULAR VERONESE VARIETIEScage.ugent.be/~ads/links/MagicPrism.pdf · 2017. 10. 4. · veronese varieties buildings 2017 anneleen de schepper. 0 origin. the magic square

MM SETS WITH (3,1)-SYMPS

Axiomatic description

MM1

points spanning PG(14,K) X 𝚵 5-spaces 𝝽 in PG(14,K)

s.th. 𝝽 ∩ X is:

Qmax(3,K)

1-dim vertex (excluded)

vertices Y

➜➜➜

(3,1)-symp

3

1

➜➜➜

LEVEL 1 SPLIT

Yet, each two points not belonging to a [5] of 𝚵, belong to a supersymp:

Dually, there are also superpoints.

5

1 1-dim vertex (excl.)➜

Surprise: The Veronese variety 𝓥(L’[0]) does not satisfy axioms MM1 and MM2!

7-spaces 𝝽’ in PG(14,K) s.th. 𝝽’ ∩ X is a supersymp

each two points of X belong to a member of 𝚵

Qmax(5,K) 1 MSS `missing’

Page 99: CHARACTERISING SINGULAR VERONESE VARIETIEScage.ugent.be/~ads/links/MagicPrism.pdf · 2017. 10. 4. · veronese varieties buildings 2017 anneleen de schepper. 0 origin. the magic square

MM SETS WITH (3,1)-SYMPS

Axiomatic description

MM1

points spanning PG(14,K) X 𝚵 5-spaces 𝝽 in PG(14,K)

s.th. 𝝽 ∩ X is:

Qmax(3,K)

1-dim vertex (excluded)

vertices

➜➜➜

(3,1)-symp

3

1

➜➜➜

LEVEL 1 SPLIT

Yet, each two points not belonging to a [5] of 𝚵, belong to a supersymp:

Dually, there are also superpoints.

5

1 1-dim vertex (excl.)➜

➜Qmax(5,K)

1 MSS `missing’

Surprise: The Veronese variety 𝓥(L’[0]) does not satisfy axioms MM1 and MM2!

7-spaces 𝝽’ in PG(14,K) s.th. 𝝽’ ∩ X is a supersymp

each two points of X belong to a member of 𝚵

Y super- points

Page 100: CHARACTERISING SINGULAR VERONESE VARIETIEScage.ugent.be/~ads/links/MagicPrism.pdf · 2017. 10. 4. · veronese varieties buildings 2017 anneleen de schepper. 0 origin. the magic square

MM SETS WITH (3,1)-SYMPS

Axiomatic description

each two points of X belong to a member of 𝚵

MM1’

points spanning PG(14,K) X 𝚵

hyp. quadric in PG(3,K)

1-dim vertex (excluded)

vertices Y

➜➜➜

(3,1)-symp

3

1

Together with the superpoints and -symps, axioms MM1, MM2 and MM3 are satisfied.

the tangent space of a point of X is contained in a [2(5-1)]

MM2 MM3

➜➜➜

LEVEL 1 SPLIT

super- points

two [5]s of 𝚵 intersect in points of X∪Y

but never in Y only

7-spaces 𝝽’ in PG(14,K) s.th. 𝝽’ ∩ X is a supersymp

5-spaces 𝝽 in PG(14,K) s.th. 𝝽 ∩ X is:

Page 101: CHARACTERISING SINGULAR VERONESE VARIETIEScage.ugent.be/~ads/links/MagicPrism.pdf · 2017. 10. 4. · veronese varieties buildings 2017 anneleen de schepper. 0 origin. the magic square

MM SETS WITH (3,1)-SYMPS: RESULT

For any field K, let (X, 𝚵) be a singular MM-set with (3,1)-symps and supersymps. 3

1LEVEL 1 SPLIT

Page 102: CHARACTERISING SINGULAR VERONESE VARIETIEScage.ugent.be/~ads/links/MagicPrism.pdf · 2017. 10. 4. · veronese varieties buildings 2017 anneleen de schepper. 0 origin. the magic square

MM SETS WITH (3,1)-SYMPS: RESULT

ADS, Van Maldeghem (2017) If nontrivial, (X, 𝚵) is projectively unique and hence isomorphic to 𝓥(L’[0])

d=3 v=1

For any field K, let (X, 𝚵) be a singular MM-set with (3,1)-symps and supersymps.

𝓥(L’)8

14

5A2×A2

3

1LEVEL 1 SPLIT

Page 103: CHARACTERISING SINGULAR VERONESE VARIETIEScage.ugent.be/~ads/links/MagicPrism.pdf · 2017. 10. 4. · veronese varieties buildings 2017 anneleen de schepper. 0 origin. the magic square

FINAL OVERVIEW

Page 104: CHARACTERISING SINGULAR VERONESE VARIETIEScage.ugent.be/~ads/links/MagicPrism.pdf · 2017. 10. 4. · veronese varieties buildings 2017 anneleen de schepper. 0 origin. the magic square

FINAL OVERVIEW

Page 105: CHARACTERISING SINGULAR VERONESE VARIETIEScage.ugent.be/~ads/links/MagicPrism.pdf · 2017. 10. 4. · veronese varieties buildings 2017 anneleen de schepper. 0 origin. the magic square

FINAL OVERVIEW

Page 106: CHARACTERISING SINGULAR VERONESE VARIETIEScage.ugent.be/~ads/links/MagicPrism.pdf · 2017. 10. 4. · veronese varieties buildings 2017 anneleen de schepper. 0 origin. the magic square

THANKS FOR YOUR ATTENTION