Top Banner
EE141 1 gital Integrated Circuits 2nd Arithmetic Circuit Digital Digital Integrated Integrated Circuits Circuits A Design Perspective A Design Perspective Arithmetic Circuit Arithmetic Circuit Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic January, 2003
58
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: chapter11

EE1411

© Digital Integrated Circuits2ndArithmetic Circuits

Digital Integrated Digital Integrated CircuitsCircuitsA Design PerspectiveA Design Perspective

Arithmetic CircuitsArithmetic Circuits

Jan M. RabaeyAnantha ChandrakasanBorivoje Nikolic

January, 2003

Page 2: chapter11

EE1412

© Digital Integrated Circuits2ndArithmetic Circuits

A Generic Digital ProcessorA Generic Digital Processor

MEMORY

DATAPATH

CONTROL

INP

UT

-OU

TP

UT

Page 3: chapter11

EE1413

© Digital Integrated Circuits2ndArithmetic Circuits

Building Blocks for Digital ArchitecturesBuilding Blocks for Digital Architectures

Arithmetic unit

- Bit-sliced datapath (adder, multiplier, shifter, comparator, etc.)

Memory

- RAM, ROM, Buffers, Shift registers

Control

- Finite state machine (PLA, random logic.)

- Counters

Interconnect

- Switches

- Arbiters

- Bus

Page 4: chapter11

EE1414

© Digital Integrated Circuits2ndArithmetic Circuits

An Intel MicroprocessorAn Intel Microprocessor

9-1

Mux

9-1

Mux

5-1

Mux

2-1

Mux

ck1

CARRYGEN

SUMGEN+ LU

1000um

b

s0

s1

g64

sum sumb

LU : LogicalUnit

SU

MS

EL

a

to Cache

node1

RE

G

Itanium has 6 integer execution units like this

Page 5: chapter11

EE1415

© Digital Integrated Circuits2ndArithmetic Circuits

Bit-Sliced DesignBit-Sliced Design

Bit 3

Bit 2

Bit 1

Bit 0

Reg

iste

r

Add

er

Shif

ter

Mul

tipl

exer

ControlD

ata-

In

Dat

a-O

ut

Tile identical processing elements

Page 6: chapter11

EE1416

© Digital Integrated Circuits2ndArithmetic Circuits

Bit-Sliced DatapathBit-Sliced Datapath

Adder stage 1

Wiring

Adder stage 2

Wiring

Adder stage 3

Bit s

lice 0

Bit s

lice 2

Bit s

lice 1

Bit s

lice 63

Sum Select

Shifter

Multiplexers

Loopback Bus

From register files / Cache / Bypass

To register files / CacheLoopback B

us

Loopback Bus

Page 7: chapter11

EE1417

© Digital Integrated Circuits2ndArithmetic Circuits

Itanium Integer DatapathItanium Integer Datapath

Fetzer, Orton, ISSCC’02

Page 8: chapter11

EE1418

© Digital Integrated Circuits2ndArithmetic Circuits

AddersAdders

Page 9: chapter11

EE1419

© Digital Integrated Circuits2ndArithmetic Circuits

Full-AdderFull-AdderA B

Cout

Sum

Cin Fulladder

Page 10: chapter11

EE14110

© Digital Integrated Circuits2ndArithmetic Circuits

The Binary AdderThe Binary Adder

S A B Ci =

A= BCi ABCi ABCi ABCi+ + +

Co AB BCi ACi+ +=

A B

Cout

Sum

Cin Fulladder

Page 11: chapter11

EE14111

© Digital Integrated Circuits2ndArithmetic Circuits

Express Sum and Carry as a function of P, G, DExpress Sum and Carry as a function of P, G, D

Define 3 new variable which ONLY depend on A, B

Generate (G) = AB

Propagate (P) = A B

Delete = A B

Can also derive expressions for S and Co based on D and P

Propagate (P) = A BNote that we will be sometimes using an alternate definition for

Page 12: chapter11

EE14112

© Digital Integrated Circuits2ndArithmetic Circuits

The Ripple-Carry AdderThe Ripple-Carry Adder

Worst case delay linear with the number of bits

Goal: Make the fastest possible carry path circuit

FA FA FA FA

A0 B0

S0

A1 B1

S1

A2 B2

S2

A3 B3

S3

Ci,0 Co,0

(Ci,1)

Co,1 Co,2

td = O(N)

tadder = (N-1)tcarry + tsum

Page 13: chapter11

EE14113

© Digital Integrated Circuits2ndArithmetic Circuits

Complimentary Static CMOS Full AdderComplimentary Static CMOS Full Adder

28 Transistors

A B

B

A

Ci

Ci A

X

VDD

VDD

A B

Ci BA

B VDD

A

B

Ci

Ci

A

B

A CiB

Co

VDD

Page 14: chapter11

EE14114

© Digital Integrated Circuits2ndArithmetic Circuits

Inversion PropertyInversion Property

A B

S

CoCi FA

A B

S

CoCi FA

S A B Ci S A B Ci

=

Co A B Ci Co A B Ci

=

Page 15: chapter11

EE14115

© Digital Integrated Circuits2ndArithmetic Circuits

Minimize Critical Path by Reducing Inverting StagesMinimize Critical Path by Reducing Inverting Stages

Exploit Inversion Property

A3

FA FA FA

Even cell Odd cell

FA

A0 B0

S0

A1 B1

S1

A2 B2

S2

B3

S3

Ci,0 Co,0 Co,1 Co,3C

Page 16: chapter11

EE14116

© Digital Integrated Circuits2ndArithmetic Circuits

A Better Structure: The Mirror AdderA Better Structure: The Mirror Adder

VDD

Ci

A

BBA

B

A

A BKill

Generate"1"-Propagate

"0"-Propagate

VDD

Ci

A B Ci

Ci

B

A

Ci

A

BBA

VDD

SCo

24 transistors

Page 17: chapter11

EE14117

© Digital Integrated Circuits2ndArithmetic Circuits

Mirror AdderMirror AdderStick Diagram

CiA B

VDD

GND

B

Co

A Ci Co Ci A B

S

Page 18: chapter11

EE14118

© Digital Integrated Circuits2ndArithmetic Circuits

The Mirror AdderThe Mirror Adder•The NMOS and PMOS chains are completely symmetrical. A maximum of two series transistors can be observed in the carry-generation circuitry.

•When laying out the cell, the most critical issue is the minimization of the capacitance at node Co. The reduction of the diffusion

capacitances is particularly important.

•The capacitance at node Co is composed of four diffusion capacitances, two internal gate capacitances, and six gate capacitances in the connecting adder cell .

•The transistors connected to Ci are placed closest to the output.

•Only the transistors in the carry stage have to be optimized for optimal speed. All transistors in the sum stage can be minimal size.

Page 19: chapter11

EE14119

© Digital Integrated Circuits2ndArithmetic Circuits

Transmission Gate Full AdderTransmission Gate Full Adder

A

B

P

Ci

VDDA

A A

VDD

Ci

A

P

AB

VDD

VDD

Ci

Ci

Co

S

Ci

P

P

P

P

P

Sum Generation

Carry Generation

Setup

Page 20: chapter11

EE14120

© Digital Integrated Circuits2ndArithmetic Circuits

Manchester Carry ChainManchester Carry Chain

CoCi

Gi

Di

Pi

Pi

VDD

CoCi

Gi

Pi

VDD

Page 21: chapter11

EE14121

© Digital Integrated Circuits2ndArithmetic Circuits

Manchester Carry ChainManchester Carry Chain

G2

C3

G3

Ci,0

P0

G1

VDD

G0

P1 P2 P3

C3C2C1C0

Page 22: chapter11

EE14122

© Digital Integrated Circuits2ndArithmetic Circuits

Manchester Carry ChainManchester Carry Chain

Pi + 1 Gi + 1

Ci

Inverter/Sum Row

Propagate/Generate Row

Pi Gi

Ci - 1Ci + 1

VDD

GND

Stick Diagram

Page 23: chapter11

EE14123

© Digital Integrated Circuits2ndArithmetic Circuits

Carry-Bypass AdderCarry-Bypass Adder

FA FA FA FA

P0 G1 P0 G1 P2 G2 P3 G3

Co,3Co,2Co,1Co,0Ci ,0

FA FA FA FA

P0 G1 P0 G1 P2 G2 P3 G3

Co,2Co,1Co,0Ci,0

Co,3

Mul

tipl

exer

BP=PoP1P2P3

Idea: If (P0 and P1 and P2 and P3 = 1)then Co3 = C0, else “kill” or “generate”.

Also called Carry-Skip

Page 24: chapter11

EE14124

© Digital Integrated Circuits2ndArithmetic Circuits

Carry-Bypass Adder (cont.)Carry-Bypass Adder (cont.)

Carrypropagation

Setup

Bit 0–3

Sum

M bits

tsetup

tsum

Carrypropagation

Setup

Bit 4–7

Sum

tbypass

Carrypropagation

Setup

Bit 8–11

Sum

Carrypropagation

Setup

Bit 12–15

Sum

tadder = tsetup + Mtcarry + (N/M-1)tbypass + (M-1)tcarry + tsum

Page 25: chapter11

EE14125

© Digital Integrated Circuits2ndArithmetic Circuits

Carry Ripple versus Carry BypassCarry Ripple versus Carry Bypass

N

tp

ripple adder

bypass adder

4..8

Page 26: chapter11

EE14126

© Digital Integrated Circuits2ndArithmetic Circuits

Carry-Select AdderCarry-Select AdderSetup

"0" Carry Propagation

"1" Carry Propagation

Multiplexer

Sum Generation

Co,k-1 Co,k+3

"0"

"1"

P,G

Carry Vector

Page 27: chapter11

EE14127

© Digital Integrated Circuits2ndArithmetic Circuits

Carry Select Adder: Critical Path Carry Select Adder: Critical Path

0

1

Sum Generation

Multiplexer

1-Carry

0-Carry

Setup

Ci,0 Co,3 Co,7 Co,11 Co,15

S0–3

Bit 0–3 Bit 4–7 Bit 8–11 Bit 12–15

0

1

Sum Generation

Multiplexer

1-Carry

0-Carry

Setup

S4–7

0

1

Sum Generation

Multiplexer

1-Carry

0-Carry 0-Carry

Setup

S8–11

0

1

Sum Generation

Multiplexer

1-Carry

Setup

S

Page 28: chapter11

EE14128

© Digital Integrated Circuits2ndArithmetic Circuits

Linear Carry Select Linear Carry Select

Setup

"0" Carry

"1" Carry

Multiplexer

Sum Generation

"0"

"1"

Setup

"0" Carry

"1" Carry

Multiplexer

Sum Generation

"0"

"1"

Setup

"0" Carry

"1" Carry

Multiplexer

Sum Generation

"0"

"1"

Setup

"0" Carry

"1" Carry

Multiplexer

Sum Generation

"0"

"1"

Bit 0-3 Bit 4-7 Bit 8-11 Bit 12-15

S0-3 S4-7 S8-11 S12-15

Ci,0

(1)

(1)

(5)(6) (7) (8)

(9)

(10)

(5) (5) (5)(5)

Page 29: chapter11

EE14129

© Digital Integrated Circuits2ndArithmetic Circuits

Square Root Carry Select Square Root Carry Select

Setup

"0" Carry

"1" Carry

Multiplexer

Sum Generation

"0"

"1"

Setup

"0" Carry

"1" Carry

Multiplexer

Sum Generation

"0"

"1"

Setup

"0" Carry

"1" Carry

Multiplexer

Sum Generation

"0"

"1"

Setup

"0" Carry

"1" Carry

Multiplexer

Sum Generation

"0"

"1"

Bit 0-1 Bit 2-4 Bit 5-8 Bit 9-13

S0-1 S2-4 S5-8 S9-13

Ci,0

(4) (5) (6) (7)

(1)

(1)

(3) (4) (5) (6)

Mux

Sum

S14-19

(7)

(8)

Bit 14-19

(9)

(3)

Page 30: chapter11

EE14130

© Digital Integrated Circuits2ndArithmetic Circuits

Adder Delays - Comparison Adder Delays - Comparison

Square root select

Linear select

Ripple adder

20 40N

t p(in

un

it de

lays

)

600

10

0

20

30

40

50

Page 31: chapter11

EE14131

© Digital Integrated Circuits2ndArithmetic Circuits

LookAhead - Basic IdeaLookAhead - Basic Idea

Co k f A k Bk Co k 1– Gk P kCo k 1–+= =

AN-1, BN-1A1, B1

P1

S1

• • •

• • • SN-1

PN-1Ci, N-1

S0

P0Ci,0 Ci,1

A

Page 32: chapter11

EE14132

© Digital Integrated Circuits2ndArithmetic Circuits

Look-Ahead: TopologyLook-Ahead: Topology

Co k Gk Pk Gk 1– Pk 1– Co k 2–+ +=

Co k Gk Pk Gk 1– Pk 1– P1 G0 P0 Ci 0+ + + +=

Expanding Lookahead equations:

All the way:

Co,3

Ci,0

VDD

P0

P1

P2

P3

G0

G1

G2

Page 33: chapter11

EE14133

© Digital Integrated Circuits2ndArithmetic Circuits

Logarithmic Look-Ahead AdderLogarithmic Look-Ahead Adder

A7

F

A6A5A4A3A2A1

A0

A0

A1

A2

A3

A4

A5

A6

A7

F

tp log2(N)

tp N

Page 34: chapter11

EE14134

© Digital Integrated Circuits2ndArithmetic Circuits

Carry Lookahead TreesCarry Lookahead Trees

Co 0 G0 P0Ci 0+=

Co 1 G1 P1 G0 P1P0 Ci 0+ +=

Co 2 G2 P2G1 P2 P1G0 P+ 2 P1P0C i 0+ +=

G2 P2G1+ = P2P1 G0 P0Ci 0+ + G 2:1 P2:1Co 0+=

Can continue building the tree hierarchically.

Page 35: chapter11

EE14135

© Digital Integrated Circuits2ndArithmetic Circuits

Tree AddersTree Adders

16-bit radix-2 Kogge-Stone tree

(A0,

B0)

(A1,

B1)

(A2,

B2)

(A3,

B3)

(A4,

B4)

(A5,

B5)

(A6,

B6)

(A7,

B7)

(A8,

B8)

(A9,

B9)

(A10

, B10

)

(A11

, B11

)

(A12

, B12

)

(A13

, B13

)

(A14

, B14

)

(A15

, B15

)

S0

S1

S2

S3

S4

S5

S6

S7

S8

S9

S10

S11

S12

S13

S14

S15

Page 36: chapter11

EE14136

© Digital Integrated Circuits2ndArithmetic Circuits

Tree AddersTree Adders(a

0, b

0)

(a1, b

1)

(a2, b

2)

(a3, b

3)

(a4, b

4)

(a5, b

5)

(a6, b

6)

(a7, b

7)

(a8, b

8)

(a9, b

9)

(a1

0,

b1

0)

(a1

1,

b1

1)

(a1

2,

b1

2)

(a1

3,

b1

3)

(a1

4,

b1

4)

(a1

5,

b1

5)

S0

S1

S2

S3

S4

S5

S6

S7

S8

S9

S1

0

S1

1

S1

2

S1

3

S1

4

S1

5

16-bit radix-4 Kogge-Stone Tree

Page 37: chapter11

EE14137

© Digital Integrated Circuits2ndArithmetic Circuits

Sparse TreesSparse Trees(a

0, b

0)

(a1, b

1)

(a2, b

2)

(a3, b

3)

(a4, b

4)

(a5, b

5)

(a6, b

6)

(a7, b

7)

(a8, b

8)

(a9, b

9)

(a1

0,

b1

0)

(a1

1,

b1

1)

(a1

2,

b1

2)

(a1

3,

b1

3)

(a1

4,

b1

4)

(a1

5,

b1

5)

S1

S3

S5

S7

S9

S1

1

S1

3

S1

5

S0

S2

S4

S6

S8

S1

0

S1

2

S1

4

16-bit radix-2 sparse tree with sparseness of 2

Page 38: chapter11

EE14138

© Digital Integrated Circuits2ndArithmetic Circuits

Tree AddersTree Adders(A

0, B

0)

(A1,

B1)

(A2,

B2)

(A3,

B3)

(A4,

B4)

(A5,

B5)

(A6,

B6)

(A7,

B7)

(A8,

B8)

(A9,

B9)

(A10

, B

10)

(A11

, B

11)

(A12

, B

12)

(A13

, B

13)

(A14

, B

14)

(A15

, B

15)

S0

S1

S2

S3

S4

S5

S6

S7

S8

S9

S10

S11

S12

S13

S14

S15

Brent-Kung Tree

Page 39: chapter11

EE14139

© Digital Integrated Circuits2ndArithmetic Circuits

Example: Domino AdderExample: Domino Adder

VDD

Clk Pi= ai + bi

Clk

ai bi

VDD

Clk Gi = aibi

Clk

ai

bi

Propagate Generate

Page 40: chapter11

EE14140

© Digital Integrated Circuits2ndArithmetic Circuits

Example: Domino AdderExample: Domino Adder

VDD

Clkk

Pi:i-k+1

Pi-k:i-2k+1

Pi:i-2k+1

VDD

Clkk

Gi:i-k+1

Pi:i-k+1

Gi-k:i-2k+1

Gi:i-2k+1

Propagate Generate

Page 41: chapter11

EE14141

© Digital Integrated Circuits2ndArithmetic Circuits

Example: Domino SumExample: Domino SumVDD

Clk

Gi:0

Clk

Sum

VDD

Clkd

Clk

Gi:0

Clk

Si1

Clkd

Si0

Keeper

Page 42: chapter11

EE14142

© Digital Integrated Circuits2ndArithmetic Circuits

MultipliersMultipliers

Page 43: chapter11

EE14143

© Digital Integrated Circuits2ndArithmetic Circuits

The Binary MultiplicationThe Binary Multiplication

Z X·· Y Zk2k

k 0=

M N 1–+

= =

Xi2i

i 0=

M 1–

Yj2j

j 0=

N 1–

=

XiYj2i j+

j 0=

N 1–

i 0=

M 1–

=

X Xi2i

i 0=

M 1–

=

Y Yj2j

j 0=

N 1–

=

with

Page 44: chapter11

EE14144

© Digital Integrated Circuits2ndArithmetic Circuits

The Binary MultiplicationThe Binary Multiplication

x

Partial products

Multiplicand

Multiplier

Result

1 0 1 0 1 0

1 0 1 0 1 0

1 0 1 0 1 0

1 1 1 0 0 1 1 1 0

0 0 0 0 0 0

1 0 1 0 1 0

1 0 1 1

Page 45: chapter11

EE14145

© Digital Integrated Circuits2ndArithmetic Circuits

The Array MultiplierThe Array MultiplierY0

Y1

X3 X2 X1 X0

X3

HA

X2

FA

X1

FA

X0

HA

Y2X3

FA

X2

FA

X1

FA

X0

HA

Z1

Z3Z6Z7 Z5 Z4

Y3X3

FA

X2

FA

X1

FA

X0

HA

Page 46: chapter11

EE14146

© Digital Integrated Circuits2ndArithmetic Circuits

The MxN Array MultiplierThe MxN Array Multiplier— Critical Path— Critical Path

HA FA FA HA

HAFAFAFA

FAFA FA HA

Critical Path 1

Critical Path 2

Critical Path 1 & 2

Page 47: chapter11

EE14147

© Digital Integrated Circuits2ndArithmetic Circuits

Carry-Save MultiplierCarry-Save MultiplierHA HA HA HA

FAFAFAHA

FAHA FA FA

FAHA FA HA

Vector Merging Adder

Page 48: chapter11

EE14148

© Digital Integrated Circuits2ndArithmetic Circuits

Multiplier FloorplanMultiplier Floorplan

SCSCSCSC

SCSCSCSC

SCSCSCSC

SC

SC

SC

SC

Z0

Z1

Z2

Z3Z4Z5Z6Z7

X0X1X2X3

Y1

Y2

Y3

Y0

Vector Merging Cell

HA Multiplier Cell

FA Multiplier Cell

X and Y signals are broadcastedthrough the complete array.( )

Page 49: chapter11

EE14149

© Digital Integrated Circuits2ndArithmetic Circuits

Wallace-Tree MultiplierWallace-Tree Multiplier

6 5 4 3 2 1 0 6 5 4 3 2 1 0

Partial products First stage

Bit position

6 5 4 3 2 1 0 6 5 4 3 2 1 0

Second stage Final adder

FA HA

(a) (b)

(c) (d)

Page 50: chapter11

EE14150

© Digital Integrated Circuits2ndArithmetic Circuits

Wallace-Tree MultiplierWallace-Tree Multiplier

Partial products

First stage

Second stage

Final adder

FA FA FA

HA HA

FA

x3y3

z7 z6 z5 z4 z3 z2 z1 z0

x3y2x2y3

x1y1x3y0 x2y0 x0y1x0y2

x2y2x1y3

x1y2x3y1x0y3 x1y0 x0y

Page 51: chapter11

EE14151

© Digital Integrated Circuits2ndArithmetic Circuits

Wallace-Tree MultiplierWallace-Tree Multiplier

FA

FA

FA

FA

y0 y1 y2

y3

y4

y5

S

Ci-1

Ci-1

Ci-1

Ci

Ci

Ci

FA

y0 y1 y2

FA

y3 y4 y5

FA

FA

CC S

Ci-1

Ci-1

Ci-1

Ci

Ci

Ci

Page 52: chapter11

EE14152

© Digital Integrated Circuits2ndArithmetic Circuits

Multipliers —SummaryMultipliers —Summary

• Optimization Goals Different Vs Binary Adder

• Once Again: Identify Critical Path

• Other possible techniques

- Data encoding (Booth)- Pipelining

FIRST GLIMPSE AT SYSTEM LEVEL OPTIMIZATION

- Logarithmic versus Linear (Wallace Tree Mult)

Page 53: chapter11

EE14153

© Digital Integrated Circuits2ndArithmetic Circuits

ShiftersShifters

Page 54: chapter11

EE14154

© Digital Integrated Circuits2ndArithmetic Circuits

The Binary ShifterThe Binary Shifter

Ai

Ai-1

Bi

Bi-1

Right Leftnop

Bit-Slice i

...

Page 55: chapter11

EE14155

© Digital Integrated Circuits2ndArithmetic Circuits

The Barrel ShifterThe Barrel Shifter

Sh3Sh2Sh1Sh0

Sh3

Sh2

Sh1

A3

A2

A1

A0

B3

B2

B1

B0

: Control Wire

: Data Wire

Area Dominated by Wiring

Page 56: chapter11

EE14156

© Digital Integrated Circuits2ndArithmetic Circuits

4x4 barrel shifter4x4 barrel shifter

BufferSh3Sh2Sh1Sh0

A3

A2

A1

A0

Widthbarrel ~ 2 pm M

Page 57: chapter11

EE14157

© Digital Integrated Circuits2ndArithmetic Circuits

Logarithmic ShifterLogarithmic ShifterSh1 Sh1 Sh2 Sh2 Sh4 Sh4

A3

A2

A1

A0

B1

B0

B2

B3

Page 58: chapter11

EE14158

© Digital Integrated Circuits2ndArithmetic Circuits

A3

A2

A1

A0

Out3

Out2

Out1

Out0

0-7 bit Logarithmic Shifter0-7 bit Logarithmic Shifter