Top Banner
8/12/2019 Chapter10 SM http://slidepdf.com/reader/full/chapter10-sm 1/64
64

Chapter10 SM

Jun 03, 2018

Download

Documents

ajachurail
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Chapter10 SM

8/12/2019 Chapter10 SM

http://slidepdf.com/reader/full/chapter10-sm 1/64

Page 2: Chapter10 SM

8/12/2019 Chapter10 SM

http://slidepdf.com/reader/full/chapter10-sm 2/64

( )   ( ) ( )

( ) ( )[ ] 4424.14278.00411.0log5941.00411.0log00266.0

0137.0log4761.00411.0log07114.00411.0log005309.0,

10

2

10

1010

2

10

=++

−⋅−+=∞   s p D   δ δ 

[ ] 256666.110137.0log0411.0log51244.001217.11, 1010   =−+= s p F    δ δ   

]

  12248.112 / 345.0575.0

2 / 345.0575.0256666.114424.1 2

≈ = π π π 

π π π  N   

10.2  and75= N    π ω ω  05.0=−   p s and we assume . p s   δ δ    =  

(a)  Using Kaiser’s formula of Eq. (10.3): 

[ ]

375.40009577.010 20

132 / 05.06.1475

=⎟⎠

⎞⎜⎝

 ss   αδ

π π 

dB.

(b) Using Bellanger’s formula of Eq. (10.4): 

5.380119.0101.0

2 / 1

2

2 / 05.0376

=⎟⎟

⎜⎜

⋅⎟⎠

⎞⎜⎝

⎛ ⋅

ss   αδ

π π 

dB.

(c)  Using Hermann’s formula of Eq. (10.5): 

( )   ( ) ( )[ ]2

11 2/2/   π ω ω π ω ω δ   p s p s s   b N  Db F    −+−=∴=   ∞  

( ) ( ) ( ) ( )

( ) ( )[ ]( ) ( ) ( ) ( )

( ) ( )

( ) ( ) ( )( ) ( )( ) 61053

2

1042

3

101

6105

2

104

103

2

102

3

101

6105

2

104

103102

2

101

logloglog

loglog

logloglog

loglog

logloglog

aaaaaa D

aaa

aaa D

aaa

aaa D

 s s s s

 s s

 s s s s

 s s

 s s s s

−−+−+=

−−

−++=

++

−++=

δ δ δ δ 

δ δ 

δ δ δ δ 

δ δ 

δ δ δ δ 

 

Let   (   s x   )δ 10log= , and thus

( ) 875697.14278.00702.106848.0005309.0 23 =−−+=∞   x x x D  sδ   

Solving for x gives us three possible solutions:4263.10,94654.1,3787.21   =−=−=   x x x  

The most reasonable solution is the second. Therefore,

93.380113.0   =∴=   s s   α δ   

10.3 and75= N    ω π ω ω    ∆==− 05.0 p s  

( ) 9.348285.2  =+∆=

  N  sα  dB.

10.4 The ideal  L -band digital filter )( z H  ML  has a frequency response given by

for,)(   k  j

 ML   Ae H    =ω ,1   k k    ωωω   ≤ ,1   Lk  ≤  and can be considered as sum of  L  ideal

 bandpass filters with cutoff frequencies at and where

and Now from Eq. (10.47) the impulse response of an ideal bandpass filter is

11   k k c   ωω ,2   k 

k c   ωω   = 00

1 =cω

.2   π Lc

ω

Not for sale 325

Page 3: Chapter10 SM

8/12/2019 Chapter10 SM

http://slidepdf.com/reader/full/chapter10-sm 3/64

given by .)sin()sin(

][ 12

n

n

n

nnh   cc

 BPπ 

ω

π 

ω  Therefore ,

n

n

n

nnh   k k k 

 BPπ 

ω

π 

ω )sin()sin(][ 1  . Hence,

∑= 

=⎟⎠⎞⎜

⎝⎛  

 L

k k k 

 L

k  BP MLn

nn

n Anhnh

1

1

1

)sin()sin(][][π ω

π ω  

∑ 

=

 

=

⎟⎠

⎞⎜⎝

⎛ 

⎞⎜⎝

⎛ 

1

2

11

2

11

)sin()sin()sin()0sin()sin(   L

k k k 

 L

k k 

n

n

n

n A

n

n A

n

n

n

n A

π 

ω

π 

ω

π 

ω

π π 

ω 

⎟⎠

⎞⎜⎝

⎛ 

n

n

n

n A   L L

 Lπ 

ω

π 

ω )sin()sin( 1 

n

n A

n

n A

n

n A

n

n A   L

 L

 L

 L

k k 

k k 

π 

ω

π 

ω

π 

ω

π 

ω )sin()sin()sin()sin( 11

2

1

2

111

 

=

 

=

 ∑ ∑  

.)sin()sin(1

1 2

1∑ ∑= =

  L

 L

k k 

k k 

n

n A

n

n A

π 

ω

π 

ω 

Since , Lω   .0)sin(   =n Lω   We add a termn

n A   L

 Lπ 

ω )sin( to the first sum in the above

expression and change the index range of the second sum, resulting in

.)sin()sin(

][

1

1

11∑

=

 

 L

 L

k k 

k k  ML

n

n A

n

n Anh

π 

ω

π 

ω 

Finally, since ,01 = L A  we can add a term

n

n A   L

 L

π 

ω )sin(1  to the second sum. This leads to

.)sin(

)()sin()sin(

][

1 1 111∑ ∑

= = = 

 L

 L

 L

k k k 

k k 

k k  ML

n

n A A

n

n A

n

n Anh

π 

ω

π 

ω

π 

ω 

10.5  Therefore,⎩ <

<=

.0,

,0,)(

π ω

ωπ ω

 j

 je H    j

 HT 

  ∫π

 ππ

0

0

)(2

1)(

2

1][   ωω   ωω

π 

ωω d ee H d ee H nh   n j j HT 

n j j HT  HT   

n

nnn

d  jed  je   n jn j

π 

π π π 

ωω   ω

π 

ω )2 / (sin2)cos(12

221

21 2

0

0

=ππ ∫

π

 

if .0n

  For ,0n .02

1

2

1]0[

0

0

=ππ ∫

π

 

ωω

π 

 jd  jd h HT   

Not for sale 326

Page 4: Chapter10 SM

8/12/2019 Chapter10 SM

http://slidepdf.com/reader/full/chapter10-sm 4/64

  Hence,⎪⎩

⎪⎨

≠π

π

=

=.,

)/(

,,

][0if 

22sin

0if 02

nn

n

n

nh HT   

Since ],[][   nhnh  HT  HT    and the length of the truncated impulse response is odd, it is a Ty

3 linear-phase FIR filter.

0 0.2 0.4 0.6 0.8 10

0.2

0.4

0.6

0.8

1

ω / π

   M  a  g  n   i   t  u   d  e

N=11

N=21

N=61

 

From the frequency response plots given above, we observe the presence of ripples at the bandedges due to the Gibbs phenomenon caused by the truncation of the impulse response.

10.6 . Hence,∑ ∞

 k 

 HT    k  x k nhn x  ][][]}[{H  

  { }} )()(][   ωω   j j HT    e X e H n x    =H  F   

⎪⎨⎧

<

<=

.0),(

,0),(

π ω

ωπ ω

ω

 j

 j

e jX 

e jX 

 

(a) Let  { }}}.][ ][n x n y   H  H  H  H   }  Hence,

Therefore,

(

,0),()(–

,0),()(

4

ω

ωω

π ω

ωπ    j j

 j j e X 

e X  j

e X  jeY    =

⎪⎨⎧

<

<=

].[][   n x n y   =  

(b) Define and,][][   n x ng   H   } ].[][*   n x nh   =   Then

But from the Parseval's' relation in Table 3.4,

{ } [*][][][––   ∑

∞=

ll  llll   hg x  x H  

.)()(2

1][*][

––  ωωω d eGeGhg   j j∫ π

∞ πl  ll

π 

Therefore,  { } ωωωω

d e X e X e H  x  x   j j j

 HT  )()()(2

1][][ –

–   ∫ π

∞ πl  llH  

  π where

Since the integrand

⎩ <

<=

.0,

,0,)(

π ω

ωπ ω

 j

 je H    j

 HT  )()()( –   ωωω   j j j

 HT   e X e X e H   is an odd

function of As a result, ,ω .0)()()( – =∫π

πω

ωωωd e X e X e H    j j j

 HT    { } .0][][–

  =∞

∞l  ll   x  x H  

 

Not for sale 327

Page 5: Chapter10 SM

8/12/2019 Chapter10 SM

http://slidepdf.com/reader/full/chapter10-sm 5/64

Page 6: Chapter10 SM

8/12/2019 Chapter10 SM

http://slidepdf.com/reader/full/chapter10-sm 6/64

For ,0n .02

1]0[   =

π ∫ 

π 

π 

ωωd  jh DIF   

Hence,

⎪⎨⎧

>

==

.0||,

)cos(,0,0

][

nn

nn

nh DIF    Since ],[][   nhnh  DIF  DIF    the truncated impulse

response is a Type 3 linear-phase FIR filter. The magnitude responses of the abovedifferentiator for several values of  M  are given below:

0 0.2 0.4 0.6 0.8 10

1

2

3

4

ω / π

   M  a  g  n   i   t  u   d  e

M=10

M=20

M=30

 

10.9 .12   M  N  

⎪⎪⎪

=

=

otherwise.0,

if 

for 

,0,,)(

)(sin

,,1

][ˆ  N n M nmn

mn

 M n

nh   c

c

 HPπ 

ωπ 

ω

 

 Now,==

 ∞

 ∞

 

1

0

1

0][ˆ][ˆ][ˆ][ˆ)(ˆ)(ˆ

 N 

n

 LP

 N 

n

n HP

n

n LP

n

n HP LP HP   znh znh znh znh z H  z H 

 .][ˆ][ˆ

1

0∑=

  N 

n

n LP HP   znhnh

  But ][ˆ][ˆ nhnh  LP HP   = ,⎩

≠=

.

1,0][ˆ][ˆ

n=M 

 M  , n N– nnhnh  LP HP

1,

,0

  Hence, ,)(ˆ)(ˆ – M  LP HP   z z H  z H    = i.e. the two filters are delay-complementary.

10.10 ⎩

<= otherwise.,0

,,)(   c j LLP   e H    ωωωω   Therefore,

Not for sale 329

Page 7: Chapter10 SM

8/12/2019 Chapter10 SM

http://slidepdf.com/reader/full/chapter10-sm 7/64

Page 8: Chapter10 SM

8/12/2019 Chapter10 SM

http://slidepdf.com/reader/full/chapter10-sm 8/64

0 0.2 0.4 0.6 0.8 10

0.5

1

1.5

   /  

   A  m  p   l   i   t  u   d  e

 o = 0.4š

 10.13

π 

π 

ωωω

π 

d e H e H   jd 

 jt  R

2

2

1Φ , where   [ ] .∑

 

=

 M 

 M n

n jt 

 jt  enhe H 

  ωω  

Using Parseval’s relation, we can write   [ ] [ ]∑∞

 ∞

 

n

d t  R nhnh2

Φ  

[ ] [ ] [ ] [ ]∑ ∑ 

 ∞

 

 M 

 M n M n

 M 

n

d d t  nhnhnhnh

1

2122

.

 Now, [ ] [ ] [ ]∑∞

 ∞

 

n

d  Hannd  Haan nhnwnh2

Φ  

[ ] [ ] [ ] [ ]∑∞

 ∞

 ⎟⎠

⎞⎜⎝

⎛⎟⎠

⎞⎜⎝

 1

212

2

12

2cos

2

1

2

1

 M n

 M 

n

 M 

 M n

d d  nhnhnh M 

nnh

  π 

 

Hence, Haan R Excess

  ΦΦΦ  

[ ] [ ] [ ] [ ] [ ]∑ 

⎟⎠

⎞⎜⎝

⎛⎟⎠

⎞⎜⎝

 

 M 

 M n

d d 

 M 

 M n

d  Rd  nh M 

nnhnhnwnh

22

12

2cos

2

1

2

1   π 

 

[ ] [ ]∑  ⎠

⎞⎜⎝

 

 M 

 M n

d d  nh

 M 

nnh2

212

2cos

2

π 

 2

112

2cos21

2

⎞⎜⎝

  M 

 M  M 

  π 

.

10.14 [ ] [ ]∑∞

−∞=

−=Φn

d t  R  nhnh

2and [ ] [ ] [ ] .

2∑∞

 ∞

 

n

d  Hammd  Hamm nhnwnhΦ  

Therefore,  Hamm R Excess   ΦΦΦ   [ ]∑ 

⎟⎠

⎞⎜⎝

⎛ 

⎞⎜⎝

 

 M 

 M n

d  M 

nnh

2

46.012

2cos46.0  π 

 

[ ]∑ 

⎟⎠

⎞⎜⎝

⎛ 

⎞⎜⎝

 

 M 

 M n

d  M 

nnh

2

112

2cos46.0

  π 

  .112

2cos1246.0

2

 ⎠

⎞⎜⎝

  M 

 M  M 

  π 

 

Not for sale 331

Page 9: Chapter10 SM

8/12/2019 Chapter10 SM

http://slidepdf.com/reader/full/chapter10-sm 9/64

10.15 (a)   π ω  47.0= p ,   π 59.0= s , 001.0= pδ  , 007.0= sδ  ,   π 12.0=∆ , 

1.43log20 10   =−=   s s   δ α  dB

From Table 10.2, we see that for fixed-window functions, we can achieve the minimum

stopband attenuation by using Hann, Hamming, or Blackman windows. Hann will havethe lowest filter length.

5312   = M  N  Haan  since .917.2512.0

11.3=

π 

π  M   

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1-140

-120

-100

-80

-60

-40

-20

0

20

ω / π

   M  a  g  n   i   t  u   d  e   R  e  s

  p  o  n  s  e

Lowpass filter using Hann window

 (b)   π ω  61.0= p  ,   π 78.0= s , 001.0= pδ  , 002.0= sδ  ,   π 17.0=∆ ,

54log20 10   =−=   s s   δ α  dB

From Table 10.2, we see that for fixed-window functions, we can achieve the minimumstopband attenuation by using either Hamming, or Blackman windows. Hamming will

have the lowest filter length.

4112   = M  N  Hamm  since 53.1917.0

32.3==

π 

π  M  .

Not for sale 332

Page 10: Chapter10 SM

8/12/2019 Chapter10 SM

http://slidepdf.com/reader/full/chapter10-sm 10/64

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1-100

-80

-60

-40

-20

0

20

ω / π

   M  a  g  n   i   t  u   d  e   R  e  s  p  o  n  s  e

Lowpass filter using Hamming window

 10.16  π ω  45.01  = p ,   π ω  65.02  = p ,   π 3.01  = s ,   π 8.02  = s ,   π 15.021   =∆=∆ , 

01.0= pδ  , 008.01  = sδ  , 05.02  = sδ   

42log20 1101   =−=   s s   δ α  dB, 26log20 2102   =−=   s s   δ α  dB

From Table 10.2, we see that the Hann window will have minimum length and meet the

minimum stopband attenuation.

.2115.0

11.3=π 

π  M    Therefore, 43 N  .

Not for sale 333

Page 11: Chapter10 SM

8/12/2019 Chapter10 SM

http://slidepdf.com/reader/full/chapter10-sm 11/64

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1-140

-120

-100

-80

-60

-40

-20

0

20

ω / π

   M  a  g  n   i   t  u   d  e   R  e  s  p  o  n  s  e

Bandpass filter using Hann window

 10.17 π ω  3.01  = p ,   π ω  8.02  = p ,   π 45.01  = s ,   π 65.02  = s ,   π 15.021   =∆=∆ , 

05.01  = pδ  , 009.02  = pδ  , 02.0= sδ  ,

34log20 10   =−=   s s   δ α  dB

From Table 10.2, we see that the Hann window will have minimum length and meet the

minimum stopband attenuation.

Not for sale 334

Page 12: Chapter10 SM

8/12/2019 Chapter10 SM

http://slidepdf.com/reader/full/chapter10-sm 12/64

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1-120

-100

-80

-60

-40

-20

0

20

ω / π

   M  a  g  n   i   t  u   d  e   R  e  s  p  o  n  s  e

Bandstop filter using Hann window

 

10.18 Consider another filter with a frequency response given by)(   ω jeG

 ⎪⎪⎪

⎪⎪⎪

 ⎟⎠

⎞⎜⎝

⎛  

≤⎟⎠

⎜⎝

⎛  

=

elsewhere.,0

,,)(

sin2

,,

)(

sin2

,0,0

)(

 ps p

s p

 p

 p

 jeG

ωωωω

ωωπ 

ω

π 

ωωωω

ωωπ 

ω

π 

ωω

ω

∆∆

∆∆

 

Clearly .)(

)(ω

ωω

edH eG

 j j =   Now,

∫ =

π 

π 

ωω ωπ 

d eeGng   n j j )(2

1][

  ⎜

⎜⎜⎜

 = ∫⎟⎠

⎜⎝

⎛  

⎟⎠

⎜⎝

⎛  s

 p

s

 p

d eed ee

 j

n j

 p j

n j

 p j   ω

ω

ωω

ωωπ ω

ω

ωω

ωωπ 

ωω

ωπ 

π    ∆∆

)()(

8  

  ∫ 

⎟⎠

⎜⎝

⎛  

⎟⎠

⎜⎝

⎛   p

s

 p

s

d eed ee  n j

 p j

n j

 p j   ω

ω

ωω

ωωπ ω

ω

ωω

ωωπ 

ωω  ∆∆

)()(

Not for sale 335

Page 13: Chapter10 SM

8/12/2019 Chapter10 SM

http://slidepdf.com/reader/full/chapter10-sm 13/64

 ⎜

⎜⎜⎜

⎥⎥⎥⎥

⎢⎢⎢⎢

⎟⎠

⎞⎜⎝

⎛ ⎥

⎥⎥⎥

⎢⎢⎢⎢

⎟⎠

⎞⎜⎝

⎛ 

=

⎟⎠

⎞⎜⎝

⎛ 

⎞⎜⎝

⎛ 

⎞⎜⎝

⎛ 

⎞⎜⎝

⎛ 

ω

π 

ω

π ω

ω

π ω

ω

π ω

ω

πωω

π ω

ω

π ω

ω

πω

∆∆

∆∆

∆∆

n j

eee

n j

eee

 j

n jn j jn jn j j   ps p ps p )

8

1

 

⎟⎟⎟

⎥⎥⎥⎥

⎢⎢⎢⎢

⎟⎠

⎞⎜⎝

⎛ ⎥

⎥⎥⎥

⎢⎢⎢⎢

⎟⎠

⎞⎜⎝

⎛ 

⎟⎠⎞⎜

⎝⎛  

⎠⎞⎜

⎝⎛  

⎠⎞⎜

⎝⎛  

⎠⎞⎜

⎝⎛  

ω

π 

ω

π 

ω

π ω

ω

π ω

ω

πωω

π ω

ω

π ω

ω

πω

∆∆

∆∆

∆∆

n j

eee

n j

eee

n jn j jn jn j j   s p ps p p

 

⎟⎟⎟⎟

⎜⎜⎜⎜

⎟⎠

⎞⎜⎝

⎛ ⎟

⎞⎜⎝

⎛ 

=

ω

π 

ωω

ω

π 

ωω

ω

∆∆

∆n

nn

n

nn

 j

 ps ps )sin()sin()sin()sin(

4

1

  ⎜

⎜⎜⎜

 

=

2

22

 / 2

4

)sin()sin(

ω

π 

ωπ 

ω

ωω

∆n

 j

nn  ps

.) / (1

1)2 / cos()sin(22   ⎟

⎞⎜⎝

 =

n j

nnc

π ωπ ω

ωω

∆∆

∆  

 Now,  ].[][   ngn

 jnh   =   Therefore,  .

)sin(

) / (1

)2 / cos(][

22  ⎟

⎞⎜⎝

⎛⎟⎠

⎜⎝

 =

n

n

n

nnh   c

π 

ω

π ω

ω

 

10.19 ][12

4cos

12

2cos][   nw

 M 

n

 M 

nnw  RGC    ⎥

⎤⎢⎣

⎡⎟⎠

⎞⎜⎝

 ⎠

⎞⎜⎝

 

π γ

π  β α  

][22 12

4

12

4

12

2

12

2

nweeee  R M 

n j

 M 

n j

 M 

n j

 M 

n j

⎥⎥⎥

⎢⎢⎢

⎟⎟

⎜⎜

 ⎟⎟

⎜⎜

 

⎞⎜

 ⎠

⎞⎜

 ⎠

⎞⎜

 ⎠

⎞⎜

 

π π π π 

γ β α  

Hence,⎟⎟⎟

⎜⎜⎜

 ⎟⎟⎟

⎜⎜⎜

 ⎟⎠

⎞⎜⎝

 ⎠

⎞⎜⎝

  12

2

12

2

22)()(   M  j

 R M 

 j

 R j

 R j

GC    eeee

π ω

π ω

ωω  β  β α   ΨΨΨΨ  

.22 12

4

12

4

⎟⎟⎟

⎜⎜⎜

 ⎟⎟⎟

⎜⎜⎜

 ⎟⎠

⎞⎜⎝

 ⎠

⎞⎜⎝

   M  j

 R M 

 j

 R   ee

π ω

π ω

γγ   ΨΨ  

For the Hann window : = 0.5, = 0.5 and = 0. Hence,

⎟⎟⎟

⎜⎜⎜

 ⎟⎟⎟

⎜⎜⎜

 ⎟⎠

⎞⎜⎝

 ⎠

⎞⎜⎝

  12

2

12

2

2)(5.0)(   M  j

 R M 

 j

 R j

 R j

 Haan   eeee

π ω

π ω

ωω  β ΨΨΨΨ  

Not for sale 336

Page 14: Chapter10 SM

8/12/2019 Chapter10 SM

http://slidepdf.com/reader/full/chapter10-sm 14/64

 .

122sin

122)12(sin

122sin

122)12(sin

)2 / sin(

2

)12(sin

5.0

⎟⎠

⎞⎜⎝

 

⎟⎠

⎞⎜⎝

⎛⎟⎠

⎞⎜⎝

 

⎟⎠

⎞⎜⎝

 

⎟⎠

⎞⎜⎝

⎛⎟⎠

⎞⎜⎝

 ⎟⎠

⎞⎜⎝

⎛  

=

 M 

 M  M 

 M 

 M  M 

 M 

π ω

π ω

π ω

π ω

ω

ω

 

For the Hamming window, = 0.54, = 0.46, and = 0. Hence,

⎟⎟⎟

⎜⎜⎜

 ⎟⎟⎟

⎜⎜⎜

 ⎟⎠

⎞⎜⎝

 ⎠

⎞⎜⎝

  12

2

12

2

min 92.092.0)(54.0)(   M  j

 R M 

 j

 R j

 R j

g Ham   eeee

π ω

π ω

ωωΨΨΨΨ  

122

sin

122)12(sin

92.0

122

sin

122)12(sin

92.0)2 / sin(

2

)12(sin

54.0

⎞⎜

 

⎟⎠

⎞⎜⎝

⎛⎟⎠

⎞⎜⎝

 

⎞⎜

 

⎟⎠

⎞⎜⎝

⎛⎟⎠

⎞⎜⎝

 ⎟⎠

⎞⎜⎝

⎛  

=

 M 

 M  M 

 M 

 M  M 

 M 

π ω

π ω

π ω

π ω

ω

ω

or the Blackmann window = 0.42, = 0.5 and = 0.08

⎟⎟⎟

⎜⎜⎜

 ⎟⎟⎟

⎜⎜⎜

 ⎟⎠

⎞⎜⎝

 ⎠

⎞⎜⎝

  12

2

12

2

)(42.0)(   M  j

 R M 

 j

 R j

 R j

 Blackman   eeee

π ω

π ω

ωωΨΨΨΨ  

⎟⎟⎟

⎜⎜⎜

 ⎟⎟⎟

⎜⎜⎜

 ⎟⎠

⎞⎜⎝

 ⎠

⎞⎜⎝

  12

4

12

4

16.016.0   M  j

 R M 

 j

 R   ee

π ω

π ω

ΨΨ 

⎟⎠

⎞⎜⎝

 

⎟⎠⎞⎜

⎝⎛ ⎟

⎠⎞⎜

⎝⎛  

⎟⎠

⎞⎜⎝

 

⎟⎠⎞⎜

⎝⎛ ⎟

⎠⎞⎜

⎝⎛  ⎟

⎠⎞⎜

⎝⎛  

=

122sin

122)12(sin

122sin

122)12(sin

)2 / sin(

2)12(sin

42.0

 M 

 M  M 

 M 

 M  M  M 

π ω

π ω

π ω

π ω

ω

ω

 

.

12

2

2sin

12

2

2)12(sin

16.0

12

2

2sin

12

2

2)12(sin

16.0

⎟⎠

⎞⎜⎝

 

⎟⎠

⎞⎜⎝

⎛⎟⎠

⎞⎜⎝

 

⎟⎠

⎞⎜⎝

 

⎟⎠

⎞⎜⎝

⎛⎟⎠

⎞⎜⎝

 

 M 

 M  M 

 M 

 M  M 

π ω

π ω

π ω

π ω

 

10.20 (a)  ( )   [ ] [ ] [ ] [ ] [ ]∑=−−−−− ++++=≈=

 N 

n

 N n D  z  N h z h z hh z nh z  z  H 0

21 210   L

We see that if then[ ,ˆ2

1

∑ 

 N 

 N k 

k a   k n x t Pt  x    ]   ∏≠

 ⎟⎠

⎞⎜⎝

 =

2

1

 N 

k l

 N l   lk 

lk 

t t 

t t t P  for 21   N k  N    ≤ .

Not for sale 337

Page 15: Chapter10 SM

8/12/2019 Chapter10 SM

http://slidepdf.com/reader/full/chapter10-sm 15/64

Here, we have and the solution follows if[ ]∑=

 = N 

n

n znh z H 

0

ˆ

( )   [ ]nht  P k    = , , ,01  = N N  N   =2   nk  = ,   Dt  = ,   k t l  = , and nt k   =  

Therefore, we have [ ] ∏≠

= =

 N 

nk 

k   k n

k  Dnh

0 for  N n ≤≤0 .

(b)  N  = 21, D = 90/13, L = 22.  , where  [ ]∑=

 ≈21

0n

n znh z H    [ ] ∏≠

=  =

21

0

13 / 90

nk 

k   k n

k nh . 

% Problem #10.20 

D = 90/13;

N = 21;for n = 0:N,

for k = 0:N,

if n ~= k,

tmp(n+1,k+1) = (D-k)/(n-k);

else 

tmp(n+1,k+1) = 1;

end 

end 

end 

h = prod(tmp');

[Gd,W] = grpdelay(h,1,512);

[H, w] = freqz(h,1,512);

figure(1);

plot(W/pi, Gd);

xlabel('\omega/\pi');

ylabel('Group Delay');

title('Group delay of z^-^D');

grid;

figure(2);

plot(w/pi, (abs(H)));

xlabel('\omega/\pi');

ylabel('Magnitude');title('Magnitude response of z^-^D');

grid;

Not for sale 338

Page 16: Chapter10 SM

8/12/2019 Chapter10 SM

http://slidepdf.com/reader/full/chapter10-sm 16/64

0 0.2 0.4 0.6 0.8 16.5

7

7.5

8

ω / π

   G  r  o  u  p

   D  e   l  a  y

Group delay of z-D

 

0 0.2 0.4 0.6 0.8 10.9

1

1.1

1.2

1.3

1.4

1.5

ω / π

   M  a  g

  n   i   t  u   d  e

Magnitude response of z-D

 

10.21 (a)  where is the desired signal and

is the harmonic interference with fundamental

frequency .  Now, 

],[][)sin(][][

0

nr nsnk  Ansn x  k o

 M 

k   ∑=

φω ][ns

)sin(][ 0k o

 M 

k k    nk  Anr    φω

 

∑=

oω ])(sin[][

0k o

 M 

k    Dnk  A Dnr    φω  ∑=

  ].[)2sin(

0

nr k nk  A k o

 M 

k    =∑=

π φω

  (b)  ][][][][][][][][][][][   nr  Dnsnr ns Dnr  Dnsnr ns Dn x n x n y  

Hence, does not contain any harmonic disturbances.].[][   Dnsns   ][n y

  (c)  .1

1)(

 D D

 D

c z

 z z H 

 =

 ρ  Thus,

ω

ωω

 ρ   jD D

 jD j

ce

ee H 

 =

1

1)(

 

sin()cos(1

)sin()cos(1

ω ρω ρ

ωω

 D j D

 D j D

 D D  =

Then, .)cos(21

)cos(12)(

2 D D

 jc

 D

 De H 

 ρω ρ

ωω

 =   A plot of )(   ω j

c e H   for π ω 22.0o  and

is shown below:99.0 ρ

Not for sale 339

Page 17: Chapter10 SM

8/12/2019 Chapter10 SM

http://slidepdf.com/reader/full/chapter10-sm 17/64

-1 -0.5 0 0.5 10

0.2

0.4

0.6

0.8

1

ω / π

   A

  m  p   l   i   t  u   d  e

 

(d)x[n] y[n]

+–

z–D

 

10.22)(98.01

)(1

)(

)()(

 z N 

 z N 

 zQ

 zP z H 

 Dc 

= , with π π  18.0 / 2 D , N  = 18, and 98.0= ρ  . 

% Problem #10.23 

close all;

clear;

clc;

D = 2/.18;

N = 18;

rho = 0.98;

for n = 0:N,for k = 0:N,

if n ~= k,

tmp(n+1,k+1) = (D-k)/(n-k);

else 

tmp(n+1,k+1) = 1;

end 

end 

end 

h = prod(tmp');

[H,w] = freqz(h,1,1024);

Hc = (1-H)./(1-(rho^D)*H);

x = sqrt((2*(1-cos(D*w)))./(1-2*(rho^D)*cos(D*w)+rho^(2*D)));

%plot(w/pi, abs(Hc)); 

plot(w/pi, x); grid;

xlabel('\omega/\pi');

ylabel('Magnitude');

title(‘Comb filter using FIR fractional delay');

Not for sale 340

Page 18: Chapter10 SM

8/12/2019 Chapter10 SM

http://slidepdf.com/reader/full/chapter10-sm 18/64

0 0.2 0.4 0.6 0.8 10

0.2

0.4

0.6

0.8

1

ω / π

   M

  a  g  n   i   t  u   d  e

Comb filter using FIR fractional delay

 

10.23)(98.0)(

)()(

)(

)()(

11113 / 90

111

 =

 z D z z D

 z D z z D

 zQ

 zP z H c , with 11.1118.0/2   ==   π π  D and N  = 11. 

% Problem #10.23 

close all;

clear;

clc;

D = 2/0.18;

rho = 0.98;

N = floor(D);

for k = 1:N,

for n = 0:N,

p(n+1) = (D-N+n)/(D-N+k+n);

end 

d(k) = ((-1)^k)*nchoosek(N,k)*prod(p);

end 

[H,w] = freqz(fliplr(d)-d, fliplr(d)-(rho^D).*d , 512);

plot(w/pi, abs(H));grid;

xlabel('\omega/\pi');

ylabel('Magnitude');

title(Comb filter using allpass IIR fractional delay');

0 0.2 0.4 0.6 0.8 10

0.2

0.4

0.6

0.8

1

ω / π

   M  a  g  n   i   t  u   d  e

Comb filter using allpass IIR fractional delay

 

Not for sale 341

Page 19: Chapter10 SM

8/12/2019 Chapter10 SM

http://slidepdf.com/reader/full/chapter10-sm 19/64

10.24

⎪⎪

⎪⎪

≤⎟⎠

⎜⎝

 

≤⎟⎠

⎜⎝

 

=

elsewhere.,0

,,1

,,1

,,1

)(

 ps ps

 p

s p ps

 p

 p p

 j LP   e H 

ωωωωω

ωω

ωωωωω

ωω

ωωω

ω 

 Now, for   ,0n ∫ 

=π 

π 

ωωω

π d ee H nh   n j j

 LP LP )(2

1][  

⎥⎥⎥

⎢⎢⎢

⎟⎠

⎜⎝

⎛  

⎟⎠

⎜⎝

⎛  ∫ ∫

 s

 p

 p

s

 p

 p

d ed ed e   n j pn j pn jω

ω

ω

ω

ωω

ω

ω

ω ωω

ωωω

ω

ωωω

π    ∆∆11

2

⎥⎥⎥

⎢⎢⎢

⎡ ∫ ∫

 s

 p

 p

s

s

s

d ed ed e  n j pn j pn j

ω

ω

ω

ω

ωωω

ω

ω ωω

ωωωω

ωωωπ    ∆∆21  

⎪⎭

⎪⎬

⎪⎩

⎪⎨

⎥⎥

⎢⎢

⎡ 

⎥⎥

⎢⎢

⎡ 

 p

s

s

 p

n

e

 jn

e

n

e

 jn

e

n

n   n jn j p

n jn j ps

ω

ω

ωωω

ω

ωω ωω

ω

ωω

ωπ 

ω

π 

22

)(1)(1)sin(2

2

1

∆∆ 

⎪⎭

⎪⎬

⎪⎩

⎪⎨

⎥⎥

⎢⎢

⎡  22

1)sin(2

2

1

n

ee

 jn

e

n

ee

 jn

e

n

n   n jn jn jn jn jn js

  s ps pss   ωωωωωωωω

ωπ 

ω

π 

∆∆

∆  

⎪⎬⎫

⎪⎨⎧

⎥⎦

⎢⎣

⎡  

2

)cos()cos()sin(2)sin(2

2

1

n

nn

n

n

n

n   psss  ωωωω

ωπ 

ω

π 

∆ 

⎪⎬⎫

⎪⎨⎧

 22

)cos()cos(1

n

n

n

ns p

π 

ω

π 

ω

ω∆ 

⎭⎩

 =

22

))2 / cos(())2 / cos((1

n

n

n

n cc

π 

ωω

π 

ωω

ω

∆∆

∆ 

.)sin()2 / sin(2

n

n

n

n   c

π 

ω

ω

ω

∆=  

 Next, for ,0n   π ωπ 

π 

π 

ω

2

1

)(2

1

]0[   =∫ d e H h

  j

 LP LP (area under the curve)

.22

1

π 

ωc ps=

π

2   ωω 

Not for sale 342

Page 20: Chapter10 SM

8/12/2019 Chapter10 SM

http://slidepdf.com/reader/full/chapter10-sm 20/64

  Hence,⎪⎩

⎪⎨

==

0. if 2sin(

0, if 

nn

n

n

n

n

nhc

c

 LP

,)sin()2 / 

,][

π 

ω

ω

ωπ 

ω

∆ 

An alternate approach to solving this problem is as follows. Consider the frequency response

⎪⎪⎪

 

<

=

elsewhere.,0

,,1

,,1

,,0

)()(

 ps

s p

 p p

 j LP j

e H d eG

ωωωω

ωωωω

ωωω

ω

ωω

∆  Its inverse DTFT is given by

∫π

π–

)(2

1][   ωωω d eeGng   n j j

  ωω

ωω

ωω

ω

ω

ω

ω

d ed e   n jn js

 p

 p

s

∫ππ ∆∆

1

2

11

2

1–

 

⎟⎟

⎜⎜

 π

 

 jn

n je

 jn

n je

s

 p

 p

s

ωω

ω

ω

ω

ω

ω∆2

1  )cos()cos(

1nn

n j  s p   ωω

ω 

π ∆.

Thus, ][][   ngn

 jnh LP   =   )cos()cos(

12

  nnn

s p   ωωω

 π

=∆

 

⎥⎦

⎤⎢⎣

⎡⎟⎠

⎞⎜⎝

⎛⎟⎠

⎞⎜⎝

⎛ ⎟

⎞⎜⎝

⎛⎟⎠

⎞⎜⎝

⎛ 

π= nn

nsc

2cos

2cos

12

ωω

ωω

ω

∆∆

∆ 

.0,)sin()2 / sin(2 ≠π

n for n

nnn   cω

ωω

∆  

For ,0n .][πc

 LP  nh  ω

 

10.25 Consider the case when the transition region is approximated by a second order spline. Inthis case the ideal frequency response can be constructed by convolving an ideal, no-

transition-band frequency response with a triangular pulse of width  ps   ωωω  ∆ ,

which in turn can be obtained by convolving two rectangular pulses of width . In

the time domain this implies that the impulse response of a filter with transition bandapproximated by a second order spline is given by the product of the impulse response of

an ideal low pass filter with no transition region and square of the impulse response of arectangular pulse. Now, 

2 / ω∆

Not for sale 343

Page 21: Chapter10 SM

8/12/2019 Chapter10 SM

http://slidepdf.com/reader/full/chapter10-sm 21/64

n

nn H    c

ideal LPπ 

ω )sin(][)(   =  and

4 / 

)4 / sin(][

n

nn H rec

ω

ω

∆= . Hence,

.)( ][][][   n H n H n H  recideal LP LP   = 2

  Thus for a lowpass filter with a transition region approximated by a second order spline

⎪⎪⎩

⎪⎨

⎟⎠

⎞⎜⎝

⎛otherwise.

sin(

0,=n if 

,)sin(

4 / 

)4 / 

,

][ 2

n

n

n

nnh

c

c

 LP

π 

ω

ω

ω

π 

ω

∆  

Similarly the frequency response of a lowpass filter with the transition region specified by a

-th order spline can be obtained by convolving in the frequency domain an ideal filter with

transition region with rectangular pulses of width Hence,

, where the rectangular pulse is of width Thus

P

P . / Pω∆

  Precideal LP LP   n H n H n H  ][][][ )(   . / Pω∆

 ⎪⎪⎩

⎪⎨

⎟⎠

⎞⎜⎝

⎛otherwise.

sin(

if 

,)sin(

2 / 

)2 / 

0,

][

n

n

Pn

Pn

 ,= n

nhc

P

c

 LP

π 

ω

ω

ω

π 

ω

 

10.26 From Step 2, we have .)()()( )(   ωωωωωδω

  jN  jN  jN  jeF eeGeG

  F s

 (( 

The amplitude response )(ωG(

 has been obtained by raising the amplitude response

)(ωF (

 by and hence, the filter has double zeros in the stopband.( ) F 

 sδ  )( zG

 

Not for sale 344

Page 22: Chapter10 SM

8/12/2019 Chapter10 SM

http://slidepdf.com/reader/full/chapter10-sm 22/64

We may factorize as follows: where is a real-coefficient

minimum-phase FIR lowpass filter with half the degree of the original Since,

),()()( 1 z H  z H  z zG mm N  )( z H m

).( z H  ,0)(   ≥ωG(

 

the amplitude response )(ωm H (

 of the minimum-phase filter does not oscillate about

unity in the passband. Since the original frequency response was raised by

)( z H m( ) , F 

 sδ  )(ωm H (

must be

normalized by a factor .1  sδ +  Therefore,

For )(ωm H (

, we can sees

sF s

δ

δδ

 1

2and 1

111

1

1 =

s

 p

s

s pF  p

δ

δ

δ

δδδ .

10.27 (a) N = 1 and hence, .)( 10   t t  x a   αα  Without any loss of generality, for .5 L we first

fit the data set ,55]},[{   ≤k k  x   by the polynomial t t  x a 10)(   αα  with a minimum

mean-square error at ,5,,1,0,1,,4,5   KK t  , and then replace with a new value]0[ x 

.)0(]0[ 0α x  x   

 Now, the mean-square error is given by We set.][),(5

5

21010   ∑

 k 

k k  x    ααααε

0),(

0

10 =α

ααε

∂ and 0

),(

1

10 =α

ααε

∂ which yields and∑

 

5

5

5

5

10 ],[11k k 

k  x k αα

∑ 

5

5

5

5

21

5

50 ].[

k k k 

k  x k k k    αα

  From the first equation we get ∑ 

=5

50 ].[

11

1]0[

k  x  x    α   In the general case we thus

Not for sale 345

Page 23: Chapter10 SM

8/12/2019 Chapter10 SM

http://slidepdf.com/reader/full/chapter10-sm 23/64

  have ∑ 

=5

50 ][

11

1][

k  x n x    α  which is a moving average filter of length 11.

(b)  and hence, Here, we fit the data set

 by the polynomial with a minimum mean-squareerror at and then replace with a new value

,2 N  .)( 2210   t t t  x a   ααα   ]},[{   k  x 

,55   ≤k  2

,5,,1,0,1,,4,5   KK  ]0[ x 

210)(   t t t  x a   ααα  t 

.)0( 0αa x ]0[   = x 

5

  The mean-square error is now given by

We set.][,,

5

22210210   ∑

 k 

k k k  x    ααααααε ,0),,(

0

210 =α

αααε∂

∂ 

,01

210 =α∂

),,(   αααε∂ and ,0

2

210 =α∂

),,(   αααε∂ which yields

From the

first and the third equations we then get

∑ 

=5

520 ],[11011

k  x αα ∑ 

=5

51 ],[110

k  x k α ∑ 

=5

5

220 ].[1958110

k  x k αα

 2

5

5

25

50

)110()111958(

][110][1958

 =

∑ k k 

k  x k k  x 

α   ].[589429

15

5

2 k  x k 

∑ 

Hence, here we replace ][n x   with a new value 0][   αn x    which is a weighted combination o

the original data set :55]},[{   ≤k k  x   

][589

429

1][

5

5

2 k n x k n x 

 ∑ 

][89]1[84]2[69]3[44]4[9]5[36429

1(   n x n x n x n x n x n x   

.]5[36]4[9]3[44]2[69]1[84 )n x n x n x n x n x   

(c) The impulse response of the FIR filter of Part (a) is given by

{ },1111111111111

1][1   =nh  

whereas, the impulse response of the FIR filter of Part (b) is given by

{ }.36944698489846944936429

1][1  nh  

The corresponding frequency responses are given by

,11

1)(

5

51   ∑

 k 

k  j j ee H    ωω  and .589429

1)(

5

5

22   ∑

 k 

k  j j ek e H    ωω  

Not for sale 346

Page 24: Chapter10 SM

8/12/2019 Chapter10 SM

http://slidepdf.com/reader/full/chapter10-sm 24/64

  A plot of the magnitude responses of these two filters are shown below from which it can

 be seen that the filter of Part (b) has a wider passband and thus provides smoothing over alarger frequency range than the filter of Part (a).

0 0.2 0.4 0.6 0.8 10

0.2

0.4

0.6

0.8

1

ω / π

   M  a  g  n   i   t  u   d  e

H1(z)

H2(z)

 

10.28 ]2[46]3[21]4[3]5[5]6[6]7[3

320

1][ {   n x n x n x n x n x n x n y  

]4[3]3[21]2[46]1[67][74]1[67   n x n x n x n x n x n x   

.]7[3]6[6]5[5 }n x n x n x 

Hence,  { ωωωωωω

ωω 34567

3 213563320

1

)(

)()(   j j j j j

 j

 j j eeeee

e X 

eY e H   

}ωωωωωωωωω 7654322 3653214667746746   j j j j j j j j j eeeeeeeee   .

{ })7cos(3–)6cos(6–)5cos(5–)4cos(3)3cos(21)2cos(46cos6774160

1ωωωωωωω  

.)7cos(3–)6cos(6–)5cos(5–   ωωω

The magnitude response of the above FIR filter is plotted below (solid line) along

with that of the FIR filter of Part (b) of Problem 10.27 (dashed line). Note that

 both filters have roughly the same passband but the Spencer's filter has very largeattenuation in the stopband and hence it provides better smoothing than the filter of Part

(b).

)(3   z H 

)(2   z H 

0 0.2 0.4 0.6 0.8 10

0.2

0.4

0.6

0.8

1

ω / π

   M  a  g  n

   i   t  u   d  e

H3(z)

H2(z)

 

Not for sale 347

Page 25: Chapter10 SM

8/12/2019 Chapter10 SM

http://slidepdf.com/reader/full/chapter10-sm 25/64

10.29  (a)  . Now.3 L 33

221)(   x  x  x  x P   ααα   0)0(   =P  is satisfied by the way has

 been defined. Also to ensure

)( x P

1)1(   =P  we require 1321   =ααα . Choose 1m  and

Since.1n ,0)(

0

== x dx 

 x dP hence ,032

02

321   == x 

 x  x    ααα  implying 01 =α . Also

since ,0)(

1

== x dx 

 x dP   hence 032 321   =ααα . Thus solving the three equations: 

, ,and1321   =ααα 01 =α 032 321   =ααα  

we arrive at , , and1   0 2   3 3 –2.   Therefore, .23)( 32  x  x  x P  

(b)  Hence, . Choose and.4 L 44

33

221)(   x  x  x  x  x P   αααα   2m 1n  

(alternatively one can choose 1m 2and =n

⇒ for better stopband performance ). Then,

1)1(P .14321   =αααα   Also,

,04 3

4

 x α320)(

0

2

3210

===  x  x 

 x  x dx 

 x dPααα  

,012620)(

02

4320

2

2==

= x 

 x 

 x  x dx 

 x Pd ααα  

.04320)(

43211

==

αααα x dx 

 x dP 

Solving the above four simultaneous equations we get and1 0, 2   0, 3   4, 4 – 3. 

Therefore, .34)(   x  x  x P   43

  (c)  Hence Choose and.5 L .)( 554433221   x  x  x  x  x  x P   ααααα   2m 2n .

Following a procedure similar to that in parts (a) and (b) we get

and1   0,   0, 10,

  –15,   6.2 3

4 5

 

10.30  From Eq. (7.102) we have Now∑=

= M 

k k c H 

1

).sin(][)(   ωω(

  ∑=

 

=

  M 

k  M 

 M 

k k ck k k ck k c H 

1

1

11

).()1]([)cos()(sin][)(sin][)(   ωπ ωωπ ωπ (

  Thus, )()(   ωπ ω   H  H ((

 implies or

equivalently, which in turn implies that

∑ ∑= =

  M 

 M 

k  k k ck k c

1 1

1 ),sin()1(][)sin(][   ωω

 =

  = M 

k  k k c

1

1 ,0)sin(][)1(1   ω 0][   =k c  for

.,6,4,2   Kk 

Not for sale 348

Page 26: Chapter10 SM

8/12/2019 Chapter10 SM

http://slidepdf.com/reader/full/chapter10-sm 26/64

  But from Eq. (7.103) we have ,1],[2][   M k k  M hk c   ≤   or, ].[][2

1k  M ck h   For k  eve

i.e., 0]2[]2[,22

  = R M c Rh Rk 1

 if M  is even.

10.31 (a)  Thus,.10),()(][  / 2   M k e H e H k  H    M k  j j k    π ω ,][1

][1

0∑= =

 M 

kn

 M W k  H 

 M nh  

where . / 2   M k  j M    eW    π =

  Now, .][1

][1

][)(1

0

1

0

1

0

1

0

1

0∑ ∑∑ 

=

 

=

 

=

 

=

 

=

 ⎟⎟

⎜⎜

⎛=

 M 

 M 

n

nkn M 

 M 

n

n M 

kn M 

 M 

n

n  zW k  H  M 

 zW k  H  M 

 znh z H   

We can write ∑∞

=

 ∞

=

 

=

 

 M n

nkn M 

n

nkn M 

 M 

n

nkn M    zW  zW  zW 

0

1

0

  .1

11

1000

 =

 ∞

=

 ∞

=

  =∑ zW 

 z zW  z zW  zW  zW 

k  M 

 M 

n

nkn M 

 M 

n

nkn M 

 M kM  M 

n

nkn M   

Therefore, .1

][1)(

1

01

= M 

k k 

 M 

 M 

 zW 

k  H 

 M 

 z z H   

(b)H[0]

M

H[1]

M

H[M   1]

M

x[n] y[n]

11   z  1

1

1   z  1e j2   /M

1

1   z  1e j2  (M  1)/M

1   z  M

 

(c)  Note .][11

][1)(1

0

1

0

1

01   ∑ ∑

 

=

 

=

 

=  ⎟

⎟⎠

⎜⎜⎝

⎛=

 =

 M 

 M 

n

nkn M 

 M 

k k 

 M 

 M 

 zW k  H  M  zW 

k  H  M  z z H   

Not for sale 349

Page 27: Chapter10 SM

8/12/2019 Chapter10 SM

http://slidepdf.com/reader/full/chapter10-sm 27/64

  On the unit circle the above reduces to .][1

)(1

0

1

0∑ ∑=

 

=

 ⎟⎟

⎜⎜

⎛=

 M 

 M 

n

n jkn M 

 j eW k  H  M 

e H    ωω   For

we then get from the above, / 2   M  j   lπ ω = ∑ ∑= =

 ⎜⎜

⎛=

0 0

 / 2 / 2 1][)(

k n

 M nkn M 

 M  j eW 

 M 

k  H e H    ll   π π  1 1 M M 

∑ ∑= =

 ⎟⎟

⎜⎜

⎛=

0 0

1][

k n

n M 

kn M   W W 

 M k  H    l

 1 1 M M 

.1

][

0 0

)(∑ ∑= =

 

⎟⎟

⎜⎜

⎛=

k n

nk  M W 

 M k  H 

  l1 1  M M 

  Using the identity of Eq.

(5.23) of text we observe that⎩

==

=

 

otherwise.,0

,if ,11

0

)(   k W 

 M n

nk  M 

ll 1 M 

 

Hence, ].[)(  / 2 ll  H e H    M  j =π 

 

10.32 (a) For Type 1 FIR filter, .)()( 2

)1(ω

ω

ω   j

 M  j

 j

e H ee H 

 

=   Since in the frequency

sampling approach we sample the DTFT at)(   ω je H    M  points given by ,2

 M 

k π ω =  

therefore,10    M k  ,)()(][  / )1(2 / 2 / 2   M  M k  j M k  jd 

 M k  j ee H e H k  H   = π π π   

Since the filter is of Type 1,.10    M k  1 M   is even, thus, .

Moreover, being real, Thus,

.12 / )1(2 = M k  je   π 

][nh ).(*)(   ωω   j j e H e H    = ,)()( 2 / )1(   ωωω   j M  j j e H ee H   =  

Hence,.2π ωπ    <

 

⎪⎩

⎪⎨

⎧ ==

 =

 

.1,,2

32

12 / )1)((2 / 2

,2

12 / )1(2 / 2

,)(

,,2,1,0,)(][

 M  M  M k  M  M k  M  j M k  jd 

 M  M  M k  j M k  jd 

ee H 

k ee H k  H 

K

K

π π 

π π 

 

(b) For the Type 2 FIR filter

⎪⎪

⎪⎨

 

=

=

=

  .1,,1,)(

,,0

,,2,1,0,)(

][

22 / )1)((2 / 2

2

,2

12 / )1(2 / 2

 M k ee H 

k ee H 

k  H 

 M  M  M k  M  j M k  jd 

 M 

 M  M  M k  j M k  jd 

K

K

π π 

π π 

 

10.33 (a)  The frequency spacing between 2 consecutive DFT samples

is given by

.72788.155.0   =π ω p

.3307.019

2=

π   The desired passband edge is between the frequency samples at

19

52π ω = and .

19

62π ω =   Therefore, the 19-point DFT is given by 

Not for sale 350

Page 28: Chapter10 SM

8/12/2019 Chapter10 SM

http://slidepdf.com/reader/full/chapter10-sm 28/64

⎩⎨⎧

=

==

 

.12,,6,0

,18,,14,13,5,,1,0,][

9)19 / 2(

K

KK

k ek  H 

k  j   π 

 

A 19-point IDFT of the above DFT samples yields the impulse response coefficients

given below in ascending powers of :1− z 

  Columns 1 through 10

-0.0037 -0.0022 0.0224 -0.0211 -0.0231 0.0674

-0.0316 -0.1128 0.2888 0.6316

Columns 11 through 19

0.2888 -0.1128 -0.0316 0.0674 -0.0231 -0.0211

0.0224 -0.0022 -0.0037

(b)

0 0.2 0.4 0.6 0.8 10

0.2

0.4

0.6

0.8

1

ω / π

   M  a  g  n   i   t  u   d  e

 % Problem #10.33 

close all;

clear;

clc;

ind = 1;

for k = 0:5,

H(ind) = exp(-i*2*pi*9*k/19);

ind = ind + 1;

end 

for k = 6:12,

H(ind) = 0;

ind = ind + 1;

end 

for k = 13:18,H(ind) = exp(-i*2*pi*9*k/19);

ind = ind + 1;

end 

h = ifft(H);

figure(1);

stem(real(h));

[FF, w] = freqz(h, 1, 512);

Not for sale 351

Page 29: Chapter10 SM

8/12/2019 Chapter10 SM

http://slidepdf.com/reader/full/chapter10-sm 29/64

figure(2);

plot(w/pi, abs(FF)); axis([0 1 0 1.2]);grid;

ylabel('Gain, in dB'); xlabel('\omega/\pi');

10.34 (a)  The frequency spacing between 2 consecutiveDFT samples

is given by

.09956.135.0   =π ω p

.1611.0392 =π    The desired passband edge is between the frequency samples

at39

62π ω = and

39

72π ω = . Therefore, the 39-point DFT is given by 

⎩⎨⎧

=

==

 

.31,,7,0

,38,,33,32,6,,1,0,][

19)39 / 2(

K

KK

k ek  H 

k  j   π 

A 39-point IDFT of the above DFT samples yields the impulse response coefficients

given below in ascending powers of  :1− z 

 Columns 1 through 10

0.0006 0.0031 0.0017 -0.0054 -0.0091 -0.0010

0.0128 0.0146 -0.0034 -0.0237

Columns 11 through 20

-0.0192 0.0134 0.0405 0.0227 -0.0362 -0.0753

-0.0249 0.1222 0.2870 0.3590

Columns 21 through 30

0.2870 0.1222 -0.0249 -0.0753 -0.0362 0.0227

0.0405 0.0134 -0.0192 -0.0237

Columns 31 through 39

-0.0034 0.0146 0.0128 -0.0010 -0.0091 -0.0054

0.0017 0.0031 0.0006 

(b) 

0 0.2 0.4 0.6 0.8 10

0.2

0.4

0.6

0.8

1

ω / π

   M  a  g  n   i   t  u   d  e

 % Problem #10.34 close all;

clear;

clc;

ind = 1;

for k = 0:6,

Not for sale 352

Page 30: Chapter10 SM

8/12/2019 Chapter10 SM

http://slidepdf.com/reader/full/chapter10-sm 30/64

  H(ind) = exp(-i*2*pi*19*k/39);

ind = ind + 1;

end 

for k = 7:31,

H(ind) = 0;

ind = ind + 1;

end for k = 32:38,

H(ind) = exp(-i*2*pi*19*k/39);

ind = ind + 1;

end 

h = ifft(H);

figure(1);

stem(real(h));

[FF, w] = freqz(h, 1, 512);

figure(2);

plot(w/pi, abs(FF)); axis([0 1 0 1.2]); grid;

xlabel('\omega/\pi'); ylabel('Gain, dB');

10.35 By expressing where Tn(x) is the -th order Chebyshev

 polynomial in

),(cos)cos(   ωω nT n = )( x T n   n

, x   we first rewrite Eq. (10.48) in the form: 

.)(cos)cos(][)(

00∑=

= M 

n

nn

 M 

n

nna H    ωαωω(

  Therefore, we can rewrite Eq. (10.70) repeated below for convenience

] ,21,)1()()()(    M i D H P   iiii   εωωω

  in a matrix form as

.

)(

)(

)()(

)( / )1()(cos)cos(1

)( / )1()(cos)cos(1

)( / 1)(cos)cos(1)( / 1)(cos)cos(1

2

1

2

1

1

0

21

22

111

222

111

⎥⎥⎥⎥⎥⎥

⎢⎢⎢⎢⎢⎢

=

⎥⎥⎥⎥⎥⎥

⎢⎢⎢⎢⎢⎢

⎥⎥⎥⎥⎥⎥

⎢⎢⎢⎢⎢⎢

   M 

 M  M 

 M  M 

 M  M 

 M 

 M  M 

 M  M 

 M 

 M 

 M 

 D

 D

 D

 D

P

P

P

P

ω

ω

ω

ω

ε

α

α

α

ωωω

ωωω

ωωω

ωωω

M

L

L

MMOMM

L

L

  Note that the coefficients are different from the coefficients of Eq. (10.70). To

determine the expression of we use Cramer's rule arriving at

}{   iα ]}[{   ia

  ,  where

,

)( / )1()(cos)cos(1

)( / )1()(cos)cos(1

)( / 1)(cos)cos(1

)( / 1)(cos)cos(1

det

21

22

111

222

111

 

=

 M  M 

 M  M 

 M 

 M  M 

 M  M 

 M 

 M 

 M 

P

P

P

P

ωωω

ωωω

ωωω

ωωω

L

L

MMOMM

L

L

∆  and

Not for sale 353

Page 31: Chapter10 SM

8/12/2019 Chapter10 SM

http://slidepdf.com/reader/full/chapter10-sm 31/64

  .

)()(cos)cos(1

)()(cos)cos(1

)()(cos)cos(1

)()(cos)cos(1

222

111

222

111

 

=

 M  M  M  M 

 M  M  M 

 M 

 M 

 M 

 D

 D

 D

 D

ωωω

ωωω

ωωω

ωωω

ε

L

L

MMOMM

L

L

∆ .

Expanding both determinants using the last column we get and)( 1

2

=∑ i

 M 

i

i Db   ωε∆

,)(

)1( 12

1   i

i M 

i

iP

 

=

 = ∑∆   where

.

)(cos)(cos)cos(1

)(cos)(cos)cos(1

)(cos)(cos)cos(1

)(cos)(cos)cos(1

)(cos)(cos)cos(1

det

222

2

112

1

112

1

222

2

112

1

  M  M 

 M  M 

i M 

ii

i M 

ii

 M 

 M 

ib

ωωω

ωωω

ωωω

ωωω

ωωω

L

MOMMM

L

L

MOMMM

L

L

 

The above matrix is seen to be a Vandermonde matrix and is determinant is given by

Define).cos(cos

,

,l

l

ll

ωω ∏

>

ik 

k k 

k ib .2

1∏≠=

= M 

ir r 

ii

b

bc   It can be shown by induction that

.coscos

1

1∏≠

 in

n   niic

ωω

2 M 

 Therefore,

)(

)1(

)(

2

1

1

i

i M 

i

i

i

ii

Pb

 Db

ω

ω

ε 

=

∑ 

=

=

2 M  

.

)(

)1(

)()(

)()()(

2

12

2

2

1

1

222211

 

=

 M 

 M  M 

 M  M 

P

c

P

c

P

c

 Dc Dc Dc

ωωω

ωωω

L

10.36

⎪⎩

⎪⎨

=stopband.

passband,1

ωδ

δ

ω

ω

s

 pW   ⎩ ≤

≤=

.55.05.4

,45.001

π ωπ 

π ωωW 

 

Not for sale 354

Page 32: Chapter10 SM

8/12/2019 Chapter10 SM

http://slidepdf.com/reader/full/chapter10-sm 32/64

10.37⎪⎩

⎪⎨

=stopband.

passband,1

ωδ

δ

ω

ω

s

 pW   ⎩ ≤

≤=

.7.04.3

,55.001

π ωπ 

π ωωW 

 

10.38⎪⎩

⎪⎨

=

=

.82.05

,7.055.01

,44.0043.1

,

,1

,0

22

21

11

π ωπ 

π ωπ 

π ω

π ωωδ

δ

ωωω

ωωδδ

ω

ss

 p

 p p

ss

 p

W   

10.39 It follows from Eq. (10.22) that the impulse response of an ideal Hilbert transformer is anantisymmetric sequence. If we truncate it to a finite number of terms between  M n M    ≤  the impulse response is of length )12(   M   which is odd. Hence the FIR Hilbert transformer

obtained by truncation and satisfying Eq. (10.90) cannot be satisfied by a Type 4 FIR filter. 

10.40 (a)  Thus, .][)(1

0∑=

 = N 

n

n zn x  z X 

,)(

)(

1][)()(

1

01

1

1 1

11

 z D

 zP

 z

 zn x  z X  z X 

 N 

n z

 z z   (

(

(

((

(

( =⎟⎠

⎞⎜⎝

 = ∑

= =

  α

α

α

α   where

,)()1]([][)( 1111

0

1   nn N  N 

n

 z zn x  zn p zP  

=

  ∑ ((((αα   and 

.)1(][)( 11

1

0

 

=

 ∑ N 

 N 

n

n  z znd  z D   ((( α

  (b)  ,][

][

)(

)()(][

 / 2 / 2

k  D

k P

 z D

 zP z X k  X 

 N k  je z N k  je z

  (

(

(

(((

((   =

= π π  where  N k  je z

 zPk P  / 2)(][   π =(

(( is

the -point DFT of the sequence N  ][n p  and  N k  je z z Dk  D  / 2)(][   π =

(((

 is the -point DFT

of the sequence 

 N 

].[nd 

  (c)  Let and]T  N  p p p ]1[]1[]0[  LP   [ ] .]1[]1[]0[   T 

 N  x  x  x   LX   Without

any loss of generality, assume 4 N   in which case ∑=

 =0

][)(

n

n zn p zP  ((3

  ]3[]2[]1[]0[   x  x  x  x    ααα   32

  1222 ]3[3]2[)2(]1[)21(]0[3    z x  x  x  x   (

ααααα

  2222 ]3[3]2[)21(]1[)2(]0[3    z x  x  x  x   (

ααααα  

Not for sale 355

Page 33: Chapter10 SM

8/12/2019 Chapter10 SM

http://slidepdf.com/reader/full/chapter10-sm 33/64

  .]3[]2[]1[]0[ 323    z x  x  x  x   (

αααα   Equating like powers of 1 z(

 we can write

where,XQP   ⋅ [ ] ,]3[]2[]1[]0[   T  p p p pP   [ ]T 

 x  x  x  x  ]3[]2[]1[]0[X and

.

1

321)2(33)2(213

1

223

222222

⎥⎥⎥

⎢⎢⎢

 

=

ααα

ααααα

ααααα

ααα

Q

32

  It can be seen that the elements ,3,0,,   ≤sr q sr   q , of the 4  matrix Q can be

determined as follows:

r ,s   4

  (i) The first row is given by ,)(,0  s

sq   α

  (ii) The first column is given by ,)(

)!3(!

!3)(3

0,  r r 

r r 

r r 

C q   αα   and

(iii) the remaining elements can be obtained using the recurrence relation

.,11,1,1,   sr sr sr sr    qqqq  αα  

In the general case, we only change the computation of the elements of the first column

using the relation .)()!1(!

)!1()(1

0,  r r 

r  N 

r r  N r 

 N C q   αα  = 

M10.1 The impulse response coefficients of the truncated FIR highpass filter with cutoff

frequency at can be generated using the following MATLAB statements: π 4.0

n = -M:M;

num = -0.4*sinc(0.4*n);

num(M+1) = 0.6;

The magnitude responses of the truncated FIR highpass filter for two values of  M  areshown below:

0 0.2 0.4 0.6 0.8 10

0.2

0.4

0.6

0.8

1

ω / π

   M  a  g  n   i   t  u   d  e

M=5M=20

 

Not for sale 356

Page 34: Chapter10 SM

8/12/2019 Chapter10 SM

http://slidepdf.com/reader/full/chapter10-sm 34/64

M10.2 The impulse response coefficients of the truncated FIR bandpass filter with cutoff

frequencies at 0.7π and 0.3π can be generated using the following MATLAB statements:  

n = -M:M;

num = 0.7*sinc(0.7*n) - 0.3*sinc(0.3*n);

The magnitude responses of the truncated FIR bandpass filter for two values of  M  are shown below:

0 0.2 0.4 0.6 0.8 10

0.2

0.4

0.6

0.8

1

ω / π

   M  a  g  n   i   t  u   d  e

M=5M=20

 

M10.3 The impulse response coefficients of the truncated Hilbert transformer can be generated

using the following MATLAB statements: 

n = 1:M;

c = 2*sin(pi*n/2).*sin(pi*n/2);b = c./(pi*n);

num = [-fliplr(b) 0 b];

The magnitude responses of the truncated Hilbert transformer for two values of M  are

shown below:

0 0.2 0.4 0.6 0.8 10

0.2

0.4

0.6

0.8

1

ω / π

   M  a  g  n   i   t  u   d  e

M=5M=20

 

M10.4% Problem #M10.4 

% Cascade of 2 boxcar filters of length 4 

K = 2;N = 4;b = firgauss(K,N);

figure(1);

stem(b);xlabel(‘n’);ylabel(‘h[n]’);

title('Cascade of 2 boxcar filters of length 4');

Not for sale 357

Page 35: Chapter10 SM

8/12/2019 Chapter10 SM

http://slidepdf.com/reader/full/chapter10-sm 35/64

% Cascade of 4 boxcar filters of length 4 

K = 4;N = 4;b = firgauss(K,N);

figure(2);

stem(b);xlabel(‘n’);ylabel(‘h[n]’);

title('Cascade of 4 boxcar filters of length 4');

% Cascade of 2 boxcar filters of length 12 K = 2;N = 12;b = firgauss(K,N);

figure(3);

stem(b);xlabel(‘n’);ylabel(‘h[n]’);

title('Cascade of 2 boxcar filters of length 12');

% Cascade of 4 boxcar filters of length 12 

K = 4;N = 12;b = firgauss(K,N);

figure(4);

stem(b);xlabel(‘n’);ylabel(‘h[n]’);

title('Cascade of 4 boxcar filters of length 12'); 

1 2 3 4 5 6 70

1

2

3

4

n

   h   [  n   ]

Cascade of 2 boxcar filters of length 4

 0 5 10 15

0

10

20

30

40

50

n

   h   [  n   ]

Cascade of 4 boxcar filters of length 4

 

0 5 10 15 20 250

2

4

6

8

10

12

n

   h   [  n   ]

Cascade of 2 boxcar filters of length 12

 0 10 20 30 40 50

0

200

400

600

800

1000

1200

n

Cascade of 4 boxcar filters of length 12

 

We can see that by increasing either K  or N , the approximation to a Gaussian function

gets better. It is noted that increasing the number of boxcar filters K  to a number greaterthan 3 greatly affects the Gaussian shape of the impulse response.

M10.5 % Problem #M10.05 N = 36;fc = 0.2*pi;

M = N/2;

n = -M:1:M;t = fc*n;

lp = fc*sinc(t);

Not for sale 358

Page 36: Chapter10 SM

8/12/2019 Chapter10 SM

http://slidepdf.com/reader/full/chapter10-sm 36/64

b = 2*[lp(1:M) (lp(M+1) - 0.5) lp((M+2):N+1)];

bw = b.*hamming(N+1)';

[h2, w] = freqz(bw, 1, 512);

plot(w/pi, abs(h2));axis([0 1 0 1.2]);

xlabel('\omega/\pi');ylabel('Magnitude');

title(['\omega_c = ', num2str(fc), ', N = ', num2str(N)]);

0 0.2 0.4 0.6 0.8 10

0.2

0.4

0.6

0.8

1

ω / π

   M  a  g  n   i   t  u   d  e

ωc = 0.62832, N = 36

 

M10.6 Its approximation over the range....)( 5505423 2 −+=   x x x D 23   ≤≤−   x  is given by

We want to minimize the peak value of the absolute error, i.e.,

minimize

.)(   xaa x A 10  +=

....max   xaa x x x

102

235505423   −−−+

≤≤−  Since there are 3 unknowns,

and we need 3 extremal points on , which we arbitrarily choose as

,, 10   aa

,ε   x ,31   −= x ,02  = x  

and We then solve the 3 linear equations:

This leads to whose solution yields

.23  = x .,,),()( 321110   ==ε−−+   lll  x D xaa

,

.

..

⎡−=

⎥⎥

⎢⎢

ε⎥

⎡−

415

551511

121

101131

1

0a

a

,.,. 85014 10   ==   aa  

and A plot of the corresponding error is shown

 below in Figure (c).

..69=ε 692323 21 ...)(   −+=   x x xE 

-3 -2 -1 0 1 2

-10

-5

0

5

10

x

   E  r  r  o  r

Result of first guess

 -3 -2 -1 0 1 2

-10

-5

0

5

10

x

   E  r  r  o  r

Result of second guess

 

(c) (d)

Not for sale 359

Page 37: Chapter10 SM

8/12/2019 Chapter10 SM

http://slidepdf.com/reader/full/chapter10-sm 37/64

 

After looking at , we move the second extremal point to the location where)( x1E  2 x

  is a minimum. The next extrtemal points are therefore given by)( x1E  ,31   −= x  

and The new values of the unknowns are obtained by solving,.502   −= x .23  = x

  , which yields.

...⎥⎥⎦

⎤⎢⎢⎣

⎡−=⎥⎥

⎤⎢⎢

ε⎥⎥⎦

⎤⎢⎢⎣

⎡ −−−415

7256 15111211501 131

10aa ,.,. 85073 10   ==   aa  and A plot

of the corresponding error is shown on the previous page in

Figure (d).

.10=ε

292323 22 ...)(   −+=   x x xE 

 % Problem #M10.06 

x = [-3 0 2];

d = 3.2.*x.^2 + 4.05.*x-5.5;

D = d';

A = [1 -3 1;1 0 -1;1 2 1];

C = inv(A)*D;

y = -3:0.05:2;

E = 3.2.*y.^2 + 4.05.*y - 5.5 - C(1) - C(2).*y;

% Results of first guess 

figure(1);

plot(y,E);

axis([-3 2 -12 12]);

xlabel('x');

ylabel('Error');

title('Result of first guess');

hold on;plot([-3 -3], [E(1) E(1)], 'o');

plot([2 2], [E(end) E(end)], 'o');

plot([0 0], [E(61) E(61)], 'o');

hold off;

x = [-3 -0.5 2];

d = 3.2.*x.^2 + 4.05.*x-5.5;

D = d';

A = [1 -3 1;1 -0.5 -1;1 2 1];

C = inv(A)*D;

y = -3:0.05:2;E = 3.2.*y.^2 + 4.05.*y - 5.5 - C(1) - C(2).*y;

% Results of second guess 

figure(2);

plot(y,E);

axis([-3 2 -12 12]);

xlabel('x');

ylabel('Error');

Not for sale 360

Page 38: Chapter10 SM

8/12/2019 Chapter10 SM

http://slidepdf.com/reader/full/chapter10-sm 38/64

title('Result of second guess');

hold on;

plot([-3 -3], [E(1) E(1)], 'o');

plot([2 2], [E(end) E(end)], 'o');

plot([-0.5 -0.5], [E(51) E(51)], 'o');

hold off;

M10.7 . Its approximation over the range is given by

We want to minimize the peak value of the absolute error, i.e.,

minimize

( ) 558205 23 ..   ++−−=   x x x x D 22   ≤≤−   x

.)( 2210   xa xaa x A   ++=

...max 2210

23

22558205   xa xaa x x x

 x−−−++−−

≤≤−  Since there are 4

unknowns, and,,, 210   aaa ,ε  we need 4 extremal points on , which we arbitrarily

choose as

 x

,21   −= x ,12   −= x ,13  = x  and .24  = x  We then solve the 4 linear equations:

This leads to

whose solution yields

.,,,),()( 432112210   ==ε−−++   ll

l  x D xa xaa

,

....

⎥⎥⎥

⎢⎢⎢

=⎥⎥⎥

⎢⎢⎢

ε⎥⎥⎥

⎢⎢⎢

−−−

3193832728

142111111111

1421

2

10

a

aa

,.,,. 20755 210   −=−==   aaa  

and A plot of the corresponding error is shown below in

Figure (e). We observe that these values maximize the error (ε   = 10). 

.10=ε   x x x 155 31   +−=)(E 

-2 -1 0 1 2

-10

-5

0

5

10

x

   E  r  r  o

  r

Result of first guess

 

% Problem #M10.07 

x = [-2 -1 1 2];

d = -5.*x.^3 - 0.2.*x.^2 + 8.*x + 5.5;

D = d';

A = [1 -2 4 1;1 -1 1 -1;1 1 1 1;1 2 4 -1];

C = inv(A)*D;

y = -2:0.05:2;

E = -5.*y.^3 - 0.2.*y.^2 + 8.*y + 5.5 - C(1) - C(2).*y -

C(3).*y.^2;

% Results of first guess 

figure(1);

Not for sale 361

Page 39: Chapter10 SM

8/12/2019 Chapter10 SM

http://slidepdf.com/reader/full/chapter10-sm 39/64

plot(y,E);

axis([-2 2 -12 12]);

xlabel('x');

ylabel('Error');

title('Result of first guess');

hold on;

plot([-2 -2], [E(1) E(1)], 'o');plot([2 2], [E(end) E(end)], 'o');

plot([-1 -1], [E(21) E(21)], 'o');

plot([1 1], [E(1) E(1)], 'o');

hold off; 

M10.818

8π=ω p ,

18

12π=ω s ,

18

10π=ωT   

% Problem #M10.8 

 wp = 4*(2*pi)/18;

 ws = 6*(2*pi)/18;

 wc = (wp + ws)/2;

dw = ws - wp;

% Hamming 

M = ceil(3.32*pi/dw);N = 2*M+1;n = -M:M;

num = (6/18)*sinc(6*n/18);

 wh = hamming(N)';b = num.*wh;

figure(1);

k=0:2*M:stem(k,b);

title('Impulse Response Coefficients');

xlabel('Time index n'); ylabel('Amplitude');

figure(2);

[h, w] = freqz(b,1,512);

plot(w/pi, 20*log10(abs(h))); grid;

xlabel('\omega/\pi'); ylabel('Gain, in dB');

title('Lowpass filter designed using Hamming window');

axis([0 1 -80 10]);

% Hann 

M = ceil(3.11*pi/dw);N = 2*M+1;n = -M:M;

num = (6/18)*sinc(6*n/18);

 wh = hann(N)';b = num.*wh;

figure(3);

k=0:2*M:stem(k,b);

title('Impulse Response Coefficients');

xlabel('Time index n'); ylabel('Amplitude');

figure(4);

[h, w] = freqz(b,1,512);

plot(w/pi, 20*log10(abs(h)));grid;

xlabel('\omega/\pi');ylabel('Gain, in dB');

Not for sale 362

Page 40: Chapter10 SM

8/12/2019 Chapter10 SM

http://slidepdf.com/reader/full/chapter10-sm 40/64

title('Lowpass filter designed using Hann window');

axis([0 1 -80 10]);

% Blackman 

M = ceil(5.56*pi/dw);N = 2*M+1;n = -M:M;

num = (6/18)*sinc(6*n/18);

 wh = blackman(N)';b = num.*wh;

figure(5);

k=0:2*M:stem(k,b);

title('Impulse Response Coefficients');

xlabel('Time index n'); ylabel('Amplitude');

figure(6);

[h, w] = freqz(b,1,512);

plot(w/pi, 20*log10(abs(h)));grid;

xlabel('\omega/\pi');ylabel('Gain, in dB');

title('Lowpass filter designed using Blackman window');

axis([0 1 -80 10]);

Lowpass filter design using Hamming window: N  = 31

0 5 10 15 20 25 30-0.1

0

0.1

0.2

0.3

0.4Impulse Response Coefficients

Time index n

  m  p

  u

  e

 0 0.2 0.4 0.6 0.8 1-80

-60

-40

-20

0

ω / π

   G  a   i  n ,

   i  n   d   B

Lowpass filter designed using Hamming window

 

Lowpass filter design using Hann window: N  = 29

0 5 10 15 20 25-0.1

0

0.1

0.2

0.3

0.4Impulse Response Coefficients

Time index n

  a  g  n

  u

  e

 0 0.2 0.4 0.6 0.8 1

-80

-60

-40

-20

0

ω / π

   G  a   i  n ,

   i  n   d   B

Lowpass filter designed using Hann window

 

Lowpass filter design using Blackman window: N  = 53

Not for sale 363

Page 41: Chapter10 SM

8/12/2019 Chapter10 SM

http://slidepdf.com/reader/full/chapter10-sm 41/64

0 10 20 30 40 50-0.1

0

0.1

0.2

0.3

Impulse Response Coefficients

Time index n

  a  g  n

  u

  e

 0 0.2 0.4 0.6 0.8 1

-80

-60

-40

-20

0

ω / π

   G  a   i  n ,

   i  n   d   B

Lowpass f ilter designed using Blackman window

 

Comments: The Hann window method results in using the lowest filter order. All filters

meet the requirements of the specifications.

M10.9 ,42sα   631.3214207886.021425842.0 4.0 = β  using Eq. (10.41). 

⎟⎠

⎞⎜⎝

 =

18

2285.2

842

π  N  using Eq. (10.42).

 N  = 42.627 43 and we choose 44 since N  must be even. M  = 22.% Problem #M10.9 

beta = 3.631;N = 44;n = -N/2:N/2;

num = (6/18)*sinc(6*n/18);

 wh = kaiser(N+1,beta)';b = num.*wh;

figure(1);

stem(b);

title('Impulse Response Coefficients');

xlabel('Time index n');ylabel('Amplitude')

figure(2);

[h, w] = freqz(b,1,512);

plot(w/pi, 20*log10(abs(h)));grid;

xlabel('\omega/\pi');ylabel('Gain, in dB');

title('Lowpass filter designed using Kaiser window');

axis([0 1 -80 10]); 

0 10 20 30 40-0.1

0

0.1

0.2

0.3

0.4Impulse Response Coefficients

Time index n

  m  p

  u

  e

 0 0.2 0.4 0.6 0.8 1

-80

-60

-40

-20

0

ω / π

   G  a   i  n ,

   i  n   d   B

Lowpass filter designed using Kaiser window

 

Not for sale 364

Page 42: Chapter10 SM

8/12/2019 Chapter10 SM

http://slidepdf.com/reader/full/chapter10-sm 42/64

 

M10.10 ,π ω 4.0 p   π 6.0= s , 42= sα  dB,   π 5.0=c ,   π 2.0=∆  

We will use the Hann window since it meets the requirements and has the lowest order

from Table 10.2.

.321655.15

11.3

= N  M  ω

π 

∆  % Problem M10.10 

n = -16:16;

lp = 0.5*sinc(0.5*n);wh = hanning(33);

b = lp.*wh';

figure(1);

k=0:2*n;stem(k,b);

title('Impulse Response Coefficients');

xlabel('Time index n');ylabel(‘Amplitude');

figure(2);

[h, w] = freqz(b,1,512);

plot(w/pi, 20*log10(abs(h)));grid;

xlabel('\omega/\pi');ylabel('Gain, in dB');

title('Lowpass filter designed using Hann window');

axis([0 1 -80 10]);

0 5 10 15 20 25 30-0.1

0

0.1

0.2

0.3

0.4

0.5

Impulse Response Coefficients

Time index n

  m  p

  u

  e

 0 0.2 0.4 0.6 0.8 1

-80

-60

-40

-20

0

ω / π

   G  a   i  n ,

   i  n   d   B

Lowpass filter designed using Hann window

 

M10.11 We use the same specifications from Problem M10.10, but we use the Dolph-Chebyshev

window. ( )

( )748

202852

416420562.

..

..=

π

−= N  . We use N  = 50, which is a much higher order

than in Problem M10.10. % Pr obl em M10. 11 n = - 25: 25;

l p = 0. 5*s i nc( 0. 5*n) ; wh = chebwi n( 51, 42) ;b = l p. *wh' ;f i gure( 1) ;st em( b) ;t i t l e( ' I mpul se Response Coef f i ci ent s' ) ;xl abel ( ' Ti me i ndex n' ) ; yl abel ( ' Ampl i t ude' ) ;f i gure( 2) ;[ h, w] = f r eqz( b, 1, 512) ;

Not for sale 365

Page 43: Chapter10 SM

8/12/2019 Chapter10 SM

http://slidepdf.com/reader/full/chapter10-sm 43/64

pl ot ( w/ pi , 20*l og10( abs( h) ) ) ; gr i d;xl abel ( ' \ omega/ \ pi ' ) ; yl abel ( ' Magni t ude' ) ;t i t l e( ' Fi l t er desi gned usi ng Dol ph- Chebyshev wi ndow' ) ;axi s( [ 0 1 - 80 10] ) ;

0 10 20 30 40 50-0.2

0

0.2

0.4

0.6Impulse Response Coefficients

Time index n

  m  p

  u

  e

 0 0.2 0.4 0.6 0.8 1

-80

-60

-40

-20

0

ω / π

   M  a  g  n   i   t  u   d  e

Filter designed using Dolph-Chebyshev window

 

M10.12 n = -16:16; b = fir1(32, 0.5, hanning(33));

figure(1);

stem(b);

title('Impulse Response Coefficients');

xlabel('Time index n');ylabel(' Ampl i t ude' );figure(2);

[h, w] = freqz(b,1,512);

plot(w/pi, 20*log10(abs(h)));

grid;

xlabel('\omega/\pi');ylabel('Magnitude');

title(' Lowpass filter designed using Hann window');

axis([0 1 -80 10]);

0 5 10 15 20 25 30-0.2

0

0.2

0.4

0.6Impulse Response Coefficients

Time index n

  m  p

  u

  e

 

0 0.2 0.4 0.6 0.8 1-80

-60

-40

-20

0

ω / π

   M  a  g  n   i   t  u   d  e

 Lowpass filter designed using Hann window

 

M10.13 N = 35;  f or   k = 1: N+1,

w( k) = 2*pi *( k- 1) / ( N+1) ;i f ( w( k) >= 0. 45*pi & w( k) <= 1. 45*pi ) H( k) = 1;el se  H( k) = 0;end i f   ( w( k) <= pi ) phase( k) = i *exp( - i *w( k) *N/ 2) ;el se  phase( k) = - i *exp( i *( 2*pi - w( k) ) *N/ 2) ;

Not for sale 366

Page 44: Chapter10 SM

8/12/2019 Chapter10 SM

http://slidepdf.com/reader/full/chapter10-sm 44/64

  end end H = H. *phase;f = i f f t ( H) ;[ FF, w] = f r eqz( f , 1, 512) ;k = 0: N;f i gure( 1) ;stem( k, real ( f ) ) ;xl abel ( ' Ti me i ndex n' ) ; yl abel ( ' Ampl i t ude' ) ;f i gure( 2) ;pl ot ( w/ pi , 20*l og10( abs( FF) ) ) ; gr i dxl abel ( ' \ omega/ \ pi ' ) ; yl abel ( ' Gai n, dB' ) ;axi s( [ 0 1 - 50 5] ) ;

0 5 10 15 20 25 30 35-0.5

0

0.5

Time index n

  m  p

  u  e

 0 0.2 0.4 0.6 0.8 1

-50

-40

-30

-20

-10

0

ω / π

   G  a   i  n ,

   d   B

 

M10.14 N = 45; L = N + 1;

for k = 1:L,

 w = 2*pi*(k-1)/L;if (w >= 0.5*pi & w <= 0.7*pi) H(k) = i*exp(-i*w*N/2);

elseif (w >= 1.3*pi & w <= 1.5*pi) H(k) = -

i*exp(i*(2*pi-w)*N/2);

else H(k) = 0;

end 

end 

f = ifft(H);

[FF, w] = freqz(f, 1, 512);

k = 0:N;

figure(1);

stem(k, real(f));

xlabel('Time index, n');ylabel('h[n]');figure(2);

plot(w/pi, 20*log10(abs(FF)));grid;

ylabel('Gain, dB');xlabel('\omega/\pi');

axis([0 1 -50 5]);

Not for sale 367

Page 45: Chapter10 SM

8/12/2019 Chapter10 SM

http://slidepdf.com/reader/full/chapter10-sm 45/64

0 10 20 30 40-0.2

-0.1

0

0.1

0.2

Time index, n

  n

 

0 0.2 0.4 0.6 0.8 1-50

-40

-30

-20

-10

0

   G  a   i  n

 ,   d   B

ω / π  

M10.15 ind = 1; for k = 0:6,

H(ind) = exp(-i*2*pi*19*k/39);

ind = ind + 1;

end k = 7;

H(ind) = 0.5*exp(-i*2*pi*19*k/39);

ind = ind + 1;

for k = 8:30,

H(ind) = 0;

ind = ind + 1;

end 

k = 31;

H(ind) = 0.5*exp(-i*2*pi*19*k/39);

ind = ind + 1;

for k = 32:38,

H(ind) = exp(-i*2*pi*19*k/39);

ind = ind + 1;

end 

h = ifft(H);

[FF, w] = freqz(h, 1, 512);

plot(w/pi, 20*log10(abs(FF)));grid;

xlabel('\omega/\pi');ylabel('Gain, dB');

axis([0 1 -50 5]);

0 0.2 0.4 0.6 0.8 1-50

-40

-30

-20

-10

0

ω / π

   G  a   i  n

 ,   d   B

 

M10.16 ind = 1; 

Not for sale 368

Page 46: Chapter10 SM

8/12/2019 Chapter10 SM

http://slidepdf.com/reader/full/chapter10-sm 46/64

for k = 0:6,

H(ind) = exp(-i*2*pi*19*k/39);

ind = ind + 1;

end 

k = 7;

H(ind) = (2/3)*exp(-i*2*pi*19*k/39);

ind = ind + 1;k = 8;

H(ind) = (1/3)*exp(-i*2*pi*19*k/39);

ind = ind + 1;

for k = 9:29,

H(ind) = 0;

ind = ind + 1;

end 

k = 30;

H(ind) = (1/3)*exp(-i*2*pi*19*k/39);

ind = ind + 1;

k = 31;

H(ind) = (2/3)*exp(-i*2*pi*19*k/39);ind = ind + 1;

for k = 32:38,

H(ind) = exp(-i*2*pi*19*k/39);

ind = ind + 1;

end 

h = ifft(H);

[FF, w] = freqz(h, 1, 512);

plot(w/pi, 20*log10(abs(FF)));grid;

xlabel('\omega/\pi');ylabel('Gain, dB');

axis([0 1 -50 5]);

0 0.2 0.4 0.6 0.8 1-50

-40

-30

-20

-10

0

ω / π

   G  a   i  n ,

   d   B

 

M10.17

18

8π=ω p ,

18

12π=ω s ,

18

10π=ωc ,

18

4π=ω∆  

 wp = 4*(2*pi)/18;

 ws = 6*(2*pi)/18;

 wc = (wp + ws)/2;

dw = ws - wp;

% Hamming 

M = ceil(3.32*pi/dw);

N = 2*M;

b = fir1(N, ws/(2*pi));

Not for sale 369

Page 47: Chapter10 SM

8/12/2019 Chapter10 SM

http://slidepdf.com/reader/full/chapter10-sm 47/64

[H, w] = freqz(b,1,512);

figure(1);

stem(b);

title('Impulse Response Coefficients');

xlabel('Time index n');ylabel('h[n]');

figure(2);

plot(w/pi, 20*log10(abs(H)));grid;xlabel('\omega/\pi');ylabel('Gain, dB');

title('Lowpass filter designed using Hamming window');

axis([0 1 -80 10]);

% Hann 

M = ceil(3.11*pi/dw);

N = 2*M;

b = fir1(N, ws/(2*pi), hanning(N+1));

[H, w] = freqz(b,1,512);

figure(3);

stem(b);

title('Impulse Response Coefficients');xlabel('Time index n');ylabel('h[n]');

figure(4);

plot(w/pi, 20*log10(abs(H)));grid;

xlabel('\omega/\pi');ylabel('Gain, dB');

title('Lowpass filter designed using Hann window');

axis([0 1 -80 10]);

% Blackman 

M = ceil(5.56*pi/dw);

N = 2*M;

b = fir1(N, ws/(2*pi), blackman(N+1));

[H, w] = freqz(b,1,512);

figure(5);

stem(b);

title('Impulse Response Coefficients');

xlabel('Time index n');ylabel('h[n]');

figure(6);

plot(w/pi, 20*log10(abs(H)));

grid;

xlabel('\omega/\pi');ylabel('Gain, dB');

title('Lowpass filter designed using Blackman window');

axis([0 1 -80 10]);

% Kaiser 

beta = 3.631;

N = 44;

b = fir1(N, ws/(2*pi), kaiser(N+1, beta));

[H, w] = freqz(b,1,512);

figure(7);

stem(b);

title('Impulse Response Coefficients');

Not for sale 370

Page 48: Chapter10 SM

8/12/2019 Chapter10 SM

http://slidepdf.com/reader/full/chapter10-sm 48/64

xlabel('Time index n');ylabel('h[n]');

figure(8);

plot(w/pi, 20*log10(abs(H)));grid;

xlabel('\omega/\pi');ylabel('Gain, dB');

title('Lowpass filter designed using Kaiser window');

axis([0 1 -80 10]);

(a) Hamming window using fir1 

0 5 10 15 20 25 30-0.1

0

0.1

0.2

0.3

0.4Impulse Response Coefficients

Time index n

  n

 0 0.2 0.4 0.6 0.8 1-80

-60

-40

-20

0

ω / π

   G  a   i  n ,

   d   B

Lowpass filter designed using Hamming window

 

(b) Hann window using fir1

0 5 10 15 20 25-0.1

0

0.1

0.2

0.3

0.4Impulse Response Coefficients

Time index n

  n

 

0 0.2 0.4 0.6 0.8 1-80

-60

-40

-20

0

ω / π

   G  a   i  n ,

   d   B

Lowpass filter designed using Hann window

 

(c) Blackman window using fir1

0 10 20 30 40 50-0.1

0

0.1

0.2

0.3

0.4Impulse Response Coefficients

Time index n

  n

 

0 0.2 0.4 0.6 0.8 1-80

-60

-40

-20

0

ω / π

   G  a   i  n ,

   d   B

Lowpass f ilter designed using Blackman window

 

(d) Kaiser window using fir1

Not for sale 371

Page 49: Chapter10 SM

8/12/2019 Chapter10 SM

http://slidepdf.com/reader/full/chapter10-sm 49/64

0 10 20 30 40-0.1

0

0.1

0.2

0.3

0.4Impulse Response Coefficients

Time index n

  n

 0 0.2 0.4 0.6 0.8 1

-80

-60

-40

-20

0

ω / π

   G  a   i  n

 ,   d   B

Lowpass filter designed using Kaiser window

 

M10.18 , ,π=ω 40. s   π=ω 550. p 10.=α p dB, 42=α s dB,   π=ω∆ 150. ,   π=ω 4750.c  

(a) Hamming: use Eq. (10.33): 4622313322150

323==∴→=

π

π=   M  N  M  .

.

(b) Hann: 4222173320150113 ==∴→=ππ=   M  N  M  .

.

.  

(c) Blackman: 7623806737150

565==∴→=

π

π=   M  N  M  .

.

(d) Kaiser: 00794010 20.

/ ==δ   α−   s s

% Hamming 

N = 46;

b = fir1(N, 0.475, 'high');

[H,w] = freqz(b,1,512);

figure(1);

stem(b);

title('Impulse Response Coefficients');xlabel('Time index n');ylabel('h[n]');

figure(2);

plot(w/pi, 20*log10(abs(H)));grid;

xlabel('\omega/\pi');ylabel('Gain, dB');

title('Highpass filter designed using Hamming window');

axis([0 1 -80 10]);

% Hann 

N = 42;

b = fir1(N, 0.475, 'high', hanning(N+1));

[H,w] = freqz(b,1,512);

figure(3);stem(b);

title('Impulse Response Coefficients');

xlabel('Time index n');ylabel('h[n]');

figure(4);

plot(w/pi, 20*log10(abs(H)));grid;

xlabel('\omega/\pi');ylabel('Gain, dB');

title('Highpass filter designed using Hann window');

axis([0 1 -80 10]);

Not for sale 372

Page 50: Chapter10 SM

8/12/2019 Chapter10 SM

http://slidepdf.com/reader/full/chapter10-sm 50/64

 

% Blackman 

N = 76;

b = fir1(N, 0.475, 'high', blackman(N+1));

[H,w] = freqz(b,1,512);

figure(5);

stem(b);title('Impulse Response Coefficients');

xlabel('Time index n');ylabel('h[n]');

figure(6);

plot(w/pi, 20*log10(abs(H)));grid;

xlabel('\omega/\pi');ylabel('Gain, dB');

title('Highpass filter designed using Blackman window');

axis([0 1 -80 10]);

% Kaiser 

ds = 0.00794;

[N,Wn,beta,type] = kaiserord([0.4 0.55],[1 0],[ds ds]);b = fir1(N, 0.475,'high',kaiser(N+1,beta));

[H,w] = freqz(b,1,512);

figure(7);

stem(b);

title('Impulse Response Coefficients');

xlabel('Time index n');ylabel('h[n]');

figure(8);

plot(w/pi, 20*log10(abs(H)));grid;

xlabel('\omega/\pi');ylabel('Gain, dB');

title('Highpass filter designed using Kaiser window');

axis([0 1 -80 10]);

(a) Hamming window using fir1

0 10 20 30 40-0.4

-0.2

0

0.2

0.4

0.6Impulse Response Coefficients

Time index n

  n

 

0 0.2 0.4 0.6 0.8 1-80

-60

-40

-20

0

ω / π

   G  a   i  n ,

   d   B

Highpass filter designed using Hamming window

 

(b) Hann window using fir1

Not for sale 373

Page 51: Chapter10 SM

8/12/2019 Chapter10 SM

http://slidepdf.com/reader/full/chapter10-sm 51/64

0 10 20 30 40-0.4

-0.2

0

0.2

0.4

0.6Impulse Response Coefficients

Time index n

  n

 0 0.2 0.4 0.6 0.8 1

-80

-60

-40

-20

0

ω / π

   G  a   i  n

 ,   d   B

Highpass filter designed using Hann window

 

(c) Blackman window using fir1

0 20 40 60-0.4

-0.2

0

0.2

0.4

0.6Impulse Response Coefficients

Time index n

  n

 0 0.2 0.4 0.6 0.8 1

-80

-60

-40

-20

0

ω / π

   G  a   i  n ,

   d   B

Highpass filter designed using Blackman window

 

(d) Kaiser window using fir 1

0 5 10 15 20 25 30-0.4

-0.2

0

0.2

0.4

0.6

Impulse Response Coefficients

Time index n

  n

 0 0.2 0.4 0.6 0.8 1

-80

-60

-40

-20

0

ω / π

   G  a   i  n ,

   d   B

Highpass filter designed using Kaiser window

 

M10.19 , ,π ω 65.01 = p   π ω 85.02 = p   π ω 55.01 =s ,   π ω 75.02 =s , 2.0 pα dB, dB 42sα

π ωωω 1.0111   =s p∆ , ωπ ωωω   ∆∆   =1.0222   s p  

(a) Hamming window: 682342.331.0

32.3= M  N  M 

π 

π  

(b) Hann: 642321.311.0

11.3= M  N  M 

π 

π  

Not for sale 374

Page 52: Chapter10 SM

8/12/2019 Chapter10 SM

http://slidepdf.com/reader/full/chapter10-sm 52/64

(c) Blackman: 1122566.551.0

56.5= M  N  M 

π 

π  

(d) Kaiser: ,00794.010 20 /  =  ss

αδ 97724.01020 / 

=   p

 pα

δ

% Problem #M10.19 

% Hamming 

N = 68;

b = fir1(N, [0.6 0.8]);

[H, w] = freqz(b,1,512);

figure(1);

stem(b);

title('Impulse Response Coefficients');

xlabel('Time index n');ylabel('h[n]');

figure(2);

plot(w/pi, 20*log10(abs(H)));grid;

xlabel('\omega/\pi');ylabel('Gain, dB');

title('Bandpass filter designed using Hamming window');

axis([0 1 -80 10]);

% Hann 

N = 64;

b = fir1(N, [0.6 0.8], hanning(N+1));

[H, w] = freqz(b,1,512);

figure(3);

stem(b);

title('Impulse Response Coefficients');

xlabel('Time index n');ylabel('h[n]');

figure(4);

plot(w/pi, 20*log10(abs(H)));grid;

xlabel('\omega/\pi');ylabel('Gain, dB');

title('Bandpass filter designed using Hann window');

axis([0 1 -80 10]);

% Blackman 

N = 112;

b = fir1(N, [0.6 0.8], blackman(N+1));

[H, w] = freqz(b,1,512);

figure(5);

stem(b);

title('Impulse Response Coefficients');

xlabel('Time index n');ylabel('h[n]');

figure(6);

plot(w/pi, 20*log10(abs(H)));grid;xlabel('\omega/\pi');ylabel('Gain, dB');

title('Bandpass filter designed using Blackman window');

axis([0 1 -80 10]);

% Kaiser 

[N, Wn, beta, type] = kaiserord([0.6 0.8], [1 0], [0.97724

0.00794]);

Not for sale 375

Page 53: Chapter10 SM

8/12/2019 Chapter10 SM

http://slidepdf.com/reader/full/chapter10-sm 53/64

b = fir1(2*N, [0.6 0.8], kaiser(2*N+1, beta));

[H, w] = freqz(b,1,512);

figure(7);

stem(b);

title('Impulse Response Coefficients');

xlabel('Time index n');ylabel('h[n]');

figure(8);

plot(w/pi, 20*log10(abs(H)));grid;

xlabel('\omega/\pi');ylabel('Gain, dB');

title('Bandpass filter designed using Kaiser window');

axis([0 1 -80 10]);

(a)  Hamming window using fir1

0 10 20 30 40 50 60-0.2

-0.1

0

0.1

0.2

0.3Impulse Response Coefficients

Time index n

  n

 

0 0.2 0.4 0.6 0.8 1-80

-60

-40

-20

0

ω / π

   G  a   i  n ,

   d   B

Bandpass filter designed using Hamming window

 

(b)  Hann window using fir1

0 10 20 30 40 50 60-0.2

-0.1

0

0.1

0.2

0.3 Impulse Response Coefficients

Time index n

  n

 

0 0.2 0.4 0.6 0.8 1-80

-60

-40

-20

0

ω / π

   G  a   i  n ,

   d   B

Bandpass filter designed using Hann window

 

(c)  Blackman window using fir1

Not for sale 376

Page 54: Chapter10 SM

8/12/2019 Chapter10 SM

http://slidepdf.com/reader/full/chapter10-sm 54/64

0 20 40 60 80 100-0.2

-0.1

0

0.1

0.2Impulse Response Coefficients

Time index n

  n

 

0 0.2 0.4 0.6 0.8 1-80

-60

-40

-20

0

ω / π

   G  a   i  n ,

   d   B

Bandpass filter designed using Blackman window

 

(d)  Kaiser window using fir1

0 10 20 30 40-0.2

-0.1

0

0.1

0.2

0.3Impulse Response Coefficients

Time index n

  n

 0 0.2 0.4 0.6 0.8 1

-80

-60

-40

-20

0

ω / π

   G  a   i  n ,

   d   B

Bandpass filter designed using Kaiser window

 

M10.20 π π 

ω 4286.070

152==c  

% Problem #M10.20 

N = 31;

d1 = fir1(N-1,0.4286);d2 = fir1(N-1,0.4286,'high');

[h1,w] = freqz(d1,1,512);h2 = freqz(d2,1,w);

plot(w/pi,20*log10(abs(h1)),'-r',w/pi,20*log10(abs(h2)),'--

b');grid;

xlabel('\omega/\pi');ylabel('Gain, dB');

title('Crossover pair');

axis([0 1 -80 10]);

0 0.2 0.4 0.6 0.8 1-80

-60

-40

-20

0

ω / π

   G  a   i  n ,

   d   B

Crossover pair

 

Not for sale 377

Page 55: Chapter10 SM

8/12/2019 Chapter10 SM

http://slidepdf.com/reader/full/chapter10-sm 55/64

 

M10.21 ,  2494.01 =cω 5442.02 =cω

% Problem #M10.21 

N = 32;

d1 = fir1(N, 0.2494, hanning(33));

d2 = fir1(N, 0.5442, 'high', hanning(33));d3 = -d1-d2;

d3(17) = 1-d1(17)-d2(17);

[h1,w] = freqz(d1,1,512);h2 = freqz(d2,1,w);h3 =

freqz(d3,1,w);

g1 = 20*log10(abs(h1))); g2 = 20*log10(abs(h2)));

g3 = 20*log10(abs(h3)));

plot(w/pi, g1,’—-b’,w/pi,g2,’-.g’,w/pi,g3,’-r’);grid;

xlabel('\omega/\pi');ylabel('Gain, dB');

title('Crossover triple');

axis([0 1 -80 10]);

0 0.2 0.4 0.6 0.8 1-80

-60

-40

-20

0

ω / π

   G  a   i  n ,

   d   B

Crossover triple

 M10.22 % Problem #M10.22 

fpts = [0 0.35 0.4 0.7 0.72 1];

 mval = [0.2 0.2 1 1 0.6 0.6];

b = fir2(70, fpts, mval);

[H,w] = freqz(b,1,512);

figure(1);

plot(w/pi,abs(H));grid;

xlabel('\omega/\pi');ylabel('Magnitude');

title('Multilevel FIR filter');

axis([0 1 0 1.2]);

0 0.2 0.4 0.6 0.8 10

0.2

0.4

0.6

0.8

1

ω / π

   M  a  g  n   i   t  u   d  e

Multilevel FIR filter

 

Not for sale 378

Page 56: Chapter10 SM

8/12/2019 Chapter10 SM

http://slidepdf.com/reader/full/chapter10-sm 56/64

 

M10.23 From Problem 10.36,

π=ω 450. p , ,π=ω 60. s 20430.=δ p , 04540.=δ s and we assume that

.2=T  F   Therefore, 4502

450 ..

=π⋅π=   T 

 p F 

 F  and ..60= s F   

9851120 10 .log   =δ−−=α   p p dB, ( ) 8582620 10 .log   =δ−=α   s s dB.

After obtaining the length N  using ‘remezord’, the specifications of the filter were not

met. We increased N  to 11 to meet the specifications.% Program #M10.23 

Ft = 2;Fp = 0.45;Fs = 0.6;

ds = 0.0454;dp = 0.2043;

F = [Fp Fs];A = [1 0];DEV = [dp ds];

[N,Fo,Ao,W] = remezord(F,A,DEV,Ft);

b = remez(N,Fo,Ao,W);

[H,w] = freqz(b,1,512);

figure(1);

plot(w/pi, 20*log10(abs(H)));

xlabel('\omega/\pi');ylabel('Gain, dB');title('N = 9');

%axis([0 0.45 -3 3]); 

N = 11;

b = remez(N,Fo, Ao, W);

[H,w] = freqz(b,1,512);

figure(2);

plot(w/pi, 20*log10(abs(H)));

xlabel('\omega/\pi');ylabel(Gain, dB);title('N = 11');

Using remezord, we get N = 9. The corresponding gain response is shown in Figure (e) below:

0 0.2 0.4 0.6 0.8 1-80

-60

-40

-20

0

20

ω / π

   G  a   i  n ,

   d   B

N = 9

 0 0.2 0.4 0.6 0.8 1-80

-60

-40

-20

0

20

ω / π

   G  a   i  n ,

   d   B

N = 11

 

(e)  (f)

However, specifications are not met in the passband with this filter, so we increase N to11. The corresponding gain response is shown in Figure (f) above. The specifications

are now met.

Not for sale 379

Page 57: Chapter10 SM

8/12/2019 Chapter10 SM

http://slidepdf.com/reader/full/chapter10-sm 57/64

Page 58: Chapter10 SM

8/12/2019 Chapter10 SM

http://slidepdf.com/reader/full/chapter10-sm 58/64

( ) 4320 1101   =δ−=α   s s log dB, ( ) 5420 2102   =δ−=α   s s log dB.

% Program #M10.25 

Ft = 2;Fp1 = 0.55;Fp2 = 0.7;Fs1 = 0.44;Fs2 = 0.82;

ds1 = 0.007;ds2 = 0.002;dp = 0.01;

F = [Fs1 Fp1 Fp2 Fs2];A = [0 1 0];DEV = [ds1 dp ds2];[N,Fo,Ao,W] = remezord(F,A,DEV,Ft);

b = remez(N,Fo,Ao,W);

[H, w] = freqz(b, 1, 512);

figure(1);

plot(w/pi,20*log10(abs(H)));grid;

xlabel('\omega/\pi');ylabel('Gain, dB');title('N = 39');

axis([0 1 -80 10]);

N = 41;

b = remez(N, Fo, Ao, W);

[H, w] = freqz(b, 1, 512);

figure(2);

plot(w/pi, 20*log10(abs(H)));

xlabel('\omega/\pi');ylabel('Gain, dB');title('N = 41');

axis([0 1 -80 10]);

Using remezord, we estimate the filter length to be N  = 39. However, the minimumstopband attenuation specifications are not met in both stopbands, so we increase  N  to 41

0 0.2 0.4 0.6 0.8 1-80

-60

-40

-20

0

ω / π

   G  a   i  n ,

   d   B

N = 39

 0 0.2 0.4 0.6 0.8 1

-80

-60

-40

-20

0

ω / π

   G  a   i  n ,

   d   B

N = 41

 

.

M10.26 % Program #M10.26 b = remez(29, [0 1], [0 pi], 'differentiator');

[H, w] = freqz(b, 1, 512);

plot(w/pi,abs(H));grid

xlabel('\omega/\pi');ylabel('Magnitude');

axis([0 1 0 pi]);

The magnitude response of the differentiator is given below:

Not for sale 381

Page 59: Chapter10 SM

8/12/2019 Chapter10 SM

http://slidepdf.com/reader/full/chapter10-sm 59/64

0 0.2 0.4 0.6 0.8 10

0.51

1.5

2

2.5

3

ω / π

   M  a  g  n   i   t  u   d  e

 

M10.27 % Program #M10.27 f = [0.02 0.05 0.07 0.95 0.97 1];

 m = [0 0 1 1 0 0];

 wt = [1 60 1];

b = remez(30, f, m, wt, 'hilbert');

[H,w] = freqz(b,1,512);

plot(w/pi,abs(H));grid

xlabel('\omega/\pi');ylabel('Magnitude');

axis([0 1 0 1.2]);

The magnitude response of the Hilbert transformer is shown below:

0 0.2 0.4 0.6 0.8 10

0.2

0.4

0.6

0.8

1

ω / π

   M  a  g  n   i   t  u   d  e

 

M10.28 , ,π=ω 350. p   π=ω 50. s 1= p R dB, and 28= s R dB. 

% Program #M10_28 

% Design of a minimum-phase lowpass FIR filter 

 Wp = 0.35; Ws = 0.5; Rp = 1; Rs = 28;

% Desired ripple values of minimum-phase filter 

dp = 1- 10^(-Rp/20); ds = 10^(-Rs/20);

% Compute ripple values of prototype linear-phase filter Ds = (ds*ds)/(2 - ds*ds);

Dp = (1 + Ds)*((dp + 1)*(dp + 1) - 1);

% Estimate filter order 

[N,fpts,mag,wt] = remezord([Wp Ws], [1 0], [Dp Ds]);

% Design the prototype linear-phase filter H(z) 

[b,err,res] = remez(N,fpts,mag,wt);

K = N/2;

b1 = b(1:K);

Not for sale 382

Page 60: Chapter10 SM

8/12/2019 Chapter10 SM

http://slidepdf.com/reader/full/chapter10-sm 60/64

% Design the linear-phase filter G(z)

lenerr= res.error(length(res.error));

c = [b1 (b(K+1) + lenerr)) fliplr(b1)]/(1+Ds);

zplane(c);title('Zeros of G(z)');pause

c1 = c(K+1:N+1);

[y, ssp, iter] = minphase(c1);

zplane(y);title(‘Zeros of the minimum-phase filter’); pause

[hh,w] = freqz(y,1, 512);

% Plot the gain response of the minimum-phase filter 

plot(w/pi, 20*log10(abs(hh)));grid

xlabel('\omega/\pi');ylabel('Gain, dB');

-6 -4 -2 0

-2

-1

0

1

2

2 20

Real Part

   I  m  a  g   i  n  a  r  y   P  a  r   t

Zeros of G(z)

 

-1.5 -1 -0.5 0 0.5 1 1.5

-1

-0.5

0

0.5

1

10

Real Part

  m  a  g  n  a  r  y

  a  r

Zeros of the minimum-phase filter

 

0 0.2 0.4 0.6 0.8 1-80

-60

-40

-20

0

20

ω / π

   G  a   i  n ,

   d   B

 M10.29 % Program #M10.29 

c = [2.4 6.76 26.15 68.43 186.83 326.51 565.53 678.95 805.24

678.95 565.53 326.51 186.83 68.43 26.15 6.76 2.4];

h = firminphase(c)

The coefficients of the minimum phase spectral factor are:h = 7.6730 8.5329 18.0722 12.5696 12.6822 4.8388 2.0784 0.5332 0.3128

M10.30 % Program #M10.30

[h,g]=ifir(6,'low',[.1 .15],[.001 .001]);

[hh,w]=freqz(h,1,1024); hg=freqz(g,1,1024);

h = hh.*hg; % Compounded response

Fg = 20*log10(abs(hh)); Ig = 20*log10(abs(hg));

plot(w/pi,Fg,'-r',w/pi,Ig,'--b'); grid;

axis([0 1 -90 5]);

Not for sale 383

Page 61: Chapter10 SM

8/12/2019 Chapter10 SM

http://slidepdf.com/reader/full/chapter10-sm 61/64

legend('F(z^6)','I(z)');

xlabel('\omega/\pi');title('Gain responses, in dB');

pause;

plot(w/pi,20*log10(abs(h))); grid;

axis([0 1 -90 5]);

xlabel('\omega/\pi');title('Gain response, in dB');

gtext('H_{IFIR}(z)');

0 0.2 0.4 0.6 0.8 1

-80

-60

-40

-20

0

ω / π

Gain responses, in dB

F(z6)

I(z)

 

0 0.2 0.4 0.6 0.8 1

-80

-60

-40

-20

0

ω / π

Gain response, in dB

HIFIR

(z)

 

M10.31 % Program #M10.31 [h,g]=ifir(6,'high',[.9 .95],[.002 .004]);

[hh,w]=freqz(h,1,1024); hg=freqz(g,1,1024);

h = hh.*hg; % Compounded response 

Fg = 20*log10(abs(hh)); Ig = 20*log10(abs(hg));

plot(w/pi,Fg,'-r',w/pi,Ig,'--b'); grid;

axis([0 1 -90 5]);legend('F(z^6)','I(z)');

xlabel('\omega/\pi');title('Gain responses, in dB');

pause;

plot(w/pi,20*log10(abs(h))); grid;

axis([0 1 -90 5]);

xlabel('\omega/\pi');title('Gain response, in dB');

gtext('H_{IFIR}(z)');

0 0.2 0.4 0.6 0.8 1

-80

-60

-40

-20

0

ω / π

Gain responses, in dB

F(z

6

)I(z)

 

0 0.2 0.4 0.6 0.8 1

-80

-60

-40

-20

0

ω / π

Gain response, in dB

HIFIR

(z)

 

Not for sale 384

Page 62: Chapter10 SM

8/12/2019 Chapter10 SM

http://slidepdf.com/reader/full/chapter10-sm 62/64

 

M10.32 % Problem #M10.32 InpN = ceil(2*pi/(0.15*pi));

% Plotting function

% plots the result of using an equalizer of length InpN

%function [N] = plotfunc(InpN);

% Creating filters

 Wfilt = ones(1, InpN);

Efilt = remezfunc(InpN, Wfilt);

% Plot running sum filter response

figure(1);

 Wfilt = Wfilt/sum(Wfilt);

[hh, w] = freqz(Wfilt, 1, 512);

plot(w/pi, 20*log10(abs(hh)));

axis([0 1 -50 5]);grid;

xlabel('\omega/\pi');ylabel('Gain, dB');

title('Prefilter H(z)');

% Plot equalizer filter response

figure(2);

[hw, w] = freqz(Efilt, 1, 512);

plot(w/pi, 20*log10(abs(hw)));

axis([0 1 -50 5]);grid;

xlabel('\omega/\pi');ylabel('Gain, dB');

title('Equalizer F(z)');

% Plot cascade filter response

figure(3);

Cfilt = conv(Wfilt, Efilt);

[hc, w] = freqz(Cfilt, 1, 512);

plot(w/pi, 20*log10(abs(hc)));

axis([0 1 -80 5]);grid;

xlabel('\omega/\pi');ylabel('Gain, dB');

title('Cascade filter H(z)F(z)');

% Remez function using 1/P(z) as desired amplitude 

% and P(z) as weighting function [N] = remezfunc(Nin, Wfilt);

% Nin : number of tuples in the remez equalizer filter 

% Wfilt : the prefilter 

a = [0:0.001:0.999]; % The accuracy of the computation 

 w = a.*pi;wp = 0.05*pi;ws = 0.15*pi;

i = 1;n = 1;

for t = 1:(length(a)/2),

Not for sale 385

Page 63: Chapter10 SM

8/12/2019 Chapter10 SM

http://slidepdf.com/reader/full/chapter10-sm 63/64

  if w(2*t) < wp

pas(i) = w(2*t - 1);

pas(i+1) = w(2*t);

i = i+2;

end 

if w(2*t-1) > ws

sto(n) = w(2*t - 1);sto(n+1) = w(2*t);

n = n+2;

end 

end 

 w = cat(2, pas, sto);

bi = length(w)/2;

for t1 = 1:bi,

bw(t1) = (w(2*t1) + w(2*t1-1))/2;

 W(t1) = Weight(bw(t1), Wfilt, ws);

end 

 W = W/max(W);

for t2 = 1:length(w),G(t2) = Hdr(w(t2), Wfilt, wp);

end 

G = G/max(G);

N = remez(Nin, w/pi, G, W);

% Weighting function 

function[Wout] = Weight(w, Wfilt, ws);

K = 22.8;

L = length(Wfilt);

 Wtemp = 0;

 Wsum = 0;

for k = 1:L, Wtemp = Wfilt(k)*exp((k-1)*i*w);

 Wsum = Wsum + Wtemp;

end 

 Wout = abs(Wsum);

if w > ws,

 Wout = K*max(Wout);

end

% Desired function

function [Wout] = Hdr(w, Wfilt, ws);

if w <= ws,

L = length(Wfilt); Wtemp = 0;

 Wsum = 0;

for k = 1:L,

 Wtemp = Wfilt(k)*exp(i*(k-1)*w);

 Wsum = Wsum + Wtemp;

end

 Wsum = abs(Wsum);

 Wout = 1/Wsum;

Not for sale 386

Page 64: Chapter10 SM

8/12/2019 Chapter10 SM

http://slidepdf.com/reader/full/chapter10-sm 64/64

else

 Wout = 0;

end

0 0.2 0.4 0.6 0.8 1-50

-40

-30

-20

-10

0

ω / π

   G  a   i  n ,

   d   B

Prefilter H(z)

 0 0.2 0.4 0.6 0.8 1

-50

-40

-30

-20

-10

0

ω / π

   G  a   i  n ,

   d   B

Equalizer F(z)

 

0 0.2 0.4 0.6 0.8 1-80

-60

-40

-20

0

ω / π

   G  a   i  n ,

   d   B

Cascade filter H(z)F(z)