Top Banner
Time 0s 1m s 2m s 3m s 4m s 5m s 6m s 7m s 8m s 9m s 10m s V(out) AVG (V(out)) 0V 20V 40V V(error) AVG (V(error)) -20V 0V 20V V(control) AVG (V(control)) 0V 10V 20V SEL>> AVG (V(out)) V(out) V(error) AVG (V(error)) V(control) AVG (V(control)) Chapter 9 Simulation of Switching Converters
103

Chapter 9 Simulation of Switching Converters. Power switching convertersSimulation of switching converters2 Overview PSpice PSpice Simulations using.CIR.

Dec 26, 2015

Download

Documents

Holly Simpson
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Chapter 9 Simulation of Switching Converters. Power switching convertersSimulation of switching converters2 Overview PSpice PSpice Simulations using.CIR.

Time

0s 1ms 2ms 3ms 4ms 5ms 6ms 7ms 8ms 9ms 10msV(out) AVG (V(out))

0V

20V

40VV(error) AVG (V(error))

-20V

0V

20VV(control) AVG (V(control))

0V

10V

20V

SEL>>

AVG (V(out))

V(out)

V(error)

AVG (V(error))

V(control)

AVG(V(control))

Chapter 9

Simulation of

Switching Converters

Page 2: Chapter 9 Simulation of Switching Converters. Power switching convertersSimulation of switching converters2 Overview PSpice PSpice Simulations using.CIR.

Power switching converters Simulation of switching converters 2

Overview PSpice

PSpice Simulations using .CIR PSpice Simulations using schematics entry PSpice Simulations Using Behavioral Modeling PSpice simulations using vendor models Small-signal analysis of switching converters Creating capture symbols for PSpice simulation Solving convergence problems

Matlab Simulink

Page 3: Chapter 9 Simulation of Switching Converters. Power switching convertersSimulation of switching converters2 Overview PSpice PSpice Simulations using.CIR.

Power switching converters Simulation of switching converters 3

PSpice Simulations using .CIR

An Ideal Open-Loop Buck Converter

LO

10mH

CO RVPWM

+

-

1 2

0

100µF 5O

Open-loop buck converter simulation* SWITCHING FREQUENCY = 1 KHZ ; DUTY CYCLE = 50%VPWM 1 0 PULSE(0 10 0 1US 1US 0.5MS 1MS)* PULSE PWM SOURCE: PULSED VOLTAGE = 10 V, RISE TIME = 1 US, * FALL TIME = 1 US, PULSE WIDTH = 500 US, PERIOD = 1 MS.L0 1 2 10MC0 2 0 100URL 2 0 5.TRAN 50US 20MS.OPTION ITL5=0.PROBE.END

Page 4: Chapter 9 Simulation of Switching Converters. Power switching convertersSimulation of switching converters2 Overview PSpice PSpice Simulations using.CIR.

Power switching converters Simulation of switching converters 4

PSpice Simulations using .CIR

An Ideal Open-Loop Buck Converter

Time

0s 5ms 10ms 15ms 20msV1(RL) I(C0) I(L0)

-4.0

0

4.0

8.0

I(C0)

I(L0)

V1(RL)

Page 5: Chapter 9 Simulation of Switching Converters. Power switching convertersSimulation of switching converters2 Overview PSpice PSpice Simulations using.CIR.

Power switching converters Simulation of switching converters 5

PSpice Simulations using .CIR

An Ideal Open-Loop Buck Converter

Time

0s 5ms 10ms 15ms 20ms 25ms 30ms 35ms 40ms 45ms 50msI(C0) I(L0) V(2)

-2.0

0

2.0

4.0

6.0

I(CO)

I(LO)

V(2)

L = 50 mH

Page 6: Chapter 9 Simulation of Switching Converters. Power switching convertersSimulation of switching converters2 Overview PSpice PSpice Simulations using.CIR.

Power switching converters Simulation of switching converters 6

PSpice Simulations using .CIR

An Ideal Open-Loop Buck Converter

L = 5 mH

Page 7: Chapter 9 Simulation of Switching Converters. Power switching convertersSimulation of switching converters2 Overview PSpice PSpice Simulations using.CIR.

Power switching converters Simulation of switching converters 7

PSpice Simulations using .CIR

An Ideal Open-Loop Buck Converter

Time

0s 5ms 10ms 15ms 20ms

V(2) I(LO) I(CO)

-2

0

2

4

6

8

10

V(2)

I(LO)

I(CO)

L = 1.25 mH

Page 8: Chapter 9 Simulation of Switching Converters. Power switching convertersSimulation of switching converters2 Overview PSpice PSpice Simulations using.CIR.

Power switching converters Simulation of switching converters 8

PSpice Simulations using .CIR

An Ideal Open-Loop Buck Converter

Time

0s 5ms 10ms 15ms 20msV(2) I(LO) I(CO)

-2.0

0

2.0

4.0

6.0

8.0

I(CO)

I(LO)

V(2)

L = 10 mH and

C = 500 uF

Page 9: Chapter 9 Simulation of Switching Converters. Power switching convertersSimulation of switching converters2 Overview PSpice PSpice Simulations using.CIR.

Power switching converters Simulation of switching converters 9

PSpice Simulations using .CIR

An Ideal Open-Loop Buck Converter

Time

0s 5ms 10ms 15ms 20msV(2) I(LO) I(CO)

-5

0

5

10

I(CO)

I(LO)

V(2)L = 1.25 mH and

C = 500 uF

Page 10: Chapter 9 Simulation of Switching Converters. Power switching convertersSimulation of switching converters2 Overview PSpice PSpice Simulations using.CIR.

Power switching converters Simulation of switching converters 10

PSpice Simulations using .CIR

S

RonN

N

N

+c

+N

-

-c

Voltage-controlled switch

S<name> N+ N- NC+ NC- SNAME.MODEL SNAME VSWITCH (RON=0.01 ROFF=1E+7 VON=0.7 VOFF=0)

Page 11: Chapter 9 Simulation of Switching Converters. Power switching convertersSimulation of switching converters2 Overview PSpice PSpice Simulations using.CIR.

Power switching converters Simulation of switching converters 11

PSpice Simulations using .CIR

Current-controlled switch

Ron

W

N-

+N

NV

W<name> N+ N- VN WNAME.MODEL WNAME ISWITCH (RON=0.01 ROFF=1E+7 ION=0.1 IOFF=0)

Page 12: Chapter 9 Simulation of Switching Converters. Power switching convertersSimulation of switching converters2 Overview PSpice PSpice Simulations using.CIR.

Power switching converters Simulation of switching converters 12

PSpice Simulations using .CIR

Buck Converter with an Ideal Switch

CO100uf

LO

10mH

1

S1

VPWM

DFW

0

VS 10V R5ohms

2

RSX

3

OPEN-LOOP BUCK CONVERTER WITH AN IDEAL SWITCH

* SWITCHING FREQUENCY = 1 KHZ ; DUTY CYCLE = 50%

VS 1 0 10.0

VPWM 100 101 PULSE(0 1 0 1US 1US 500US 1MS)

S1 1 2 100 101 SX

RSX 100 0 10G

DFW 0 2 D1

L0 2 3 10M

C0 3 0 100U

RL 3 0 5

.MODEL SX VSWITCH (RON=0.01 ROFF=1E+7 VON=1 VOFF=0)

.MODEL D1 D

.TRAN 0.05MS 20MS

.PROBE

.END

Page 13: Chapter 9 Simulation of Switching Converters. Power switching convertersSimulation of switching converters2 Overview PSpice PSpice Simulations using.CIR.

Power switching converters Simulation of switching converters 13

PSpice Simulations using .CIR

Buck Converter with an Ideal Switch

Time

0s 5ms 10ms 15ms 20msV(3) I(LO) I(CO)

0

2.0

4.0

6.0

-1.0

I(CO)

I(LO)

V(3)

Page 14: Chapter 9 Simulation of Switching Converters. Power switching convertersSimulation of switching converters2 Overview PSpice PSpice Simulations using.CIR.

Power switching converters Simulation of switching converters 14

PSpice Simulations using .CIR

Buck Converter with an Ideal Switch

Time

15.0ms 15.5ms 16.0ms 16.5ms 17.0ms 17.5ms 18.0msV(3) 20* I(CO)

0

5.0

-3.0

I(CO)*20

V(3)

Page 15: Chapter 9 Simulation of Switching Converters. Power switching convertersSimulation of switching converters2 Overview PSpice PSpice Simulations using.CIR.

Power switching converters Simulation of switching converters 15

PSpice Simulations using .CIR

L0 2 3 100U IC=1C0 3 0 IC=5.TRAN 2NS 200NS UIC

Using Initial Conditions IC

Time

0s 5ms 10ms 15ms 20msV(3) I(LO) I(CO)

0

2.0

4.0

6.0

-1.0

I(CO)

I(LO)

V(3)

Page 16: Chapter 9 Simulation of Switching Converters. Power switching convertersSimulation of switching converters2 Overview PSpice PSpice Simulations using.CIR.

Power switching converters Simulation of switching converters 16

PSpice Simulations using schematics entry

Boost converter

+-+-

S1

S VON = 1.0VVOFF = 0.0V

ROFF = 1e6RON = 1.0

pwm

Dbreak

D1

0

V2TD = 0

TF = 1nPW = 0.5mPER = 1m

V1 = 0

TR = 1n

V2 = 1 R1C1

V1 10Vdc

outL1

10mH

20O+

-100µF

Page 17: Chapter 9 Simulation of Switching Converters. Power switching convertersSimulation of switching converters2 Overview PSpice PSpice Simulations using.CIR.

Power switching converters Simulation of switching converters 17

PSpice Simulations using schematics entry

Time

0s 5ms 10ms 15ms 20ms 25ms 30msV(out)

5V

10V

15V

20V

25V

Page 18: Chapter 9 Simulation of Switching Converters. Power switching convertersSimulation of switching converters2 Overview PSpice PSpice Simulations using.CIR.

Power switching converters Simulation of switching converters 18

PSpice Simulations using schematics entry

Time

0s 5ms 10ms 15ms 20ms 25ms 30msI(L1) I(C1)

-2.0A

-1.0A

0A

1.0A

2.0A

3.0A

I(C1)

I(L1)

Page 19: Chapter 9 Simulation of Switching Converters. Power switching convertersSimulation of switching converters2 Overview PSpice PSpice Simulations using.CIR.

Power switching converters Simulation of switching converters 19

PSpice Simulations Using Behavioral Modeling

ABM.OLB part library

Control system parts

Page 20: Chapter 9 Simulation of Switching Converters. Power switching convertersSimulation of switching converters2 Overview PSpice PSpice Simulations using.CIR.

Power switching converters Simulation of switching converters 20

Control system parts

Page 21: Chapter 9 Simulation of Switching Converters. Power switching convertersSimulation of switching converters2 Overview PSpice PSpice Simulations using.CIR.

Power switching converters Simulation of switching converters 21

Control system parts

Page 22: Chapter 9 Simulation of Switching Converters. Power switching convertersSimulation of switching converters2 Overview PSpice PSpice Simulations using.CIR.

Power switching converters Simulation of switching converters 22

Control system parts

Page 23: Chapter 9 Simulation of Switching Converters. Power switching convertersSimulation of switching converters2 Overview PSpice PSpice Simulations using.CIR.

Power switching converters Simulation of switching converters 23

Control system parts

Page 24: Chapter 9 Simulation of Switching Converters. Power switching convertersSimulation of switching converters2 Overview PSpice PSpice Simulations using.CIR.

Power switching converters Simulation of switching converters 24

Control system parts

Page 25: Chapter 9 Simulation of Switching Converters. Power switching convertersSimulation of switching converters2 Overview PSpice PSpice Simulations using.CIR.

Power switching converters Simulation of switching converters 25

PSpice-equivalent parts

Page 26: Chapter 9 Simulation of Switching Converters. Power switching convertersSimulation of switching converters2 Overview PSpice PSpice Simulations using.CIR.

Power switching converters Simulation of switching converters 26

PSpice-equivalent parts

Page 27: Chapter 9 Simulation of Switching Converters. Power switching convertersSimulation of switching converters2 Overview PSpice PSpice Simulations using.CIR.

Power switching converters Simulation of switching converters 27

Operators in ABM expressions

Page 28: Chapter 9 Simulation of Switching Converters. Power switching convertersSimulation of switching converters2 Overview PSpice PSpice Simulations using.CIR.

Power switching converters Simulation of switching converters 28

Operators in ABM expressions

Page 29: Chapter 9 Simulation of Switching Converters. Power switching convertersSimulation of switching converters2 Overview PSpice PSpice Simulations using.CIR.

Power switching converters Simulation of switching converters 29

Functions in arithmetic expressions

Page 30: Chapter 9 Simulation of Switching Converters. Power switching convertersSimulation of switching converters2 Overview PSpice PSpice Simulations using.CIR.

Power switching converters Simulation of switching converters 30

Functions in arithmetic expressions

Page 31: Chapter 9 Simulation of Switching Converters. Power switching convertersSimulation of switching converters2 Overview PSpice PSpice Simulations using.CIR.

Power switching converters Simulation of switching converters 31

Examples of ABM blocks use

PARAMETERS:

PI = 3.141592654freq = 1k

3*sin (2*PI*freq*TIME)

sine

ABM and PARAM

Page 32: Chapter 9 Simulation of Switching Converters. Power switching convertersSimulation of switching converters2 Overview PSpice PSpice Simulations using.CIR.

Power switching converters Simulation of switching converters 32

Examples of ABM blocks use

control

3*V (sine)

Node voltages can be accessed from ABM blocks

Page 33: Chapter 9 Simulation of Switching Converters. Power switching convertersSimulation of switching converters2 Overview PSpice PSpice Simulations using.CIR.

Power switching converters Simulation of switching converters 33

Examples of ABM blocks use

rmssine

If (TIME<=0,0,SQRT(SDT(PWR(V(%IN),2))/TIME))

RMS meter

If(argument,then,else)

If (TIME<=0, 0, SQRT(SDT(PWR(V(%IN),2))/TIME))

Page 34: Chapter 9 Simulation of Switching Converters. Power switching convertersSimulation of switching converters2 Overview PSpice PSpice Simulations using.CIR.

Power switching converters Simulation of switching converters 34

Examples of ABM blocks use

control

pwm

0

If (V(%IN1) > V(%IN2),1,0)

V4

triangular

TD = 0

TF = 1uPW = 1nPER = 2u

V1 = -10

TR = 1u

V2 = 10

PWM modulator

Page 35: Chapter 9 Simulation of Switching Converters. Power switching convertersSimulation of switching converters2 Overview PSpice PSpice Simulations using.CIR.

Power switching converters Simulation of switching converters 35

Examples of ABM blocks use

Sin (2*PI*100k*ABS(V(%IN)) * TIME)

VCOtriangular

VCO implementation with ABM1

Page 36: Chapter 9 Simulation of Switching Converters. Power switching convertersSimulation of switching converters2 Overview PSpice PSpice Simulations using.CIR.

Power switching converters Simulation of switching converters 36

PSpice Simulations Using Control Blocks

control

0

pwmtriangular

V4

TD = 0

TF = 0.5mPW = 1nPER = 1m

V1 = -10

TR = 0.5m

V2 = 10

100k10

0

PWM modulator with control blocks

Page 37: Chapter 9 Simulation of Switching Converters. Power switching convertersSimulation of switching converters2 Overview PSpice PSpice Simulations using.CIR.

Power switching converters Simulation of switching converters 37

PSpice Simulations Using Control Blocks

0

OpAmp

V41Vac

0Vdc

50

50 + sIN OUT

PARAMETERS:

Vcc = +12VEE = 0

0

0

Vcc

VEE

In-

0

In+

R2

10Meg

100k

R1

10Meg

Model of an operational amplifier

Page 38: Chapter 9 Simulation of Switching Converters. Power switching convertersSimulation of switching converters2 Overview PSpice PSpice Simulations using.CIR.

Power switching converters Simulation of switching converters 38

PSpice Simulations Using Control Blocks

Frequency

10mHz 1.0Hz 100Hz 10KHz 1.0MHz 100MHz1.0mHzP(V(OPAMP))

-100d

-50d

0dDB(V(OPAMP))

-50

0

50

100

SEL>>

Open loop frequency response

Page 39: Chapter 9 Simulation of Switching Converters. Power switching convertersSimulation of switching converters2 Overview PSpice PSpice Simulations using.CIR.

Power switching converters Simulation of switching converters 39

PSpice Simulations Using Control Blocks

V41Vac

0Vdc

R3

10k

OpAmp

0

R2

10Meg

R1

10Meg

0

In-

R41k

50

50 + sIN OUTIn+

0

PARAMETERS:

Vcc = +12VEE = 0

100k

Vcc

VEE

0

Closed loop amplifier

Page 40: Chapter 9 Simulation of Switching Converters. Power switching convertersSimulation of switching converters2 Overview PSpice PSpice Simulations using.CIR.

Power switching converters Simulation of switching converters 40

PSpice Simulations Using Control Blocks

Frequency

10mHz 1.0Hz 100Hz 10KHz 1.0MHz 100MHz1.0mHzP(V(OPAMP))

-100d

-50d

0d

SEL>>

DB(V(OPAMP))-50

0

50

Closed loop frequency response

Page 41: Chapter 9 Simulation of Switching Converters. Power switching convertersSimulation of switching converters2 Overview PSpice PSpice Simulations using.CIR.

Power switching converters Simulation of switching converters 41

Voltage –mode PWM boost converter

Error amplifier

3

C1

0

0

1Meg

1Meg+s

pwm_out

If (V(%IN1) > V (%IN2),1,0)control

5

Dbreak

D1

12

-12Vref

out

saw

V1 10Vdc

+-

+

-

S1

S VON = 1.0VVOFF = 0.0V

ROFF = 1e6RON = 0.05

error

R2

1

pwm

sense

V4TD = 0

TF = 1nPW = 1nPER = 1m

V1 = 0

TR = 999u

V2 = 10

PWMmodulator

R1

0

L1

10mH

-++-

E1

E

GAIN = 0.25

20100µF

+

-

Page 42: Chapter 9 Simulation of Switching Converters. Power switching convertersSimulation of switching converters2 Overview PSpice PSpice Simulations using.CIR.

Power switching converters Simulation of switching converters 42

Voltage –mode PWM boost converter

Time

0s 1ms 2ms 3ms 4ms 5ms 6ms 7ms 8ms 9ms 10msV(out) AVG (V(out))

0V

20V

40VV(error) AVG (V(error))

-20V

0V

20VV(control) AVG (V(control))

0V

10V

20V

SEL>>

AVG (V(out))

V(out)

V(error)

AVG (V(error))

V(control)

AVG(V(control))

Page 43: Chapter 9 Simulation of Switching Converters. Power switching convertersSimulation of switching converters2 Overview PSpice PSpice Simulations using.CIR.

Power switching converters Simulation of switching converters 43

PSpice simulations using vendor models

TL084

+

-

V+

V-

D1

MUR420

sense

L1

10mHIC = 0

R7

1

0

0

pwm_out

-15

saw

R6

100

+15

Vref

out

+15

R3

100k

R5

3k

R4

1k

V4TD = 0

TF = 1nPW = 1nPER = 1m

V1 = 0

TR = 999u

V2 = 10

pwm

R2

300k

R8

300

PWM modulator

5

control

V110Vdc

Error amplifier

C1

100uF

LM311

+

-GV

+V

-

B/S B

R1

20

0

X2

MTP15N05E/MC ESR10m

-15

+

-

.TRAN 0 30m 0 0.1u

.OPTIONS STEPGMIN

.OPTIONS ABSTOL= 10p

.OPTIONS ITL1= 400

.OPTIONS ITL4= 500

.OPTIONS RELTOL= 0.01

.OPTIONS VNTOL= 10u

Page 44: Chapter 9 Simulation of Switching Converters. Power switching convertersSimulation of switching converters2 Overview PSpice PSpice Simulations using.CIR.

Power switching converters Simulation of switching converters 44

PSpice simulations using vendor models

Time

0s 5ms 10ms 15ms 20ms 25ms 30msV(out)

0V

10V

20V

SEL>>

V(control)4.8V

5.0V

5.2VI(L1)

0A

2.0A

4.0A

Page 45: Chapter 9 Simulation of Switching Converters. Power switching convertersSimulation of switching converters2 Overview PSpice PSpice Simulations using.CIR.

Power switching converters Simulation of switching converters 45

Vorperian models for PSpice

Page 46: Chapter 9 Simulation of Switching Converters. Power switching convertersSimulation of switching converters2 Overview PSpice PSpice Simulations using.CIR.

Power switching converters Simulation of switching converters 46

Vorperian models for PSpice

Page 47: Chapter 9 Simulation of Switching Converters. Power switching convertersSimulation of switching converters2 Overview PSpice PSpice Simulations using.CIR.

Power switching converters Simulation of switching converters 47

Vorperian models for PSpice

Page 48: Chapter 9 Simulation of Switching Converters. Power switching convertersSimulation of switching converters2 Overview PSpice PSpice Simulations using.CIR.

Power switching converters Simulation of switching converters 48

Vorperian models for PSpice **** VMSSCCM ***** Small signal continuous conduction voltage mode model* Params: RMPHITE --> External ramp height * D --> Duty cycle* Ic --> Current flowing from terminal C* Vap --> Voltage across terminal A P* Rsw --> Switch on resistance* Rd --> diode on resistance* Rm --> which models the base storage effects* Re --> models ripple across esr of cap* Pins control voltage -- * common -------- |* passive----- | |* active -- | | |.subckt VMSSCCM A P C VC Params: RMPHITE=2 D=0.4 IC=1 VAP=20 + Rsw=1e-6 Rd=1e-6 Re=1e-6 Rm=1e-6 efm 4 0 value =v(Vc)/rmphite e2 A 6 value=v(0,4)*Vap/d g1 A P value=v(4)*IC gxfr 6 P VALUE=I(vms)*D exfr 9 P VALUE=V(6,P)*D vms 9 8 0 rd 8 C d*rd+(1-d)*rsw+d*(1-d)*re+rm rope 4 0 1g rgnd 0 P 1g.ends

Page 49: Chapter 9 Simulation of Switching Converters. Power switching convertersSimulation of switching converters2 Overview PSpice PSpice Simulations using.CIR.

Power switching converters Simulation of switching converters 49

Small-signal analysis of switching converters

R20

0

U7

VMSSCCM

D = 0.5IC = -1.84

RD = 1e-6

RE = 10mRM = 1e-6

RMPHITE = 10

RSW = 10mVAP = -17.6

1

3

2

4

A

C

P

VC

Rs1300k

out

Rs

1

Resr10m

V110Vdc0

L1

10mHIC = 0

Rs2

100k

sense

V41Vac0Vdc

Cout

100uFIC = 0

+

-

Small-signal AC analysis

Page 50: Chapter 9 Simulation of Switching Converters. Power switching convertersSimulation of switching converters2 Overview PSpice PSpice Simulations using.CIR.

Power switching converters Simulation of switching converters 50

Small-signal analysis of switching converters

Time

0s 5ms 10ms 15ms 20ms 25ms 30msV(OUT)

0V

10V

20V

SEL>>

I(L1)0A

1.0A

2.0A

3.0A

Page 51: Chapter 9 Simulation of Switching Converters. Power switching convertersSimulation of switching converters2 Overview PSpice PSpice Simulations using.CIR.

Power switching converters Simulation of switching converters 51

Small-signal analysis of switching converters

Frequency

1.0Hz 10Hz 100Hz 1.0KHz 10KHz 100KHz 1.0MHzP(V(OUT))

-300d

-200d

-100d

-0dDB(V(OUT))

-80

-40

0

40

SEL>>

Open-loop transfer function

Page 52: Chapter 9 Simulation of Switching Converters. Power switching convertersSimulation of switching converters2 Overview PSpice PSpice Simulations using.CIR.

Power switching converters Simulation of switching converters 52

Small-signal analysis of switching converters

U7VMSSCCM

D = 0.5IC = -1.84

RD = 1e-6

RE = 10mRM = 1e-6

RMPHITE = 10

RSW = 10mVAP = -17.6

1

3

2

4

A

C

P

VC

Rs2

100k

Resr

10m

0V4

1Vac10Vdc

L1

10mHIC = 0

Rs

1

R20 sense

out

Cout

100uFIC = 0

Rs1

300k

0

Input impedance

Page 53: Chapter 9 Simulation of Switching Converters. Power switching convertersSimulation of switching converters2 Overview PSpice PSpice Simulations using.CIR.

Power switching converters Simulation of switching converters 53

Small-signal analysis of switching converters

Frequency

1.0Hz 10Hz 100Hz 1.0KHz 10KHz 100KHz 1.0MHzDB(V(V4:+)/I(V4))

0

20

40

60

80

100

Input impedance

Page 54: Chapter 9 Simulation of Switching Converters. Power switching convertersSimulation of switching converters2 Overview PSpice PSpice Simulations using.CIR.

Power switching converters Simulation of switching converters 54

Small-signal analysis of switching converters

Output impedance

sense0

U7VMSSCCM

D = 0.5IC = -1.84

RD = 1e-6

RE = 10mRM = 1e-6

RMPHITE = 10

RSW = 10mVAP = -17.6

1

3

2

4

A

C

P

VC

L1

10mHIC = 0

Resr

10m

0

out

Rs2

100k

V4

1Vac

10Vdc

R

20

Rs

1

V510Vdc

Rs1

300kCout

100uFIC = 0

+

-

Page 55: Chapter 9 Simulation of Switching Converters. Power switching convertersSimulation of switching converters2 Overview PSpice PSpice Simulations using.CIR.

Power switching converters Simulation of switching converters 55

Small-signal analysis of switching converters

Output impedance

Frequency

1.0Hz 10Hz 100Hz 1.0KHz 10KHz 100KHz 1.0MHzDB(V(V4:+)/I(V4))

-40

-20

0

20

40

Page 56: Chapter 9 Simulation of Switching Converters. Power switching convertersSimulation of switching converters2 Overview PSpice PSpice Simulations using.CIR.

Power switching converters Simulation of switching converters 56

Small-signal analysis of switching converters

L1

10mHIC = 0

Rs

1

Rs1

300k

U7VMSSCCM

D = 0.5IC = -1.84

RD = 1e-6

RE = 10mRM = 1e-6

RMPHITE = 10

RSW = 10mVAP = -17.6

1

3

2

4

A

C

P

VC

Rs2100k

V110Vdc

sense

0

0

V4

TD = 20m

TF = 1nPW = 50mPER = 50m

V1 = 1.2

TR = 1n

V2 = 1.5

Cout

100uFIC = 0

Resr

10m

R

20

out

+

-

Small-signal transient analysis

Page 57: Chapter 9 Simulation of Switching Converters. Power switching convertersSimulation of switching converters2 Overview PSpice PSpice Simulations using.CIR.

Power switching converters Simulation of switching converters 57

Small-signal analysis of switching converters

Small-signal transient analysisTime

0s 5ms 10ms 15ms 20ms 25ms 30msI(L1)

0A

1.0A

2.0A

3.0AV(OUT)

0V

10V

20V

25V

SEL>>

Page 58: Chapter 9 Simulation of Switching Converters. Power switching convertersSimulation of switching converters2 Overview PSpice PSpice Simulations using.CIR.

Power switching converters Simulation of switching converters 58

Averaged-inductor model for a voltage-mode boost converter

C1

100uIC = 0

V1 10

R2

20

R1

10m

0.5

outU7 BOOSTVM

Rs = 1FS = 1kL = 10m

DONIN OUT

GND

R3

1

0

+

-

Page 59: Chapter 9 Simulation of Switching Converters. Power switching convertersSimulation of switching converters2 Overview PSpice PSpice Simulations using.CIR.

Power switching converters Simulation of switching converters 59

Output voltage obtained with the averaged-inductor model

Time

0s 5ms 10ms 15ms 20ms 25ms 30msV(OUT)

0V

5V

10V

15V

20V

25V

30V

Page 60: Chapter 9 Simulation of Switching Converters. Power switching convertersSimulation of switching converters2 Overview PSpice PSpice Simulations using.CIR.

Power switching converters Simulation of switching converters 60

Measuring the loop gain

0

V11Vac0Vdc

R

20

0

0

Vf

0

Rs

1

-++-

E1

E

GAIN = 0.25

Vg10Vdc

Cout

100uFIC = 0

Resr

10m

U7VMSSCCM

D = 0.5IC = -1.84

RD = 1e-6

RE = 10mRM = 1e-6

RMPHITE = 10

RSW = 10mVAP = -17.6

1

3

2

4

A

C

P

VC

L1

10mHIC = 0 out

0

+

-

Page 61: Chapter 9 Simulation of Switching Converters. Power switching convertersSimulation of switching converters2 Overview PSpice PSpice Simulations using.CIR.

Power switching converters Simulation of switching converters 61

Measuring the loop gain

Frequency

1.0mHz 10mHz 100mHz 1.0Hz 10Hz 100Hz 1.0KHz 10KHz 100KHz 1.0MHz 10MHzP(V(VF))

-360

-270

-180

-90

0

90

SEL>>

(100.000,-163.029)

DB(V(VF))-80

-40

0

20(100.000,-1.2488)

Page 62: Chapter 9 Simulation of Switching Converters. Power switching convertersSimulation of switching converters2 Overview PSpice PSpice Simulations using.CIR.

Power switching converters Simulation of switching converters 62

Frequency compensationchoose f1 = 100 Hz for a switching frequency of 1 kHz

PID compensation 1 11 1

1( ) 90 2 tan 2 tancompz p

f ff

f f

22

1 11 10 1 10 10( ) 20 (2 ) 40 1 40 1comp

z p

f fM f Log f Log Log

f f

1 1

11

90 2 tan

tan2

compp

zz

fff

ff

2

2 11 10 1 10 1 10( ) 20 (2 ) 40 1 40 1comp z

p

fM f Log f Log f Log

f

Page 63: Chapter 9 Simulation of Switching Converters. Power switching convertersSimulation of switching converters2 Overview PSpice PSpice Simulations using.CIR.

Power switching converters Simulation of switching converters 63

PID compensation

1p3 3

1 = f

2 CR

21 2

p2 1 2

( + )C C = f2 C CR

1z2 1

1 = f

2 CR

2z1 3 3

1 = f

2 ( + )CR R

21

1

R = KR

2 1 32

1 3

( + )R R R = KR R

3 1 23

2 1 2

C CR = .C + C CR

Mag_comp_f1 = -7.0985Ph_comp = 32k1_db = -24.6094k1 = 0.0588k2_db = -5.0259k2 = 0.5607R2 = 588.2076R3 = 269.7258C1 = 5.0034e-005C2 = 1.3496e-006C3 = 2.8658e-006

Page 64: Chapter 9 Simulation of Switching Converters. Power switching convertersSimulation of switching converters2 Overview PSpice PSpice Simulations using.CIR.

Power switching converters Simulation of switching converters 64

Boost switching converter with PID compensator

-15

pwmRs

1

+15

saw

Cout100uFIC = 20

L1

10mHIC = 4

C1

5.0014e-005

R2

518.3291

V110Vdc

0

R1

10k

0

-15

sense

R6

100

V3-15

out

5

+15

LM311+

-G

V+

V-

B/S B

Rs31k

0

0

D1

MUR420

+15

C3

2.5483e-006

Error amplifier

R

20

R4

10meg

Vref

V4TD = 0

TF = 1nPW = 1nPER = 1m

V1 = 0

TR = 999u

V2 = 10

Rs2

3k

TL084

+

-

V+

V-

ESR

10m

R8

300R3

173.0498

V2`15

control

VX2

MTP15N05E/MC

PWMmodulator

C2

1.1461e-006

-15

pwm_out

+

-

Page 65: Chapter 9 Simulation of Switching Converters. Power switching convertersSimulation of switching converters2 Overview PSpice PSpice Simulations using.CIR.

Power switching converters Simulation of switching converters 65

Simulation results with a PID compensator

Time

0s 5ms 10ms 15ms 20ms 25ms 30msV(out)

0V

20V

40VV(control)

5.0V

7.5V

10.0V

SEL>>

I(L1)4.0A

4.5A

5.0A

Page 66: Chapter 9 Simulation of Switching Converters. Power switching convertersSimulation of switching converters2 Overview PSpice PSpice Simulations using.CIR.

Power switching converters Simulation of switching converters 66

PI compensation

0 Cout

200uFIC = 0

0

EAO

0

10

-10

L1

10mHIC = 0

Vg10Vdc

Rs

1out

100k

Resr

10m

0

10

10 + s

error

R

20

Vf

0

R1

1k

V1

1Vac

0Vdc

VfC1

500n

U7VMSSCCM

D = 0.5IC = -1.84

RD = 1e-6

RE = 10mRM = 1e-6

RMPHITE = 10

RSW = 10mVAP = -17.6

1

3

2

4

A

C

P

VC

0

-++-

E1

E

GAIN = 0.25

R2

10k

+

-

Small-signal model of the boost converter with PI compensation

1 1

1 2

1s C RTF

s C R

Page 67: Chapter 9 Simulation of Switching Converters. Power switching convertersSimulation of switching converters2 Overview PSpice PSpice Simulations using.CIR.

Power switching converters Simulation of switching converters 67

PI compensation

Frequency

1.0mHz 10mHz 100mHz 1.0Hz 10Hz 100Hz 1.0KHz 10KHz 100KHz 1.0MHz

P(V(VF)) P(V(EAO))

-360

-270

-180

-90

0

90

180DB(V(VF)) DB(V(EAO))

-200

-100

0

SEL>>

Compensated loop gainUncompensated loop gain

Compensated loop gain

Uncompensated loop gain

100

Page 68: Chapter 9 Simulation of Switching Converters. Power switching convertersSimulation of switching converters2 Overview PSpice PSpice Simulations using.CIR.

Power switching converters Simulation of switching converters 68

PI compensation using ABM blocks

0

saw

Resr10m

0

51

1 + s

out

Dbreak

D1

10

-10

R2

10k

R1

1k

R3

100k

if( V(%IN1) < V(%IN2),1,0)

13

2

V2TD = 0

TF = 0.05uPW = 0.05uPER = 100u

V1 = 0

TR = 99.9u

V2 = 10

C1

500n

C2

1n

+-

+-

S1

S

VON = 1.0VVOFF = 0.0V

Cout

100uIC = 20

Rs

0.1

ref

0

0

R

20gate

100k

L1

10mHIC = 1.8

1 2

V110Vdc

pwm

control

0.25

+

-

Page 69: Chapter 9 Simulation of Switching Converters. Power switching convertersSimulation of switching converters2 Overview PSpice PSpice Simulations using.CIR.

Power switching converters Simulation of switching converters 69

Simulation results of the PI compensation using ABM blocks

Time

0s 5ms 10ms 15ms 20ms 25ms 30msV(CONTROL)

0V

5V

10VV(OUT)

0V

10V

20V

30V

SEL>>

I(L1)0A

2.0A

4.0A

Page 70: Chapter 9 Simulation of Switching Converters. Power switching convertersSimulation of switching converters2 Overview PSpice PSpice Simulations using.CIR.

Power switching converters Simulation of switching converters 70

PI compensation using vendor models

R3

10

0

R1

1k

-15

+15

V110Vdc

V2

TD = 0

TF = 0.05uPW = 0.05uPER = 100u

V1 = 0

TR = 99.9u

V2 = 10

-15

Cout

100uIC = 20

0

ref

0

0

gate

out

X1

MTP15N05E/MC

R

20

0

Rs

0.1

V3+15Vdc

C1

500nLM311

+

-G

V+

V-

B/S BR6

1k

TL084

+

-

V+

V-

5

0

L1

10mHIC = 1.8

1 2

R5

3k

0R2

10k

saw

-15

Resr

10m

control

+15

pwm

V4-15Vdc

D2

MUR420

R4

300

+15

+

-

Page 71: Chapter 9 Simulation of Switching Converters. Power switching convertersSimulation of switching converters2 Overview PSpice PSpice Simulations using.CIR.

Power switching converters Simulation of switching converters 71

Simulation results of the PI compensation using vendor models

Time

0s 2ms 4ms 6ms 8ms 10ms 12ms 14ms 16ms 18ms 20msV(CONTROL)

0V

5V

10V

SEL>>

V(OUT)0V

20V

40VI(L1)

0A

2.0A

4.0A

Page 72: Chapter 9 Simulation of Switching Converters. Power switching convertersSimulation of switching converters2 Overview PSpice PSpice Simulations using.CIR.

Power switching converters Simulation of switching converters 72

PI compensation using vendor models

*Analysis directives: .TRAN 0 30m 0 10n SKIPBP .OPTIONS STEPGMIN.OPTIONS PREORDER.OPTIONS ABSTOL= 10.0p.OPTIONS CHGTOL= 0.1p.OPTIONS ITL2= 200.OPTIONS ITL4= 400.OPTIONS RELTOL= 0.01.OPTIONS VNTOL= 10.0u

I/O ERROR -- Probe file size exceeds 2000000000JOB ABORTEDTOTAL JOB TIME 912.11

Page 73: Chapter 9 Simulation of Switching Converters. Power switching convertersSimulation of switching converters2 Overview PSpice PSpice Simulations using.CIR.

Power switching converters Simulation of switching converters 73

Creating capture symbols for PSpice simulation

•Vendors often provide PSpice models for their circuit components. They are normally provided in a text file with extension .LIB; if the file has a different extension, it should be changed to .LIB •Start the PSpice Model Editor and from the File menu, choose Create Parts •Browse to find the input model library (.LIB file) and click OK to start •This step creates an .OBL file with a schematic symbol linked to your model •To place the new part into the schematic, open Capture, and from the Place menu choose Part. Click Add library, then find and add the new “.OLB” file

Page 74: Chapter 9 Simulation of Switching Converters. Power switching convertersSimulation of switching converters2 Overview PSpice PSpice Simulations using.CIR.

Power switching converters Simulation of switching converters 74

Solving convergence problems PSpice uses the Newton-Raphson algorithm to

solve the nonlinear equations in these analyses

The algorithm is guaranteed to converge only if the analysis is started close to the solution

If the initial guess is far away from the solution, this may cause a convergence failure or even a false convergence

If the node voltages do not settle down within a certain number of iterations, an error message will be issued

Page 75: Chapter 9 Simulation of Switching Converters. Power switching convertersSimulation of switching converters2 Overview PSpice PSpice Simulations using.CIR.

Power switching converters Simulation of switching converters 75

DC analysis error messages The DC Analysis calculates the small-signal bias

points before starting the AC analysis or the initial transient solution for the transient analysis

Solutions to the DC analysis may fail to converge because of incorrect initial voltage guesses, model discontinuities, unstable or bistable operation, or unrealistic circuit impedances

When an error is found during the DC analysis, SPICE will then terminate the run because both the AC and transient analyses require an initial stable operating point in order to start

Page 76: Chapter 9 Simulation of Switching Converters. Power switching convertersSimulation of switching converters2 Overview PSpice PSpice Simulations using.CIR.

Power switching converters Simulation of switching converters 76

DC analysis error messages

No convergence in DC analysis

PIVTOL Error

Singular Matrix

Gmin/Source Stepping Failed

No Convergence in DC analysis at Step = xxx

Page 77: Chapter 9 Simulation of Switching Converters. Power switching convertersSimulation of switching converters2 Overview PSpice PSpice Simulations using.CIR.

Power switching converters Simulation of switching converters 77

Transient analysis error messages

If the node voltages do not settle down, the time step is reduced and SPICE tries again to determine the node voltages

If the time step is reduced beyond a certain fraction of the total analysis time, the transient analysis will issue an error message “Time step too small” and the analysis will be halted

Transient analysis failures are usually due to model discontinuities or unrealistic circuit, source, or parasitic modeling

Page 78: Chapter 9 Simulation of Switching Converters. Power switching convertersSimulation of switching converters2 Overview PSpice PSpice Simulations using.CIR.

Power switching converters Simulation of switching converters 78

Solutions to convergence problems There are two ways to solve convergence problems

the first only tries to fix the symptoms by adjusting the simulator options

while the other attacks the root cause of the convergence problems

Once the circuit is properly modeled, many of the modifications of the "options" parameters will no longer be required

It should be noted that solutions involving simulation options may simply mask the underlying circuit instabilities

Page 79: Chapter 9 Simulation of Switching Converters. Power switching convertersSimulation of switching converters2 Overview PSpice PSpice Simulations using.CIR.

Power switching converters Simulation of switching converters 79

Bias point (DC) convergence

Checking circuit topology and connectivity

Modeling of circuit components

PSpice options are checked to ensure that they are properly defined

Page 80: Chapter 9 Simulation of Switching Converters. Power switching convertersSimulation of switching converters2 Overview PSpice PSpice Simulations using.CIR.

Power switching converters Simulation of switching converters 80

Checking circuit topology and connectivity Make sure that all of the circuit connections are valid

Check for incorrect node numbering or dangling

nodes

Verify component polarity

Check for syntax mistakes

Make sure that the correct PSpice units (i.e. MEG for 1E6, not M, which means mili in simulations) are used

Page 81: Chapter 9 Simulation of Switching Converters. Power switching convertersSimulation of switching converters2 Overview PSpice PSpice Simulations using.CIR.

Power switching converters Simulation of switching converters 81

Make sure that there is a DC path from every node to ground

Make sure that there are at least two connections at every node

Make sure that capacitors and/or current sources are not connected in series

Make sure that no (groups of) nodes are isolated from ground by current sources and/or capacitors

Make sure that there are no loops of inductors and/or voltage sources only

Page 82: Chapter 9 Simulation of Switching Converters. Power switching convertersSimulation of switching converters2 Overview PSpice PSpice Simulations using.CIR.

Power switching converters Simulation of switching converters 82

Place the ground (node 0) somewhere in the circuit

Be careful when floating grounds (e.g., chassis ground) are used; a large resistor should be connected from the floating node to ground. All nodes will be reported as floating if "0 ground" is not used

Make sure that voltage/current generators use realistic values, and verify that the syntax is correct

Make sure that dependent source gains are correct, and that E/G element expressions are reasonable

Page 83: Chapter 9 Simulation of Switching Converters. Power switching convertersSimulation of switching converters2 Overview PSpice PSpice Simulations using.CIR.

Power switching converters Simulation of switching converters 83

Verify that division by zero or LOG(0) cannot occur

Voltages and currents in PSpice are limited to the range +/- 1e10

Avoid using digital components, unless really necessary

Initialize the digital nodes with valid digital values

Avoid situations where an ideal current source delivers current into a reverse-biased p-n junction without a shunt resistance

Page 84: Chapter 9 Simulation of Switching Converters. Power switching convertersSimulation of switching converters2 Overview PSpice PSpice Simulations using.CIR.

Power switching converters Simulation of switching converters 84

Setting up the options for the analog simulation

Increase ITL1 to 400 Use NODESETs to set node voltages to the nearest

reasonable guess at their DC values Enable the GMIN stepping algorithm Set PREORDER in Simulation Profiles options Setting the value of ABSTOL to 1 µ PSpice does not always converge when relaxed

tolerances are used Setting GMIN to a value between 1n and 10n will often

solve convergence problems Setting GMIN to a value, which is greater than 10n, may

cause convergence problems

Page 85: Chapter 9 Simulation of Switching Converters. Power switching convertersSimulation of switching converters2 Overview PSpice PSpice Simulations using.CIR.

Power switching converters Simulation of switching converters 85

Transient convergence

The transient analysis can fail to complete if the time step becomes too small

This can be due to either (a) the Newton-Raphson iterations would not

converge even for the smallest time step size (b) something in the circuit is moving faster than

can be accommodated by the minimum step size

Page 86: Chapter 9 Simulation of Switching Converters. Power switching convertersSimulation of switching converters2 Overview PSpice PSpice Simulations using.CIR.

Power switching converters Simulation of switching converters 86

Transient convergence

The circuit topology and connectivity should first be checked

Followed by the PSpice options

Page 87: Chapter 9 Simulation of Switching Converters. Power switching convertersSimulation of switching converters2 Overview PSpice PSpice Simulations using.CIR.

Power switching converters Simulation of switching converters 87

Circuit topology and connectivity

Avoid using digital components, unless really necessary

Initialize the nodes with valid digital value to ensure there are no ambiguous states

Use RC snubbers around diodes

Add Capacitance for all semiconductor junctions

Page 88: Chapter 9 Simulation of Switching Converters. Power switching convertersSimulation of switching converters2 Overview PSpice PSpice Simulations using.CIR.

Power switching converters Simulation of switching converters 88

Circuit topology and connectivity Add realistic circuit and element parasitics

It is important that switching times be nonzero

It is recommended that all inductors have a parallel resistor

Look for waveforms that transition vertically (up or down) at the point during which the analysis halts

Page 89: Chapter 9 Simulation of Switching Converters. Power switching convertersSimulation of switching converters2 Overview PSpice PSpice Simulations using.CIR.

Power switching converters Simulation of switching converters 89

Circuit topology and connectivity

Increase the rise/fall times of the PULSE sources

Ensure that there is no unreasonably large capacitor or inductor

Page 90: Chapter 9 Simulation of Switching Converters. Power switching convertersSimulation of switching converters2 Overview PSpice PSpice Simulations using.CIR.

Power switching converters Simulation of switching converters 90

PSpice options

Set RELTOL=.01

Reduce the accuracy of ABSTOL/VNTOL if current/voltage levels allow it

ABSTOL and VNTOL should be set to about 8 orders of magnitude below the level of the maximum voltage and current

Increase ITL4, but no more than 100

Page 91: Chapter 9 Simulation of Switching Converters. Power switching convertersSimulation of switching converters2 Overview PSpice PSpice Simulations using.CIR.

Power switching converters Simulation of switching converters 91

PSpice options

Skipping the bias point is not recommended

Any applicable .IC and IC= initial conditions statements should be added to assist in the initial stages of the transient analysis

Page 92: Chapter 9 Simulation of Switching Converters. Power switching convertersSimulation of switching converters2 Overview PSpice PSpice Simulations using.CIR.

Power switching converters Simulation of switching converters 92

Switching converter simulation using Matlab

Working with transfer functions

Consider a buck converter designed to operate in the continuous conduction mode having the following parameters: R = 4Ω, L = 1.330 mH, C = 94 µf, Vs = 42 V, Va = 12 V

1 2

2

20 0

1 1( )

( ) 1

o z zd

s ss sv s

Ks sd sQ

2(1 )

sd

VK

D

1

1z

ESR

sR C

2

2

(1 )( || ) ind

z ESR

RDs R R R

L L

0

(1 )1 ind e

ESR

R r D D

R RLC

||e ESRr R R

0

(1 ) 1( )

ind e

ESR

QR r D

L C R R

Page 93: Chapter 9 Simulation of Switching Converters. Power switching convertersSimulation of switching converters2 Overview PSpice PSpice Simulations using.CIR.

Power switching converters Simulation of switching converters 93

Switching converter simulation using Matlab

% this is a comment% parametersR= 4;L = 1.330 e-3;Rind = 100 e-3;C = 94 e-6;Resr = 10 e-3Vs = 42;Va = 12;D=Va/Vs;Kd= Vs/(1-D)^2;Sz1=1/(Resr*C);Req = R-(Resr*R/(Resr+R));Sz2 = (1/L)*(1-D)^2* Req – Rind/L;Re=(Resr*R)/( Resr+R);Wo = (1/sqrt(L*C)) * sqrt((Rind+re*D*(1-D))/(Resr+R));Q = Wo/(((Rind+re*(1-D))/L)+(1/(C*(Resr+R))));

Page 94: Chapter 9 Simulation of Switching Converters. Power switching convertersSimulation of switching converters2 Overview PSpice PSpice Simulations using.CIR.

Power switching converters Simulation of switching converters 94

Switching converter simulation using Matlab

% polynomials are entered in descending order of S.n1=[1/Sz1 1]n2=[-1/Sz2 1]NUM=conv(n1,n2)% the convolution realizes the product of 2 polynomials% define denumeratorDEN = [1/(Wo^2) 1/(Wo*Q) 1]% create TF variablesysTF = Kd * tf(NUM,DEN)which returnsTransfer function:

-5.317e-008 s^2 - 0.05648 s + 82.32

4.913e-006 s^2 + 0.01343 s + 1sysTF

Page 95: Chapter 9 Simulation of Switching Converters. Power switching convertersSimulation of switching converters2 Overview PSpice PSpice Simulations using.CIR.

Power switching converters Simulation of switching converters 95

Switching converter simulation using Matlab

The location of the poles can be found usingpoles = roots(DEN)and the frequency response can be plotted usingbode(sysTF)

Bode Diagram

Frequency (rad/sec)

Phase

(deg)

Magn

itude

(dB

)

-40

-20

0

20

40

101

102

103

104

105

106

107

-270

-225

-180

-135

-90

-45

0

Page 96: Chapter 9 Simulation of Switching Converters. Power switching convertersSimulation of switching converters2 Overview PSpice PSpice Simulations using.CIR.

Power switching converters Simulation of switching converters 96

Switching converter simulation using Matlab

The small signal transient step response can be plotted usingFigure % this command opens a new figure windowstep(sysTF) Step Response

Time (sec)

Am

plit

ud

e

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08-10

0

10

20

30

40

50

60

70

80

90

Page 97: Chapter 9 Simulation of Switching Converters. Power switching convertersSimulation of switching converters2 Overview PSpice PSpice Simulations using.CIR.

Power switching converters Simulation of switching converters 97

Switching converter simulation using Matlab

Working with matrices

Consider a buck converter designed to operate in the continuous conduction mode having the following parameters: R = 4Ω, L = 1.330 mH, C = 94 µf, Vs = 42 V, Va = 12 V.

% state-space averaged model of a Buck converterRload= 4;% load resistanceL= 1.330e-3; % inductancecap=94.e-6; % capacitanceTs=1.e-4; % switching periodVs=42; % input DC voltageVref=12; % desired output voltageThe average duty cycle is:D=Vref/(Vs); % ideal duty cycle

Page 98: Chapter 9 Simulation of Switching Converters. Power switching convertersSimulation of switching converters2 Overview PSpice PSpice Simulations using.CIR.

Power switching converters Simulation of switching converters 98

Switching converter simulation using Matlab

^^ ^ ^1

^

2

10

1 10 0

sVDxLx u dL LxC RC

A=[ 0 -1/L 1/cap -1/(Rload*cap)]B1=[ 1/L 0]; %during Ton B2=[ 0

0]; %during ToffB=B1*D+B2*(1-D) C=[0 1];

Page 99: Chapter 9 Simulation of Switching Converters. Power switching convertersSimulation of switching converters2 Overview PSpice PSpice Simulations using.CIR.

Power switching converters Simulation of switching converters 99

Switching converter simulation using Matlab

OLpoles = eig(A)

sysOL=ss(A,B,C,0)step(sysOL)

Time (sec.)

Am

plit

ude

Step Response

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

x 10-3

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35From: U (1)

To:Y

(1)

Page 100: Chapter 9 Simulation of Switching Converters. Power switching convertersSimulation of switching converters2 Overview PSpice PSpice Simulations using.CIR.

Power switching converters Simulation of switching converters 100

Switching converter simulation using Matlab

gamma=[ Vs/L0];

closed-loop poles:P=1e3*[-0.3298 + 0.10i -0.3298 - 0.10i]';

Bf= gamma*(D/Vref);F=place(A,Bf ,P)

Page 101: Chapter 9 Simulation of Switching Converters. Power switching convertersSimulation of switching converters2 Overview PSpice PSpice Simulations using.CIR.

Power switching converters Simulation of switching converters 101

Switching converter simulation using Simulink

-5.317e-8 s^2 - 0.05648 s + 82.32

4.913e-6 s^2 + 0.01343 s + 1sysTF

[NUM,DEN] = TFDATA(sysTF,’v’)

-5.317e-8s -0.0565s+82.322

4.913e-6s +0.0134s+1.02

Transfer Fcn

time

To Workspace1

output

To Workspace

Step Scope

Clock

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05-10

0

10

20

30

40

50

60

70

80

90

Time (s)

Outp

ut

Page 102: Chapter 9 Simulation of Switching Converters. Power switching convertersSimulation of switching converters2 Overview PSpice PSpice Simulations using.CIR.

Power switching converters Simulation of switching converters 102

Switching converter simulation using Simulink

sysZPK = zpk(sysTF)

-0.010821 (s+1.064e006) (s-1455)

(s+2657) (s+76.6)sysZPK

zeroes: [-1.0638e+006 +1455]poles: [-2657 -76.6]gain: [-0.010821]

-0.010821(s+1.0638e+006)(s-1455)

(s+2657)(s+76.6)

Zero-Pole

time

To Workspace1

output

To Workspace

Step Scope

Clock

Page 103: Chapter 9 Simulation of Switching Converters. Power switching convertersSimulation of switching converters2 Overview PSpice PSpice Simulations using.CIR.

Power switching converters Simulation of switching converters 103

Switching converter simulation using Simulink

0 752

10638 2660

214.82 0 '

0 1 '

0

A

B

C

D

time

To Workspace1

output

To Workspace

Step

x' = Ax+Bu y = Cx+Du

State-SpaceScope

Clock