Top Banner
[email protected] Fakulti Kejuruteraan Pembuatan Universiti Teknikal Malaysia Melaka CHAPTER 9 DESIGN VIA ROOT LOCUS
65
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Chapter 9 Design Via Root Locus

[email protected] Kejuruteraan Pembuatan

Universiti Teknikal Malaysia Melaka

CHAPTER 9

DESIGN VIA ROOT LOCUS

Page 2: Chapter 9 Design Via Root Locus

[email protected] Kejuruteraan Pembuatan

Universiti Teknikal Malaysia Melaka

INTRODUCTION

Objectives:How to use the root locus to design cascade

compensators to improve the steady state errorHow to use the root locus to design cascade

compensators to improve the transient responseHow to use the root locus to design cascade

compensators to improve both the steady state error and the transient response

How to use the root locus to design feedback compensators to improve the transient response

How to realize the designed compensators physically

Page 3: Chapter 9 Design Via Root Locus

[email protected] Kejuruteraan Pembuatan

Universiti Teknikal Malaysia Melaka

INTRODUCTION

Page 4: Chapter 9 Design Via Root Locus

[email protected] Kejuruteraan Pembuatan

Universiti Teknikal Malaysia Melaka

IMPROVING TRANSIENT RESPONSE

Rather than replacing the existing system with a system whose root locus intersects the desired design of point B, we can augment or compensate the system with additional poles and zeros – so that the compensated system has a root locus that goes through the desired pole location for some value of gain

Two methods – passive or active networkDisadvantages – system order can increase,

subsequently effect the desired responseOne method of compensating for transient response is to

insert differentiator in the forward path in parallel with the gain

Page 5: Chapter 9 Design Via Root Locus

[email protected] Kejuruteraan Pembuatan

Universiti Teknikal Malaysia Melaka

IMPROVING STEADY STATE ERROR

Compensators are not only used to improve the transient response of a system, they are also used independently to improve steady state error characteristics

In Chapter 7 – steady state error can be improved by adding an open loop pole at the origin in forward path, thus increasing the system type and driving the associated steady state error to zero

This additional pole at the origin requires an integrator for its realization

Page 6: Chapter 9 Design Via Root Locus

[email protected] Kejuruteraan Pembuatan

Universiti Teknikal Malaysia Melaka

Compensators

Page 7: Chapter 9 Design Via Root Locus

[email protected] Kejuruteraan Pembuatan

Universiti Teknikal Malaysia Melaka

Configuration of Compensations

Page 8: Chapter 9 Design Via Root Locus

[email protected] Kejuruteraan Pembuatan

Universiti Teknikal Malaysia Melaka

System Improvement Technique

Feeding methodProportional – feed the error forward to the plant Integral – feed the integral of the error to the plantDerivative – feed the derivative of the error to the plant

Implemented using active networks (PI/PD)Using AmplifiersExpensive

Implemented using passive networks (Lag/lead)Less expensive no additional power required

Page 9: Chapter 9 Design Via Root Locus

[email protected] Kejuruteraan Pembuatan

Universiti Teknikal Malaysia Melaka

IMPROVING STEADY-STATE ERROR VIA CASCADE COMPENSATION

Page 10: Chapter 9 Design Via Root Locus

[email protected] Kejuruteraan Pembuatan

Universiti Teknikal Malaysia Melaka

IMPROVING TRANSIENT RESPONSE VIA CASCADE COMPENSATION

Page 11: Chapter 9 Design Via Root Locus

[email protected] Kejuruteraan Pembuatan

Universiti Teknikal Malaysia Melaka

IMPROVING STEADY-STATE ERROR AND TRANSIENT RESPONSE

Page 12: Chapter 9 Design Via Root Locus

[email protected] Kejuruteraan Pembuatan

Universiti Teknikal Malaysia Melaka

PI, PD, PID CONTROLLER

Page 13: Chapter 9 Design Via Root Locus

[email protected] Kejuruteraan Pembuatan

Universiti Teknikal Malaysia Melaka

The Characteristics of P, I & D Controller

Page 14: Chapter 9 Design Via Root Locus

[email protected] Kejuruteraan Pembuatan

Universiti Teknikal Malaysia Melaka

Mathematical Representation of Proportional Controller

Page 15: Chapter 9 Design Via Root Locus

[email protected] Kejuruteraan Pembuatan

Universiti Teknikal Malaysia Melaka

Mathematical Representation of Integral Controller

Page 16: Chapter 9 Design Via Root Locus

[email protected] Kejuruteraan Pembuatan

Universiti Teknikal Malaysia Melaka

Mathematical Representation of Derivative Controller

Page 17: Chapter 9 Design Via Root Locus

[email protected] Kejuruteraan Pembuatan

Universiti Teknikal Malaysia Melaka

Mathematical Representation of PI Controller

Page 18: Chapter 9 Design Via Root Locus

[email protected] Kejuruteraan Pembuatan

Universiti Teknikal Malaysia Melaka

More on IDEAL INTEGRAL COMPENSATION (PI Controller)

Page 19: Chapter 9 Design Via Root Locus

[email protected] Kejuruteraan Pembuatan

Universiti Teknikal Malaysia Melaka

-θ1-θ2-θ3- θ pc+θzc ≡ (2k+1)1800

Page 20: Chapter 9 Design Via Root Locus

[email protected] Kejuruteraan Pembuatan

Universiti Teknikal Malaysia Melaka

PI controller

Page 21: Chapter 9 Design Via Root Locus

[email protected] Kejuruteraan Pembuatan

Universiti Teknikal Malaysia Melaka

EXAMPLE:Closed-loopsystema. beforecompensation;b. after ideal integralcompensation

Page 22: Chapter 9 Design Via Root Locus

[email protected] Kejuruteraan Pembuatan

Universiti Teknikal Malaysia Melaka

Root locus foruncompensatedsystem

Page 23: Chapter 9 Design Via Root Locus

[email protected] Kejuruteraan Pembuatan

Universiti Teknikal Malaysia Melaka

Root locus forcompensatedsystem

Page 24: Chapter 9 Design Via Root Locus

[email protected] Kejuruteraan Pembuatan

Universiti Teknikal Malaysia Melaka

Ideal integral compensated system response and theuncompensated systemresponse of previous example

Page 25: Chapter 9 Design Via Root Locus

[email protected] Kejuruteraan Pembuatan

Universiti Teknikal Malaysia Melaka

LAG COMPENSATION

If use passive networks, the pole and zero are moved to the left, close to the origin

This placement usually will not increase the system type, but will yield an improvement in the static error constant over an uncompensated system

Although the ideal compensator drives the steady state error to zero, a lag compensator with a pole that is not at the origin will improve the static error constant by a factor equal to Zc/Pc

There will also minimal effect upon the transient response if the pole-zero pair of the compensator close to the origin

Page 26: Chapter 9 Design Via Root Locus

[email protected] Kejuruteraan Pembuatan

Universiti Teknikal Malaysia Melaka

a. Type 1 uncompensated system;b. Type 1 compensatedsystem;c. compensatorpole-zero plot

Page 27: Chapter 9 Design Via Root Locus

[email protected] Kejuruteraan Pembuatan

Universiti Teknikal Malaysia Melaka

Root locus:a. before lag compensation;b. after lag compensation

Page 28: Chapter 9 Design Via Root Locus

[email protected] Kejuruteraan Pembuatan

Universiti Teknikal Malaysia Melaka

EXAMPLE

Page 29: Chapter 9 Design Via Root Locus

[email protected] Kejuruteraan Pembuatan

Universiti Teknikal Malaysia Melaka

Page 30: Chapter 9 Design Via Root Locus

[email protected] Kejuruteraan Pembuatan

Universiti Teknikal Malaysia Melaka

Page 31: Chapter 9 Design Via Root Locus

[email protected] Kejuruteraan Pembuatan

Universiti Teknikal Malaysia Melaka

Page 32: Chapter 9 Design Via Root Locus

[email protected] Kejuruteraan Pembuatan

Universiti Teknikal Malaysia Melaka

Mathematical Representation of PD Controller

Page 33: Chapter 9 Design Via Root Locus

[email protected] Kejuruteraan Pembuatan

Universiti Teknikal Malaysia Melaka

More on IDEAL DERIVATIVE COMPENSATION (PD Controller)

To speed up the original system, we can add a single zero to the forward path

This zero can be represented by a compensator whose transfer function is

Gc(S) = s + Zc

This function, the sum of a differentiator and a pure gain is called ideal derivative – PD controller

Page 34: Chapter 9 Design Via Root Locus

[email protected] Kejuruteraan Pembuatan

Universiti Teknikal Malaysia Melaka

PD controller

Page 35: Chapter 9 Design Via Root Locus

[email protected] Kejuruteraan Pembuatan

Universiti Teknikal Malaysia Melaka

Using ideal derivativecompensation:a. uncompensated;b. compensatorzero at –2;c. compensatorzero at –3;d. compensatorzero at – 4

Page 36: Chapter 9 Design Via Root Locus

[email protected] Kejuruteraan Pembuatan

Universiti Teknikal Malaysia Melaka

Zero is moved to a different position and for each compensated case, the dominant, second order poles are farther out along the 0.4 damping ratio line than the uncompensated system

However, each of the compensated case has dominant poles with the same damping ratio as the uncompensated case thus the percent overshoot is predicted to be similar for each case!

The compensated dominant, closed loop poles has more negative real parts than the uncompensated dominant, closed loop poles thus shorter settling time, Ts

On top of that smaller peak time, Tp

Page 37: Chapter 9 Design Via Root Locus

[email protected] Kejuruteraan Pembuatan

Universiti Teknikal Malaysia Melaka

Predicted characteristics for the previous shown systems

Page 38: Chapter 9 Design Via Root Locus

[email protected] Kejuruteraan Pembuatan

Universiti Teknikal Malaysia Melaka

Uncompensated system and ideal derivativecompensation solutions from previous table

Page 39: Chapter 9 Design Via Root Locus

[email protected] Kejuruteraan Pembuatan

Universiti Teknikal Malaysia Melaka

Example: Feedback control system for Example 9.3

Page 40: Chapter 9 Design Via Root Locus

[email protected] Kejuruteraan Pembuatan

Universiti Teknikal Malaysia Melaka

Root locus for uncompensatedsystem shown in Previous Example

Page 41: Chapter 9 Design Via Root Locus

[email protected] Kejuruteraan Pembuatan

Universiti Teknikal Malaysia Melaka

Uncompensated and compensated system characteristics for Previous example

Page 42: Chapter 9 Design Via Root Locus

[email protected] Kejuruteraan Pembuatan

Universiti Teknikal Malaysia Melaka

Compensateddominant polesuperimposed over the uncompensatedroot locus forprevious example

Page 43: Chapter 9 Design Via Root Locus

[email protected] Kejuruteraan Pembuatan

Universiti Teknikal Malaysia Melaka

Evaluating the location of the compensatingzero

Page 44: Chapter 9 Design Via Root Locus

[email protected] Kejuruteraan Pembuatan

Universiti Teknikal Malaysia Melaka

Root locus for thecompensated system

Page 45: Chapter 9 Design Via Root Locus

[email protected] Kejuruteraan Pembuatan

Universiti Teknikal Malaysia Melaka

Uncompensated andcompensated system step responses ofprevious example

Page 46: Chapter 9 Design Via Root Locus

[email protected] Kejuruteraan Pembuatan

Universiti Teknikal Malaysia Melaka

LEAD COMPENSATION

Similar to the active ideal integral that can be approximated with passive lag network, an active ideal integral can be approximated with a passive lead compensator

Pole is farther from the imaginary axis then the zero – will result in a positive angular distribution of the compensator and thus approximates an equivalent single zero

Page 47: Chapter 9 Design Via Root Locus

[email protected] Kejuruteraan Pembuatan

Universiti Teknikal Malaysia Melaka

Geometry of leadcompensation

Page 48: Chapter 9 Design Via Root Locus

[email protected] Kejuruteraan Pembuatan

Universiti Teknikal Malaysia Melaka

Three of the infinitepossible leadcompensator solutions

Page 49: Chapter 9 Design Via Root Locus

[email protected] Kejuruteraan Pembuatan

Universiti Teknikal Malaysia Melaka

EXAMPLE

Page 50: Chapter 9 Design Via Root Locus

[email protected] Kejuruteraan Pembuatan

Universiti Teknikal Malaysia Melaka

Page 51: Chapter 9 Design Via Root Locus

[email protected] Kejuruteraan Pembuatan

Universiti Teknikal Malaysia Melaka

Page 52: Chapter 9 Design Via Root Locus

[email protected] Kejuruteraan Pembuatan

Universiti Teknikal Malaysia Melaka

Page 53: Chapter 9 Design Via Root Locus

[email protected] Kejuruteraan Pembuatan

Universiti Teknikal Malaysia Melaka

Other Example

Page 54: Chapter 9 Design Via Root Locus

[email protected] Kejuruteraan Pembuatan

Universiti Teknikal Malaysia Melaka

Page 55: Chapter 9 Design Via Root Locus

[email protected] Kejuruteraan Pembuatan

Universiti Teknikal Malaysia Melaka

Page 56: Chapter 9 Design Via Root Locus

[email protected] Kejuruteraan Pembuatan

Universiti Teknikal Malaysia Melaka

Page 57: Chapter 9 Design Via Root Locus

[email protected] Kejuruteraan Pembuatan

Universiti Teknikal Malaysia Melaka

Page 58: Chapter 9 Design Via Root Locus

[email protected] Kejuruteraan Pembuatan

Universiti Teknikal Malaysia Melaka

Mathematical Representation of PID Controller

Page 59: Chapter 9 Design Via Root Locus

[email protected] Kejuruteraan Pembuatan

Universiti Teknikal Malaysia Melaka

PID Controller Design

It has two zeros and a pole at the originOne zero and the pole at the origin can be

designed as the ideal integral compensator

Another zero can be designed as the ideal derivative compensator

Follow steps in Text book – page 532Evaluate – Design PD – Design PI

Page 60: Chapter 9 Design Via Root Locus

[email protected] Kejuruteraan Pembuatan

Universiti Teknikal Malaysia Melaka

PID controller

Page 61: Chapter 9 Design Via Root Locus

[email protected] Kejuruteraan Pembuatan

Universiti Teknikal Malaysia Melaka

LAG-LEAD COMPENSATOR DESIGN

First design the lead compensator to improve the transient response

Next, evaluate the improvement in steady state

Finally, design the lag compensator to meet the steady state error requirement

Follow steps in Text Book – Page 537Evaluate – Design Lead – Design Lag

Page 62: Chapter 9 Design Via Root Locus

[email protected] Kejuruteraan Pembuatan

Universiti Teknikal Malaysia Melaka

Page 63: Chapter 9 Design Via Root Locus

[email protected] Kejuruteraan Pembuatan

Universiti Teknikal Malaysia Melaka

Page 64: Chapter 9 Design Via Root Locus

[email protected] Kejuruteraan Pembuatan

Universiti Teknikal Malaysia Melaka

FEEDBACK COMPENSATION

Approach 1Approach 2

Page 65: Chapter 9 Design Via Root Locus

[email protected] Kejuruteraan Pembuatan

Universiti Teknikal Malaysia Melaka

PHYSICAL REALIZATION OF COMPENSATION

Active circuit RealizationPassive circuit Realization