Top Banner
Engr228 - Chapter 8, Nilsson 10e 1 Chapter 8 Engr228 Circuit Analysis Dr Curtis Nelson Chapter 8 Objectives Be able to determine the natural and the step response of parallel RLC circuits; Be able to determine the natural and the step response of series RLC circuits.
16

Chapter 8 - Walla Walla Universitycurt.nelson/engr228/lecture/chap8.pdf · Engr228 -Chapter 8, Nilsson 10e 3 Source-Free Parallel RLC Circuits We will first study the natural response

Apr 21, 2018

Download

Documents

dangdan
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Chapter 8 - Walla Walla Universitycurt.nelson/engr228/lecture/chap8.pdf · Engr228 -Chapter 8, Nilsson 10e 3 Source-Free Parallel RLC Circuits We will first study the natural response

Engr228 - Chapter 8, Nilsson 10e 1

Chapter 8

Engr228

Circuit Analysis

Dr Curtis Nelson

Chapter 8 Objectives

• Be able to determine the natural and the step response of parallel RLC circuits;

• Be able to determine the natural and the step response of series RLC circuits.

Page 2: Chapter 8 - Walla Walla Universitycurt.nelson/engr228/lecture/chap8.pdf · Engr228 -Chapter 8, Nilsson 10e 3 Source-Free Parallel RLC Circuits We will first study the natural response

Engr228 - Chapter 8, Nilsson 10e 2

RL and RC Circuit Review

• Transient, natural, or homogeneous response:– Fades over time;– Resists change.

• Forced, steady-state, particular response:– Follows the input;– Independent of time passed.

• The total response will be of the form:

tt

ekk-

+ 21

The RLC Circuit

• RLC circuits contain both an inductor and a capacitor;• These circuits have a wide range of applications including

oscillators, frequency filters, flight simulation, modeling automobile suspensions, and more;

• The response of RLC circuits with DC sources and switches will consist of a natural response and a forced response:

v(t) = vf(t)+vn(t)

The complete response must satisfy both the initial conditions and the final conditions of the forced response.

Page 3: Chapter 8 - Walla Walla Universitycurt.nelson/engr228/lecture/chap8.pdf · Engr228 -Chapter 8, Nilsson 10e 3 Source-Free Parallel RLC Circuits We will first study the natural response

Engr228 - Chapter 8, Nilsson 10e 3

Source-Free Parallel RLC Circuits

We will first study the natural response of second-order circuit by looking at a source-free parallel RLC circuit:

LR+v(t)-

iR(t)C

iC(t)iL(t)

0)(1)(1)(

0)()(1)(0

2

2

=++

=++

=++

ò

tvLdt

tdvRdt

tvdC

dttdvCdttv

LRtv

iii CLR

Second-orderDifferential equation

This second-order differential equation can be solved by assuming the form of a solution:

0)(1)(1)(2

2

=++ tvLdt

tdvRdt

tvdC

stAetv =)(

011

0)11(

011

2

2

2

=++

=++

=++

Ls

RCs

Ls

RCsAe

AeL

AseR

eCAs

st

ststst

which means

Source-Free Parallel RLC Circuits

• This is known as the characteristic equation.

Page 4: Chapter 8 - Walla Walla Universitycurt.nelson/engr228/lecture/chap8.pdf · Engr228 -Chapter 8, Nilsson 10e 3 Source-Free Parallel RLC Circuits We will first study the natural response

Engr228 - Chapter 8, Nilsson 10e 4

LCRCRCs

LCRCRCs

121

21

121

21

2

2

2

1

-÷øö

çèæ--=

-÷øö

çèæ+-=

Using the quadratic formula, we get

Source-Free Parallel RLC Circuits

Define resonant frequency:LC1

0 =w

Define damping factor:RC21

=a

Then: 20

22,1 waa -±-=s

Second-Order Differential Equation Solution

LCRCRCs 1

21

21 2

2,1 -÷øö

çèæ±-=

20

22,1 waa -±-=s

We will now divide the circuit response into three cases according to the sign of the term under the radical.

α > ω0 (overdamped): !(#) = &'()*+ + &-().+

α = ω0 (critically damped):

α < ω0 (underdamped):

stst eAteAtv 21)( +=

)sincos()( 21 tBtBetv ddt wwa += -

Page 5: Chapter 8 - Walla Walla Universitycurt.nelson/engr228/lecture/chap8.pdf · Engr228 -Chapter 8, Nilsson 10e 3 Source-Free Parallel RLC Circuits We will first study the natural response

Engr228 - Chapter 8, Nilsson 10e 5

Types of Circuit Responses

Given initial conditions:vc(0) = 0, iL(0) = -10A

Find v(t) in the circuit at the right. Ignore the current arrows.

5.321

==RC

a 610 ==

LCw

α > ω0 therefore this is an overdamped case

20

22,1 waa -±-=s s1 = -1, s2 = -6

Overdamped Example

Page 6: Chapter 8 - Walla Walla Universitycurt.nelson/engr228/lecture/chap8.pdf · Engr228 -Chapter 8, Nilsson 10e 3 Source-Free Parallel RLC Circuits We will first study the natural response

Engr228 - Chapter 8, Nilsson 10e 6

The solution is of the form: tt eAeAtv 621)( -- +=

Use initial conditions to find A1 and A2

From vc(0) = 0 at t = 0:

210

20

10)0( AAeAeAv +=+==

From KCL taken at t = 0:

( )( ) 4206

06421)10(0

0)()10()0(0

21

0

621

0

=--

=--+-+

=+-+

=++

=

--

=

AA

eAeAR

dttdvC

Rv

iii

t

tt

t

CLR

Overdamped Case - continued

Solving the two equations we get A1 = 84 and A2 = -84The solution is:

Veeeetv tttt )(848484)( 66 ---- -=-=

t

v(t)

)(84)( 6tt eetv -- -=

Overdamped Case - continued

Page 7: Chapter 8 - Walla Walla Universitycurt.nelson/engr228/lecture/chap8.pdf · Engr228 -Chapter 8, Nilsson 10e 3 Source-Free Parallel RLC Circuits We will first study the natural response

Engr228 - Chapter 8, Nilsson 10e 7

Example: Overdamped RLC Circuit

vC(t) = 80e−50,000t − 20e−200,000t V for t > 0

Find vC(t) for t > 0.

7H8.573Ω+v(t)-

iR(t)

1/42f

iC(t)iL(t)

Given initial conditions:vc(0) = 0, iL(0) = -10A

Find v(t) in the circuitat the right.

45.2121

0 ====LCRC

wa

Critically damped when α = ω0 s1 = s2 = -2.45

The complete solution is of the form:

stst eAteAtv 21)( +=

Critically Damped Case (α = ω0)

Page 8: Chapter 8 - Walla Walla Universitycurt.nelson/engr228/lecture/chap8.pdf · Engr228 -Chapter 8, Nilsson 10e 3 Source-Free Parallel RLC Circuits We will first study the natural response

Engr228 - Chapter 8, Nilsson 10e 8

Use initial conditions to find A1 and A2

From vc(0) = 0 at t = 0:

20

20

1 )0(0)0( AeAeAv =+==

Find A1 from KCL at t = 0:

( )

0)(42110

0)45.2(421)10(0

0)()10()0(0

1

0

45.21

45.21

0

=+-

=+-+-+

=+-+

=++

=

--

=

A

eAetAR

dttdvC

Rv

iii

t

tt

t

CLR

Therefore A2 = 0 and the solution is reduced to tteAtv 45.21)( -=

Critically Damped Case - continued

Solving the equation: A1 = 420The solution is:

Vtetv t45.2420)( -=

t

v(t)

ttetv 45.2420)( -=

Critically Damped Case - continued

Page 9: Chapter 8 - Walla Walla Universitycurt.nelson/engr228/lecture/chap8.pdf · Engr228 -Chapter 8, Nilsson 10e 3 Source-Free Parallel RLC Circuits We will first study the natural response

Engr228 - Chapter 8, Nilsson 10e 9

Critically Damped Example

Find R1 such that the circuit is critically damped for t > 0 and R2such that v(0)=2V.

Answer: R1 = 31.63 kΩ, R2=0.4Ω

20

22,1 waa -±-=s

For the underdamped case, the term inside the bracket will be negative and s will be a complex number.

Define 220 aww -=d

Then djs wa ±-=2,1

)()(

)(

21

)(2

)(1

tjtjt

tjtj

dd

dd

eAeAetveAeAtv

wwa

wawa

--

--+-

+=

+=

Underdamped Case (α < ω0)

Page 10: Chapter 8 - Walla Walla Universitycurt.nelson/engr228/lecture/chap8.pdf · Engr228 -Chapter 8, Nilsson 10e 3 Source-Free Parallel RLC Circuits We will first study the natural response

Engr228 - Chapter 8, Nilsson 10e 10

)()( 21tjtjt dd eAeAetv wwa -- +=

Using Euler’s Identity qqq sincos je j +=

)sincos()(

sin)(cos)(()(

)sincossincos()(

21

2121

2211

tBtBetvtAAjtAAetv

tjAtAtjAtAetv

ddt

ddt

ddddt

ww

ww

wwww

a

a

a

+=

-++=

-++=

-

-

-

)sincos()( 21 tBtBetv ddt wwa += -

Underdamped Case - continued

)

Looking at the magnitude:

A pendulum is an example of an underdamped second-order mechanical system.

t

displacement(t)

Mechanical Analogue

Page 11: Chapter 8 - Walla Walla Universitycurt.nelson/engr228/lecture/chap8.pdf · Engr228 -Chapter 8, Nilsson 10e 3 Source-Free Parallel RLC Circuits We will first study the natural response

Engr228 - Chapter 8, Nilsson 10e 11

7H10.5Ω+v(t)-

iR(t)

1/42f

iC(t)iL(t)

Given initial conditions:vc(0) = 0, iL(0) = -10A

Find v(t) in the circuitat the right.

221

==RC

a 610 ==

LCw

α < ω0 therefore, this is an underdamped case

2220 =-= awwd

v(t) is of the form: )2sin2cos()( 212 tBtBetv t += -

Underdamped Case - Example

Use initial conditions to find B1 and B2

From vc(0) = 0 at t = 0:

Find B2 from KCL at t = 0:

( )0)2(

421

10

02sin22cos2421

)10(0

0)(

)10()0(

0

2

0

22

22

0

=+-

=-+-+

=+-+

=++

=

--

=

B

teBteBR

dttdvC

Rv

iii

t

tt

t

CLR

Therefore B1 = 0 and the solution is reduced to121

0 )0sin0cos()0( BBBev =+=

)2sin()( 22 tBetv t-=

Underdamped Case - continued

Page 12: Chapter 8 - Walla Walla Universitycurt.nelson/engr228/lecture/chap8.pdf · Engr228 -Chapter 8, Nilsson 10e 3 Source-Free Parallel RLC Circuits We will first study the natural response

Engr228 - Chapter 8, Nilsson 10e 12

29722102 ==B

The solution is: tVetv t 2sin297)( 2-=

t

v(t)

tVetv t 2sin297)( 2-=

Underdamped Case - continued

Solving:

Underdamped Example

Find iL for t > 0.

iL = e−1.2t (2.027 cos 4.75t + 2.561 sin 4.75t) A

Page 13: Chapter 8 - Walla Walla Universitycurt.nelson/engr228/lecture/chap8.pdf · Engr228 -Chapter 8, Nilsson 10e 3 Source-Free Parallel RLC Circuits We will first study the natural response

Engr228 - Chapter 8, Nilsson 10e 13

Summary of Transient Responses

Source - Free Series RLC Circuit

0)(1)()(

0)(1)()(

0

2

2

=++

=++

=++

ò

tiCdt

tdiRdttidL

dttiCdt

tdiLRti

vvv CLR

LR +

vL(t)-

+ vR(t) -

C

i(t)

-vC(t)

+

Page 14: Chapter 8 - Walla Walla Universitycurt.nelson/engr228/lecture/chap8.pdf · Engr228 -Chapter 8, Nilsson 10e 3 Source-Free Parallel RLC Circuits We will first study the natural response

Engr228 - Chapter 8, Nilsson 10e 14

Comparing Series and Parallel RLC Circuits

0)(1)()(2

2

=++ tiCdt

tdiRdttidL

Series RLCParallel RLC

0)(1)(1)(2

2

=++ tvLdt

tdvRdt

tvdC

tsts eAeAtv 2121)( +=

LCRCRCs 1

21

21 2

2,1 -÷øö

çèæ±-=

20

22,1 waa -±-=s

RC21

=aLC1

0 =w

tsts eAeAti 2121)( +=

LCLR

LRs 1

22

2

2,1 -÷øö

çèæ±-=

20

22,1 waa -±-=s

LR2

=aLC1

0 =w

Series RLC Circuit Solution

If:α > ω0 (overdamped):

α = ω0 (critically damped):

α < ω0 (underdamped):

w 0 = 1LC

a =R2L

tsts eAeAti 2121)( +=

( )21)( AtAeti t += -a

( ) ( )( )tBtBeti ddt wwa sincos)( 21 += -

s1 = -a + a 2 -w02

s2 = -a - a 2 -w02

Page 15: Chapter 8 - Walla Walla Universitycurt.nelson/engr228/lecture/chap8.pdf · Engr228 -Chapter 8, Nilsson 10e 3 Source-Free Parallel RLC Circuits We will first study the natural response

Engr228 - Chapter 8, Nilsson 10e 15

Textbook Problem 8.49 - Nilsson 10th

vo(t) = 16 - 16e−400tcos300t − 21.33e−400tsin300t V

The circuit contains no initial energy. Find vo(t) for t ≥ 0.

Summary: Solving RLC Circuits

1. Identify the series or parallel RLC circuit;2. Find α and ω0;3. Determine whether the circuit is overdamped, critically

damped, or underdamped;4. Assume a solution (natural response + forced response):

fstst VeAteA ++ 21

ftsts VeAeA ++ 21

21

fddt VtBtBe ++- )sincos( 21 wwa

Overdamped

Critically damped

Underdamped

5. Find A, B, and Vf using initial and final conditions.

Page 16: Chapter 8 - Walla Walla Universitycurt.nelson/engr228/lecture/chap8.pdf · Engr228 -Chapter 8, Nilsson 10e 3 Source-Free Parallel RLC Circuits We will first study the natural response

Engr228 - Chapter 8, Nilsson 10e 16

Chapter 8 Summary

• Showed how to determine the natural and the step response of parallel RLC circuits;

• Showed how to determine the natural and the step response of series RLC circuits.