Top Banner
Chapter 8 Radiation Hydrodynamics 1
71

Chapter 8 Radiation Hydrodynamics 1. 8.1 Radiation Transport 2.

Dec 21, 2015

Download

Documents

Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Chapter 8 Radiation Hydrodynamics 1. 8.1 Radiation Transport 2.

Chapter 8

Radiation Hydrodynamics

1

Page 2: Chapter 8 Radiation Hydrodynamics 1. 8.1 Radiation Transport 2.

),,(),(),(),,(),,(1

rtrtrtrtrttc

III

III

xtc

1

IIII

rrtc

)1(1 2

SII

dd

dxd

8.1 Radiation Transport

/S

2

Page 3: Chapter 8 Radiation Hydrodynamics 1. 8.1 Radiation Transport 2.

)(

)()(

)(),()(

0 )(),0()(

d

xdx

xx

dee

deex

x

x

SI

SII

x

dx0

1

d

xdx

1

II r

]),([),(0

debRebr SII

Integrated form

(2) Spherical Geometry

(1) Plane geometry

Rr

r drrb 22

)(

1

Rr

rrb

r drrb

drrb 22

)(

22

)(

112

3

Page 4: Chapter 8 Radiation Hydrodynamics 1. 8.1 Radiation Transport 2.

, Te ,Te

ff fb bb

ff bf bb

Sr d d I

Emissivity and Opacity

Coupling term with electron fluid

4

Page 5: Chapter 8 Radiation Hydrodynamics 1. 8.1 Radiation Transport 2.

EFE ct

4

4

1d

cIE

4dIF

FPF tc 2

1

dc

IP :1

Angular moment equation

Radiation energy densityRadiation heat fluxRadiation pressure

5

Page 6: Chapter 8 Radiation Hydrodynamics 1. 8.1 Radiation Transport 2.

kik

i xPP

)( dc ikki

IP1

),()(),( 0 xxx II

4

4 ),( dx2

1

1 d

0

4IE

c

1

12 d

cEF

6

Radiation pressure tensor (1)

Page 7: Chapter 8 Radiation Hydrodynamics 1. 8.1 Radiation Transport 2.

PE

PE

P

P

P

300

030

000

2

1

00

00

00

P

1

1

2

2

1 dEP

EFE cxt

4

FPF

cxtc

2

1

7

Radiation pressure tensor (2)

Equation to Radiation Energy Density (Plane Geometry)

Page 8: Chapter 8 Radiation Hydrodynamics 1. 8.1 Radiation Transport 2.

EFE crrrt

4)(1 2

2

F

EPPF

crrtc

31

2

EP f

1

1

2

2

1 df

1

31f)1(2

1

8

Equation to Radiation Energy Density (Plane Geometry)

Page 9: Chapter 8 Radiation Hydrodynamics 1. 8.1 Radiation Transport 2.

9

Example of Angular Distribution in case of plane gold foil

Page 10: Chapter 8 Radiation Hydrodynamics 1. 8.1 Radiation Transport 2.

EEFE

cuxdt

d

4)()(

FFP

F

)()(c

uc

xdt

d

c

EEFE

currrdt

d

4)]([1

)( 22

F

EPFP

F

r

cc

ur

rrc

rdt

d

c

3)(

1)()( 2

2

10

Equation of Radiation in Fluid Frame

Plane Geometry

Spherical Geometry

Page 11: Chapter 8 Radiation Hydrodynamics 1. 8.1 Radiation Transport 2.

0)(

uxt

rmmu

xu

tSP

)()( 2

re

m uu

xu

tS

P

)]2

([)2

(2

2

0)()( 22

R

R

uxc

ut

PPF

0])2

([)2

(2

2

RR u

ux

ut

FP

E

11

8.2 Radiation Hydrodynamics

Total Energy and Momentum Conservation Relations

Page 12: Chapter 8 Radiation Hydrodynamics 1. 8.1 Radiation Transport 2.

0

1 dc

rm FS

0

)4( dcre ES

)1

(~~22 c

uo

uu

RR

PE

)(~2

2

2 c

uo

uc

R

F

cos)(1 x

EF3

c EP

3

1

EF

x

c

3

12

The coupling term with matter

Page 13: Chapter 8 Radiation Hydrodynamics 1. 8.1 Radiation Transport 2.

EEE cxx

cl

xt

4)3

(

1

l

1

183

3

kThec

h

B

4

0

4)( TBEE

cRP

R

13

Multi-group Diffusion Approximation

Page 14: Chapter 8 Radiation Hydrodynamics 1. 8.1 Radiation Transport 2.

RPP

RRP

RRP c

x

cl

xtEEE

43

duuld

T

dT

ll RR )(

0

0

0

GB

B

duud

dPP )(

0

0

0

GB

B

2

4

4 )1(4

15u

u

R e

eu

G

1

15 3

4

uP e

u

G

14

Near LTE Approximation (Gray Approximation)

Rosseland mean-free-path

Planck opacity

Page 15: Chapter 8 Radiation Hydrodynamics 1. 8.1 Radiation Transport 2.

RP

RR

x

clEF

3

1j

j

id

EE GG NiNj 1,0

iiii

i

i cx

cl

tt

EEE

4)3

(

1

1

j

j

j

ji

dT

dT

ll

B

B

1

1

j

j

j

ji

d

d

B

B

15

Multi-group gray diffusion approximation

Page 16: Chapter 8 Radiation Hydrodynamics 1. 8.1 Radiation Transport 2.

i

i

i

x

cl

EF

3

ii cfs EF

gni

i

i

i c SER

RF

1

i

i

ii

xl

EE

R

1

3

1

coscoth

1)(

RRR

16

Eddington coefficient (How to model angular distribution)

Page 17: Chapter 8 Radiation Hydrodynamics 1. 8.1 Radiation Transport 2.

Ex

cR

4

RcERF )(

)1

(coth1

)(R

RR

R

211

211

02625.05953.01

2694.001932.0

3

1

RR

RRf

211 2

3

2

13

1

RR

f

13

13

10

1

1

R

R

17

Variable Edington Factor

Page 18: Chapter 8 Radiation Hydrodynamics 1. 8.1 Radiation Transport 2.

18

8.3 Computer Simulation of Gold Foil

Page 19: Chapter 8 Radiation Hydrodynamics 1. 8.1 Radiation Transport 2.

19

Spectrum from Gold Foil irradiated by Lasers (Experiment VS Simulation)

Page 20: Chapter 8 Radiation Hydrodynamics 1. 8.1 Radiation Transport 2.

20

X-ray Conversion Rate ( Experiment VS Simulation)

Page 21: Chapter 8 Radiation Hydrodynamics 1. 8.1 Radiation Transport 2.

21

CRE model is essential for Gold PlasmaCRE: Collisional Radiative Equilibrium

Page 22: Chapter 8 Radiation Hydrodynamics 1. 8.1 Radiation Transport 2.

22

X-ray confinement with a variety of gold cavities

Page 23: Chapter 8 Radiation Hydrodynamics 1. 8.1 Radiation Transport 2.

23

Radiation Temperature from Gold Cavity

Page 24: Chapter 8 Radiation Hydrodynamics 1. 8.1 Radiation Transport 2.

24

8.4 Radiation Hydrodynamics in the Universe

Planetary Nebulae (HST)

Page 25: Chapter 8 Radiation Hydrodynamics 1. 8.1 Radiation Transport 2.

25

Page 26: Chapter 8 Radiation Hydrodynamics 1. 8.1 Radiation Transport 2.

26

Radiation Hydrodynamics Model of Planetary Nebulae

Page 27: Chapter 8 Radiation Hydrodynamics 1. 8.1 Radiation Transport 2.

27

Eagle Nebulaby HST

Page 28: Chapter 8 Radiation Hydrodynamics 1. 8.1 Radiation Transport 2.

28

Page 29: Chapter 8 Radiation Hydrodynamics 1. 8.1 Radiation Transport 2.

29

Page 30: Chapter 8 Radiation Hydrodynamics 1. 8.1 Radiation Transport 2.

30

Page 31: Chapter 8 Radiation Hydrodynamics 1. 8.1 Radiation Transport 2.

31

Super-Massive BH of C of G(Image by HST)400 ly88,000 ly

Photo-ionization by X-rays from BH

Accretion Disk and Black Hole

Page 32: Chapter 8 Radiation Hydrodynamics 1. 8.1 Radiation Transport 2.

32

Page 33: Chapter 8 Radiation Hydrodynamics 1. 8.1 Radiation Transport 2.

33

多くの銀河の中心には、質量が太陽の一千万倍を超える巨大ブラックホールがあると考えられていますが、確実な証拠はこれまでつかむことができませんでした。このたび VLBI 観測によって中心天体のまわりの小さな領域で高速に回転するガスや星のすがたがとらえられました。この回転が太陽系の惑星のようなケプラー運動なら、中心天体の質量は簡単に算出できます。 NGC4258(M106) という銀河系の中心近くのガス回転運動の様子を VLBI 観測等によって調べたところ、半径 0.13 パーセクより小さい領域に太陽の 3600 万倍の質量が存在することがわかりました。平均密度はこれまでブラックホールの候補と考えられてきた天体の 40 倍と大きく、 NGC4258 の中心にブラックホールが存在する有力な証拠と考えられています。                              <三好 真>

Page 34: Chapter 8 Radiation Hydrodynamics 1. 8.1 Radiation Transport 2.

34

Figure 1: NRAO Very Large Array image of the radio galaxy 3C 403 at a wavelength of 3.6 cm. The intensity range of the colors (in Jansky, Jy, units) is indicated at the right hand side. The red arrow points at the galaxy's nucleus. The spectrum shown in the upper left hand inset was taken with the Effelsberg 100m telescope. The y-axis is flux density in Jy, while the x-axis gives the recession velocity (in km/s), i.e. the speed which with 3C 403 and the Milky Way are moving apart. The green arrow points at the systemic radial velocity of the whole galaxy. Image: National Radio Astronomy Observatory/Rick Perley (NRAO/AUI/NSF)

Page 35: Chapter 8 Radiation Hydrodynamics 1. 8.1 Radiation Transport 2.

35

Eta-Carina

Page 36: Chapter 8 Radiation Hydrodynamics 1. 8.1 Radiation Transport 2.

36

Page 37: Chapter 8 Radiation Hydrodynamics 1. 8.1 Radiation Transport 2.

37

Photo-ionized plasma in binary system

Page 38: Chapter 8 Radiation Hydrodynamics 1. 8.1 Radiation Transport 2.

38

Page 39: Chapter 8 Radiation Hydrodynamics 1. 8.1 Radiation Transport 2.

39

Page 40: Chapter 8 Radiation Hydrodynamics 1. 8.1 Radiation Transport 2.

40

Ionization Parameter x

Page 41: Chapter 8 Radiation Hydrodynamics 1. 8.1 Radiation Transport 2.

41

8.5 Photo-ionized Plasma Experiment

Page 42: Chapter 8 Radiation Hydrodynamics 1. 8.1 Radiation Transport 2.

42

Page 43: Chapter 8 Radiation Hydrodynamics 1. 8.1 Radiation Transport 2.

43

Page 44: Chapter 8 Radiation Hydrodynamics 1. 8.1 Radiation Transport 2.

44

Experimental setup

• Everything shown is completely destroyed during the experiment!

Page 45: Chapter 8 Radiation Hydrodynamics 1. 8.1 Radiation Transport 2.

45

Spectral characterization

300 11.5 mm tungsten wires20 MA current100 ns rise time8 ns FWHM peak120 TW peak power =x 25 erg cm/s at the peak

165 eV near-BB radiationSynchrotron high energy tail

Page 46: Chapter 8 Radiation Hydrodynamics 1. 8.1 Radiation Transport 2.

46

Page 47: Chapter 8 Radiation Hydrodynamics 1. 8.1 Radiation Transport 2.

47

Page 48: Chapter 8 Radiation Hydrodynamics 1. 8.1 Radiation Transport 2.

48

Cloudy models

Page 49: Chapter 8 Radiation Hydrodynamics 1. 8.1 Radiation Transport 2.

49

Super-Massive BH of C of G(Image by HST)400 ly88,000 ly

Photo-ionization by X-rays from BH

8.6 Photo-ionization in X-ray Binary System

Page 50: Chapter 8 Radiation Hydrodynamics 1. 8.1 Radiation Transport 2.

At Institute of Physics, Beijing, China, Summer 2006

Japan-China Joint Research funded by JSPS and NSFC (2005-2007) still on going.

PI(project): H. Takabe (Japan) and J. Zhang(China)PI(experiment): H. Nishimura (Japan) and Y. Li (China)Staff: S. Fujioka, N. Yamamoto, W. Feilu, D. Salzman etc.

50

Page 51: Chapter 8 Radiation Hydrodynamics 1. 8.1 Radiation Transport 2.

Two Type of Experiments have been done with GXII and

Shengang II

1. H. G. Wei et al., Opacity studies of silicon in radiatively heated plasmaAstrophysical J. Lett. 683, Page 577–583, (2008)

2. Fei-lu Wang et al., Experimental evidence and theoretical analysis of photo-ionized plasma under x-ray radiation produced by intense laserPhys. Plasmas 15, 073108 (2008)

Japan-China Joint Research by JSPS and NSFC (2005-2007)

51

Page 52: Chapter 8 Radiation Hydrodynamics 1. 8.1 Radiation Transport 2.

We are carrying out the second step.

Radiation Temperature Tr = 0.5 keV

Final Purpose is the Prediction of Candidate of X-ray Laser Object near Compact Object in

Universe.

52

Page 53: Chapter 8 Radiation Hydrodynamics 1. 8.1 Radiation Transport 2.

H. Takabe1, S. Fujioka1, N. Yamamoto1, F. L. Wang2, D. Saltzmann3, Y. T. Li4, Q.L. Dong4, S.J. Wang4, Y. Zhang4, Yong-

Woo Lee5, Yong-Joo Rhee5, Jae Min Han5, M. Tanabe1, T. Fujiwara1, Y. Nakabayashi1, J. Zhang4, H. Nishimura1,

1Institute of Laser Engineering, Osaka University, 2-6 Yamada-oka, Suita, Osaka, 565-0871,Japan.

2National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012, China.

3Department of Plasma Physics, Soreq Nuclear Research Center, Yavne, Israel.

4Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing

100080, China.5Quantum Optics Center, Korea Atomic Energy Research

Institute, 1045 Daedeok Street Yuseonggu, Daejon 305-353, Korea.

53

Page 54: Chapter 8 Radiation Hydrodynamics 1. 8.1 Radiation Transport 2.

54

Photo-ionization of X-ray Binary System (VELA X-1)

Page 55: Chapter 8 Radiation Hydrodynamics 1. 8.1 Radiation Transport 2.

S. Watanabe et al., ApJ 651; 421, 200655

Page 56: Chapter 8 Radiation Hydrodynamics 1. 8.1 Radiation Transport 2.

He-like Silicon Line Emissions from VELA X-1

N. R. Schultz et al., ApJ 564; L21, 200256

Page 57: Chapter 8 Radiation Hydrodynamics 1. 8.1 Radiation Transport 2.

X-ray from Companion Compact Star (Image)

57

Page 58: Chapter 8 Radiation Hydrodynamics 1. 8.1 Radiation Transport 2.

X-ray from Companion Star of Cyg X-3

58F. Paerels, et al., Astrophys. J. 533, L135 (2000).Photo-ionization by X-rays from BH candidate (Chandra)

Page 59: Chapter 8 Radiation Hydrodynamics 1. 8.1 Radiation Transport 2.

Experiment has been done

59

Page 60: Chapter 8 Radiation Hydrodynamics 1. 8.1 Radiation Transport 2.

Spectrum from Imploded CH Core Plasma

60

Page 61: Chapter 8 Radiation Hydrodynamics 1. 8.1 Radiation Transport 2.

Experimental Data

61

Page 62: Chapter 8 Radiation Hydrodynamics 1. 8.1 Radiation Transport 2.

Experimental Spectrum

62

Page 63: Chapter 8 Radiation Hydrodynamics 1. 8.1 Radiation Transport 2.

63

Page 64: Chapter 8 Radiation Hydrodynamics 1. 8.1 Radiation Transport 2.

1S

1S3S

3P1P

wz

1/43/4

Courtesy by Prof. Kuni Masai

Az=10-6Aw

Case (1) in AstrophysicsEn

ergy

64

Page 65: Chapter 8 Radiation Hydrodynamics 1. 8.1 Radiation Transport 2.

1S

1S3S

3P

wz

1/43/4

Courtesy by Prof. Kuni Masai

Case (2) in Astrophysics

1P

Ener

gy

65

Page 66: Chapter 8 Radiation Hydrodynamics 1. 8.1 Radiation Transport 2.

K

Satellite Lines from Be-like Si

Ener

gy

L

Photon from Radiation Source

Photo-ionized electron

Satellite Line

66

Page 67: Chapter 8 Radiation Hydrodynamics 1. 8.1 Radiation Transport 2.

Details of Theoretical Spectrum

67

Page 68: Chapter 8 Radiation Hydrodynamics 1. 8.1 Radiation Transport 2.

Chandra X-ray Data from VELA

X-1

N. R. Schultz et al., ApJ 564; L21, 2002

68

0.012

0.008

0.004

0.000Inte

nsi

ty (

a.u

.)

1.881.861.841.821.80

Photon energy (keV)4.00

2.00

0.00Co

un

t/s/

keV

1.881.861.841.821.80Energy (keV)

実験室

ブラックホール

68

Black HoleUniverse

Experiment

Joint Exp. Japan-China-Korea

This is accepted for publication in the Nature-Physics (2009)

Page 69: Chapter 8 Radiation Hydrodynamics 1. 8.1 Radiation Transport 2.

69

Poem by Edward Teller:

A fact without a theoryis like a ship without a rail,is like a boat without a rudder,is like a kite without a tail.

A fact without a theoryis like an inconclusive act.But if there’s one thing worse,in this confusing universe,it’s a theory without a fact

Edward Teller(Nuclear Physicist and Founder of LLNL)

Page 70: Chapter 8 Radiation Hydrodynamics 1. 8.1 Radiation Transport 2.

70

Example of Atomic Process Rates

Page 71: Chapter 8 Radiation Hydrodynamics 1. 8.1 Radiation Transport 2.

71