Top Banner
Chapter 6, Solution 1. ( = + = = t 3 t 3 e 6 e 2 5 dt dv C i ) 10(1 - 3t)e -3t A p = vi = 10(1-3t)e -3t 2t e -3t = 20t(1 - 3t)e -6t W Chapter 6, Solution 2. 2 2 1 1 ) 120 )( 40 ( 2 1 Cv 2 1 w = = w 2 = 2 2 1 ) 80 )( 40 ( 2 1 2 = Cv 1 ( ) = = = 2 2 2 1 80 120 20 w w w 160 kW Chapter 6, Solution 3. i = C = = 5 160 280 10 x 40 dt dv 3 480 mA Chapter 6, Solution 4. ) 0 ( v idt C 1 v t o + = + 1 tdt 4 sin 6 2 1 = = 1 - 0.75 cos 4t Chapter 6, Solution 5. v = + t o ) 0 ( v idt C 1 For 0 < t < 1, i = 4t, = t o 6 t 4 10 x 20 1 v dt + 0 = 100t 2 kV v(1) = 100 kV
40

Chapter 6, Solution 1Chapter 6, Solution 18. For the capacitors in parallel 1 = 15 + 5 + 40 = 60 µF Ceq Hence 10 1 60 1 30 1 20 1 C 1 eq = + + = Ceq = 10 µF Chapter 6, Solution 19.

Feb 26, 2021

Download

Documents

dariahiddleston
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Chapter 6, Solution 1Chapter 6, Solution 18. For the capacitors in parallel 1 = 15 + 5 + 40 = 60 µF Ceq Hence 10 1 60 1 30 1 20 1 C 1 eq = + + = Ceq = 10 µF Chapter 6, Solution 19.

Chapter 6, Solution 1.

( =+−== −− t3t3 e6e25dtdvCi ) 10(1 - 3t)e-3t A

p = vi = 10(1-3t)e-3t ⋅ 2t e-3t = 20t(1 - 3t)e-6t W

Chapter 6, Solution 2.

2211 )120)(40(

21Cv

21w ==

w2 = 221 )80)(40(

21

2=Cv1

( ) =−=−=∆ 22

21 8012020www 160 kW Chapter 6, Solution 3.

i = C =−

= −

516028010x40

dtdv 3 480 mA

Chapter 6, Solution 4.

)0(vidtC1v

t

o+= ∫

∫ +1tdt4sin621

=

= 1 - 0.75 cos 4t Chapter 6, Solution 5.

v = ∫ +t

o)0(vidt

C1

For 0 < t < 1, i = 4t,

∫−=t

o6 t410x201v dt + 0 = 100t2 kV

v(1) = 100 kV

Page 2: Chapter 6, Solution 1Chapter 6, Solution 18. For the capacitors in parallel 1 = 15 + 5 + 40 = 60 µF Ceq Hence 10 1 60 1 30 1 20 1 C 1 eq = + + = Ceq = 10 µF Chapter 6, Solution 19.

For 1 < t < 2, i = 8 - 4t,

∫ +−= −

t

16 )1(vdt)t48(10x201v

= 100 (4t - t2 - 3) + 100 kV

Thus v (t) =

<<−−

<<

2t1,kV)2tt4(1001t0,kVt100

2

2

Chapter 6, Solution 6.

610x30dtdvCi −== x slope of the waveform.

For example, for 0 < t < 2,

310x210

dtdv

−=

i = mA15010x210x10x30

dtdv

36 == −

−C

Thus the current i is sketched below.

t (msec)

150

12 10 2

8

6

4

-150

i(t) (mA) Chapter 6, Solution 7.

∫∫ +=+= −−

t

o

33o 10dt10tx4

10x501)t(vidt

C1v

= =+1050t2 2

0.04k2 + 10 V

Page 3: Chapter 6, Solution 1Chapter 6, Solution 18. For the capacitors in parallel 1 = 15 + 5 + 40 = 60 µF Ceq Hence 10 1 60 1 30 1 20 1 C 1 eq = + + = Ceq = 10 µF Chapter 6, Solution 19.

Chapter 6, Solution 8.

(a) tt BCeACedtdvC 600100 600100 −− −−==i (1)

BABCACi 656001002)0( −−=→−−== (2)

BAvv +=→= −+ 50)0()0( (3) Solving (2) and (3) leads to A=61, B=-11

(b) J 5250010421)0(

21 32 === − xxxCvEnergy

(c ) From (1),

A 4.264.241041160010461100 60010060031003 tttt eeexxxexxxi −−−−−− −−=−−= Chapter 6, Solution 9.

v(t) = ( ) ( )∫ −− +=+−t

o

tt Vet120dte1621

1

v(2) = 12(2 + e-2) = 25.62 V

p = iv = 12 (t + e-t) 6 (1-e-t) = 72(t-e-2t)

p(2) = 72(2-e-4) = 142.68 W Chapter 6, Solution 10

dtdvx

dtdvCi 3102 −==

<<<<<<

=s4t316t,-64

s 3t116,s10,16

µµµtt

v

Page 4: Chapter 6, Solution 1Chapter 6, Solution 18. For the capacitors in parallel 1 = 15 + 5 + 40 = 60 µF Ceq Hence 10 1 60 1 30 1 20 1 C 1 eq = + + = Ceq = 10 µF Chapter 6, Solution 19.

<<<<

<<=

s4t3,16x10-s 3t10,

s10,1016

6

6

µµµtx

dtdv

<<<<

<<=

s4t3kA, 32-s 3t10,

s10,kA 32)(

µµµt

ti

Chapter 6, Solution 11.

v = ∫ +t

o)0(vidt

C1

For 0 < t < 1,

∫ == −−

t

o

36 t10dt10x40

10x41v kV

v(1) = 10 kV For 1 < t < 2,

kV10)1(vvdtC1v

t

1=+= ∫

For 2 < t < 3,

∫ +−= −−

t

2

36 )2(vdt)10x40(

10x41v

= -10t + 30kV Thus

v(t) =

<<+−<<<<⋅

3t2,kV30t102t1,kV101t0,kVt10

Chapter 6, Solution 12.

π−π== − 4sin)(4(60x10x3dtdvCi 3 t)

= - 0.7e π sin 4πt A P = vi = 60(-0.72)π cos 4π t sin 4π t = -21.6π sin 8π t W

W = ∫ ∫ t dt ππ−=t

o81

o8sin6.21pdt

= πππ 8

86. cos21 8/1

o = -5.4J

Page 5: Chapter 6, Solution 1Chapter 6, Solution 18. For the capacitors in parallel 1 = 15 + 5 + 40 = 60 µF Ceq Hence 10 1 60 1 30 1 20 1 C 1 eq = + + = Ceq = 10 µF Chapter 6, Solution 19.

Chapter 6, Solution 13.

Under dc conditions, the circuit becomes that shown below:

i250 Ω

20 Ω

+ − 60V

+

v1

i1

30 Ω

10 Ω

+

v2

i2 = 0, i1 = 60/(30+10+20) = 1A v1 = 30i2 = 30V, v2 = 60-20i1 = 40V

Thus, v1 = 30V, v2 = 40V Chapter 6, Solution 14. (a) Ceq = 4C = 120 mF

(b) 304

C4

C1

eq

== Ceq = 7.5 mF

Chapter 6, Solution 15. In parallel, as in Fig. (a), v1 = v2 = 100

C2+

v2

C1 + − 100V

+

v2

C2

+ − v1

C1 +

v1

+ −

100V (b)(a)

Page 6: Chapter 6, Solution 1Chapter 6, Solution 18. For the capacitors in parallel 1 = 15 + 5 + 40 = 60 µF Ceq Hence 10 1 60 1 30 1 20 1 C 1 eq = + + = Ceq = 10 µF Chapter 6, Solution 19.

w20 = == − 262 100x10x20x21Cv

21 0.1J

w30 = =− 26 100x10x30x21 0.15J

(b) When they are connected in series as in Fig. (b):

,60100x5030V

CCC

v21

21 ==

+= v2 = 40

w20 = =− 26 60x10x30x21 36 mJ

w30 = =− 26 4010x302

xx1 24 mJ

Chapter 6, Solution 16

F 203080

8014 µ=→=+

+= CCCxCeq

Chapter 6, Solution 17. (a) 4F in series with 12F = 4 x 12/(16) = 3F 3F in parallel with 6F and 3F = 3+6+3 = 12F 4F in series with 12F = 3F i.e. Ceq = 3F

(b) Ceq = 5 + [6 || (4 + 2)] = 5 + (6 || 6) = 5 + 3 = 8F (c) 3F in series with 6F = (3 x 6)/9 = 6F

131

61

21

C1

eq

=++=

Ceq = 1F

Page 7: Chapter 6, Solution 1Chapter 6, Solution 18. For the capacitors in parallel 1 = 15 + 5 + 40 = 60 µF Ceq Hence 10 1 60 1 30 1 20 1 C 1 eq = + + = Ceq = 10 µF Chapter 6, Solution 19.

Chapter 6, Solution 18.

For the capacitors in parallel = 15 + 5 + 40 = 60 µF 1

eqC

Hence 101

601

301

201

C1

eq

=++=

Ceq = 10 µF Chapter 6, Solution 19. We combine 10-, 20-, and 30- µ F capacitors in parallel to get 60µ F. The 60 -µ F capacitor in series with another 60- µ F capacitor gives 30 µ F. 30 + 50 = 80µ F, 80 + 40 = 120 µ F The circuit is reduced to that shown below.

12 120

12 80

120-µ F capacitor in series with 80µ F gives (80x120)/200 = 48 48 + 12 = 60 60-µ F capacitor in series with 12µ F gives (60x12)/72 = 10µ F Chapter 6, Solution 20.

3 in series with 6 = 6x3/(9) = 2 2 in parallel with 2 = 4 4 in series with 4 = (4x4)/8 = 2 The circuit is reduced to that shown below:

20

1 6

2

8

Page 8: Chapter 6, Solution 1Chapter 6, Solution 18. For the capacitors in parallel 1 = 15 + 5 + 40 = 60 µF Ceq Hence 10 1 60 1 30 1 20 1 C 1 eq = + + = Ceq = 10 µF Chapter 6, Solution 19.

6 in parallel with 2 = 8 8 in series with 8 = 4 4 in parallel with 1 = 5 5 in series with 20 = (5x20)/25 = 4 Thus Ceq = 4 mF

Chapter 6, Solution 21. 4µF in series with 12µF = (4x12)/16 = 3µF 3µF in parallel with 3µF = 6µF 6µF in series with 6µF = 3µF 3µF in parallel with 2µF = 5µF 5µF in series with 5µF = 2.5µF

Hence Ceq = 2.5µF Chapter 6, Solution 22. Combining the capacitors in parallel, we obtain the equivalent circuit shown below:

a b

40 µF 60 µF 30 µF

20 µF Combining the capacitors in series gives C , where 1

eq

101

301

201

601

C11eq

=++= C = 10µF 1eq

Thus

Ceq = 10 + 40 = 50 µF

Page 9: Chapter 6, Solution 1Chapter 6, Solution 18. For the capacitors in parallel 1 = 15 + 5 + 40 = 60 µF Ceq Hence 10 1 60 1 30 1 20 1 C 1 eq = + + = Ceq = 10 µF Chapter 6, Solution 19.

Chapter 6, Solution 23.

(a) 3µF is in series with 6µF 3x6/(9) = 2µF v4µF = 1/2 x 120 = 60V v2µF = 60V

v6µF = =(3+

)6036

20V

v3µF = 60 - 20 = 40V

(b) Hence w = 1/2 Cv2 w4µF = 1/2 x 4 x 10-6 x 3600 = 7.2mJ w2µF = 1/2 x 2 x 10-6 x 3600 = 3.6mJ w6µF = 1/2 x 6 x 10-6 x 400 = 1.2mJ w3µF = 1/2 x 3 x 10-6 x 1600 = 2.4mJ

Chapter 6, Solution 24.

20µF is series with 80µF = 20x80/(100) = 16µF

14µF is parallel with 16µF = 30µF (a) v30µF = 90V

v60µF = 30V v14µF = 60V

v20µF = =+

60x8020

80 48V

v80µF = 60 - 48 = 12V

(b) Since w = 2Cv21

w30µF = 1/2 x 30 x 10-6 x 8100 = 121.5mJ w60µF = 1/2 x 60 x 10-6 x 900 = 27mJ w14µF = 1/2 x 14 x 10-6 x 3600 = 25.2mJ w20µF = 1/2 x 20 x 10-6 x (48)2 = 23.04mJ w80µF = 1/2 x 80 x 10-6 x 144 = 5.76mJ

Chapter 6, Solution 25.

(a) For the capacitors in series,

Q1 = Q2 C1v1 = C2v2 1

2

2

1

CC

vv

=

Page 10: Chapter 6, Solution 1Chapter 6, Solution 18. For the capacitors in parallel 1 = 15 + 5 + 40 = 60 µF Ceq Hence 10 1 60 1 30 1 20 1 C 1 eq = + + = Ceq = 10 µF Chapter 6, Solution 19.

vs = v1 + v2 = 21

2122

1

2 vC

CCvvCC +

=+ s21

12 v

CCC+

=v

Similarly, s21

21 v

CCCv+

=

(b) For capacitors in parallel

v1 = v2 = 2

2

1

1

CQ

CQ

=

Qs = Q1 + Q2 = 22

2122

2

1 QC

CCQQCC +

=+

or

Q2 = 21

2

CCC+

s21

11 Q

CCCQ+

=

i = dtdQ s

21

11 i

CCC+

=i , s21

22 i

CCC+

=i

Chapter 6, Solution 26.

(a) Ceq = C1 + C2 + C3 = 35µF (b) Q1 = C1v = 5 x 150µC = 0.75mC

Q2 = C2v = 10 x 150µC = 1.5mC Q3 = C3v = 20 x 150 = 3mC

(c) w = J150x35x21

222

eq µ=vC1 = 393.8mJ

Page 11: Chapter 6, Solution 1Chapter 6, Solution 18. For the capacitors in parallel 1 = 15 + 5 + 40 = 60 µF Ceq Hence 10 1 60 1 30 1 20 1 C 1 eq = + + = Ceq = 10 µF Chapter 6, Solution 19.

Chapter 6, Solution 27.

(a) 207

201

101

51

C1

C1

C1

C1

321eq

=++=++=

Ceq = =µF720 2.857µF

(b) Since the capacitors are in series,

Q1 = Q2 = Q3 = Q = Ceqv = =µV200x720 0.5714mV

(c) w = =µ= J200x720x

21

222

eq vC1 57.143mJ

Chapter 6, Solution 28. We may treat this like a resistive circuit and apply delta-wye transformation, except that R is replaced by 1/C.

Ca

Cb

Cc

50 µF 20 µF

301

401

301

301

101

401

101

C1

a

+

+

=

= 102

401

101

40=++

3

Ca = 5µF

302

101

12001

3001

4001

C1

6

=++

=

Cb = 15µF

Page 12: Chapter 6, Solution 1Chapter 6, Solution 18. For the capacitors in parallel 1 = 15 + 5 + 40 = 60 µF Ceq Hence 10 1 60 1 30 1 20 1 C 1 eq = + + = Ceq = 10 µF Chapter 6, Solution 19.

154

401

12001

3001

4001

C1

c

=++

=

Cc = 3.75µF Cb in parallel with 50µF = 50 + 15 = 65µF Cc in series with 20µF = 23.75µF

65µF in series with 23.75µF = F39.1775.88

75.23x65µ=

17.39µF in parallel with Ca = 17.39 + 5 = 22.39µF Hence Ceq = 22.39µF Chapter 6, Solution 29. (a) C in series with C = C/(2) C/2 in parallel with C = 3C/2

2C3 in series with C =

5C3

2C5

2C3Cx=

5C3 in parallel with C = C + =

5C3 1.6 C

(b) 2C

Ceq 2C

C1

C21

C21

C1

eq

=+=

Ceq = C

Page 13: Chapter 6, Solution 1Chapter 6, Solution 18. For the capacitors in parallel 1 = 15 + 5 + 40 = 60 µF Ceq Hence 10 1 60 1 30 1 20 1 C 1 eq = + + = Ceq = 10 µF Chapter 6, Solution 19.

Chapter 6, Solution 30.

vo = ∫ +t

o)0(iidt

C1

For 0 < t < 1, i = 60t mA,

kVt100tdt6010x3

10v 2t

o6

3

o =+= ∫−

vo(1) = 10kV For 1< t < 2, i = 120 - 60t mA,

vo = ∫ +−−

− t

1 o6

3

)1(vdt)t60120(10x3

10 t + = [40t – 10t2 kV10] 1

= 40t – 10t2 - 20

<<−−

<<=

2t1,kV20t10t401t0,kVt10

)t(v2

2

o

Chapter 6, Solution 31.

<<+−<<<<

=5t3,t10503t1,mA201t0,tmA20

)t(is

Ceq = 4 + 6 = 10µF

)0(vidtC1v

t

oeq

+= ∫

For 0 < t < 1,

∫−

=t

o6

3

t2010x10

10v dt + 0 = t2 kV

For 1 < t < 3,

∫ +−=+=t

1

3

kV1)1t(2)1(vdt201010v

kV1t2 −= For 3 < t < 5,

∫ +−=t

3

3

)3(vdt)5t(101010v

Page 14: Chapter 6, Solution 1Chapter 6, Solution 18. For the capacitors in parallel 1 = 15 + 5 + 40 = 60 µF Ceq Hence 10 1 60 1 30 1 20 1 C 1 eq = + + = Ceq = 10 µF Chapter 6, Solution 19.

kV11t5tkV55t 2t3

2 +−=++−=

<<+−

<<−<<

=

5t3,kV11t5t3t1,kV1t21t0,kVt

)t(v2

2

dtdv10x6

dtdvCi 6

11−==

=

<<−<<<<

5t3,mA30123t1,mA121t0,tmA12

dtdv10x4

dtdvCi 6

21−==

<<−<<<<

=5t3,mA20t83t1,mA81t0,tmA8

Chapter 6, Solution 32.

(a) Ceq = (12x60)/72 = 10 µ F

13001250501250)0(301012

10 2

00

21

26

3

1 +−=+−=+= −−−−

∫ tt

ttt eevdtex

v

23025020250)0(301060

10 2

00

22

26

3

2 −=+=+= −−−−

∫ tt

ttt eevdtex

v

(b) At t=0.5s,

03.138230250,15.84013001250 12

11 −=−==+−= −− evev

J 235.4)15.840(101221 26

12 == − xxxw Fµ

J 1905.0)03.138(102021 26

20 =−= − xxxw Fµ

J 381.0)03.138(104021 26

40 =−= − xxxFµw

Page 15: Chapter 6, Solution 1Chapter 6, Solution 18. For the capacitors in parallel 1 = 15 + 5 + 40 = 60 µF Ceq Hence 10 1 60 1 30 1 20 1 C 1 eq = + + = Ceq = 10 µF Chapter 6, Solution 19.

Chapter 6, Solution 33

Because this is a totally capacitive circuit, we can combine all the capacitors using the property that capacitors in parallel can be combined by just adding their values and we combine capacitors in series by adding their reciprocals. 3F + 2F = 5F 1/5 +1/5 = 2/5 or 2.5F The voltage will divide equally across the two 5F capacitors. Therefore, we get: VTh = 7.5 V, CTh = 2.5 F

Chapter 6, Solution 34.

i = 6e-t/2

2/t3 e21)6(10x10

dtdiL −−

==v

= -30e-t/2 mV v(3) = -300e-3/2 mV = -0.9487 mV p = vi = -180e-t mW

p(3) = -180e-3 mW = -0.8 mW

Chapter 6, Solution 35.

dtdiLv = ==

∆∆=

)2/(6.010x60

t/iVL

3

200 mH

Page 16: Chapter 6, Solution 1Chapter 6, Solution 18. For the capacitors in parallel 1 = 15 + 5 + 40 = 60 µF Ceq Hence 10 1 60 1 30 1 20 1 C 1 eq = + + = Ceq = 10 µF Chapter 6, Solution 19.

Chapter 6, Solution 36.

V)t2sin)(2)(12(10x41

dtdiLv 3 −== −

= - 6 sin 2t mV p = vi = -72 sin 2t cos 2t mW But 2 sin A cos A = sin 2A

p = -36 sin 4t mW Chapter 6, Solution 37.

t100cos)100(4x10x12dtdiLv 3−==

= 4.8 cos 100t V p = vi = 4.8 x 4 sin 100t cos 100t = 9.6 sin 200t

w = t200sin6.9pdtt

o

200/11

o∫ ∫=

Jt200cos200

6.9 200/11o−=

= =−π− mJ)1(cos48 96 mJ Chapter 6, Solution 38.

( )dtte2e10x40dtdiLv t2t23 −−− −==

= 240 0t,mVe)t1( t2 >− −

Page 17: Chapter 6, Solution 1Chapter 6, Solution 18. For the capacitors in parallel 1 = 15 + 5 + 40 = 60 µF Ceq Hence 10 1 60 1 30 1 20 1 C 1 eq = + + = Ceq = 10 µF Chapter 6, Solution 19.

Chapter 6, Solution 39

)0(iidtL1i

dtdiLv t

0 +∫=→=

1dt)4t2t3(10x200

1i t0

23 +∫ ++= −

1)t4tt(5t

023 +++=

i(t) = 5t3 + 5t2 + 20t + 1 A Chapter 6, Solution 40

dtdix

dtdiLv 31020 −==

<<+<<

<<=

ms 4t310t,40-ms 3t110t,-20

ms 10,10 tti

<<<<<<

=ms 4t3,10x10ms 3t1,10x10-

ms 10,1010

3

3

3 tx

dtdi

<<<<<<

=ms 4t3V, 200ms 3t1V, 200-

ms 10,V 200 tv

which is sketched below. v(t) V 200 0 1 2 3 4 t(ms) -200

Page 18: Chapter 6, Solution 1Chapter 6, Solution 18. For the capacitors in parallel 1 = 15 + 5 + 40 = 60 µF Ceq Hence 10 1 60 1 30 1 20 1 C 1 eq = + + = Ceq = 10 µF Chapter 6, Solution 19.

Chapter 6, Solution 41.

( )∫∫ +−

=+= −t

o

t2t

03.0dt2120

21)0(ivdt

L1i

= Aetet tto

t 745103021 22 .. −+=+

+ −−10

At t = ls, i = 10 - 4.7 + 5e-2 = 5.977 A

L21w = i2 = 35.72J

Chapter 6, Solution 42.

∫ ∫ −=+=t

o

t

o1dt)t(v

51)0(ivdt

L1i

For 0 < t < 1, ∫ −=−=t

01t21dt

510i A

For 1 < t < 2, i = 0 + i(1) = 1A

For 2 < t < 3, i = ∫ +=+ 1t2)2(idt1051 2

t

= 2t - 3 A For 3 < t < 4, i = 0 + i(3) = 3 A

For 4 < t < 5, i = ∫ +=+t

4

t4 3t2)4(idt10

51

= 2t - 5 A

Thus,

2 1 , 0 11 , 1 2

( ) 2 3 , 2 33 , 3 42 5, 4

t A tA t

i t t A tA tt t

− <

5

<< <

= − < < < < − < <

Page 19: Chapter 6, Solution 1Chapter 6, Solution 18. For the capacitors in parallel 1 = 15 + 5 + 40 = 60 µF Ceq Hence 10 1 60 1 30 1 20 1 C 1 eq = + + = Ceq = 10 µF Chapter 6, Solution 19.

Chapter 6, Solution 43.

w = L )(Li21)t(Li

21idt

2t

−∞−=∫ ∞−

( ) 010x60x10x80x21 33 −= −−

= 144 µJ Chapter 6, Solution 44.

( )∫ ∫ −+=+=t

ot

t

oo 1dt)t2cos104(51tivdt

L1i

= 0.8t + sin 2t -1

Chapter 6, Solution 45.

i(t) = ∫ +t

o)0(i)t(v

L1

For 0 < t < 1, v = 5t

∫−=t

o3 t510x101i dt + 0

= 0.25t2 kA

For 1 < t < 2, v = -10 + 5t

∫ ++−= −

t

13 )1(idt)t510(10x101i

∫= ( +−t

1kA25.0dt)1t5.0

= 1 - t + 0.25t2 kA

<<+−

<<=

2t1,kAt25.0t11t0,kAt25.0

)t(i2

2

Page 20: Chapter 6, Solution 1Chapter 6, Solution 18. For the capacitors in parallel 1 = 15 + 5 + 40 = 60 µF Ceq Hence 10 1 60 1 30 1 20 1 C 1 eq = + + = Ceq = 10 µF Chapter 6, Solution 19.

Chapter 6, Solution 46. Under dc conditions, the circuit is as shown below: 2 Ω

+

vC

−3 A

iL

4 Ω

By current division,

=+

= )3(24

4iL 2A, vc = 0V

L21w L = =

= 22

L )2(21

21i 1J

C21w c = == )v)(2(

21v2

c 0J

Chapter 6, Solution 47. Under dc conditions, the circuit is equivalent to that shown below: R

+ vC −

5 A

iL

2 Ω

,2R

10)5(2R

2iL +=

+=

2RR10Riv Lc +

==

Page 21: Chapter 6, Solution 1Chapter 6, Solution 18. For the capacitors in parallel 1 = 15 + 5 + 40 = 60 µF Ceq Hence 10 1 60 1 30 1 20 1 C 1 eq = + + = Ceq = 10 µF Chapter 6, Solution 19.

2

262

cc )2R(R100x10x80Cv

21w

+== −

232

1L )2R(100x10x2Li

21w

+== −

If wc = wL,

2

3

2

26

)2R(100x10x2

)2Rx(R100x10x80

+=

−− 80 x 10-3R2 = 2

R = 5Ω

Chapter 6, Solution 48. Under dc conditions, the circuit is as shown below:

+

vC2

+ −

+

vC1

iL1

6 Ω

4 Ω

iL2 30V

=+

==64

30ii2L1L 3A

==

1L1C i6v 18V

=2Cv 0V

Page 22: Chapter 6, Solution 1Chapter 6, Solution 18. For the capacitors in parallel 1 = 15 + 5 + 40 = 60 µF Ceq Hence 10 1 60 1 30 1 20 1 C 1 eq = + + = Ceq = 10 µF Chapter 6, Solution 19.

Chapter 6, Solution 49.

(a) ( ) =+=++= 36544165Leq 7H (b) ( ) ==+= 41266112Leq 3H (c) ( ) ==+= 446324Leq 2H

Chapter 6, Solution 50.

( )63124510Leq ++=

= 10 + 5||(3 + 2) = 10 + 2.5 = 12.5 mH

Chapter 6, Solution 51.

101

301

201

601

L1

=++= L = 10 mH

( )45

35x10102510Leq =+=

= 7.778 mH

Chapter 6, Solution 52. 3//2//6 = 1H, 4//12 = 3H After the parallel combinations, the circuit becomes that shown below. 3H a 1H 1 H b Lab = (3+1)//1 = (4x1)/5 = 0.8 H

Page 23: Chapter 6, Solution 1Chapter 6, Solution 18. For the capacitors in parallel 1 = 15 + 5 + 40 = 60 µF Ceq Hence 10 1 60 1 30 1 20 1 C 1 eq = + + = Ceq = 10 µF Chapter 6, Solution 19.

Chapter 6, Solution 53.

[ ])48(6)128(58106Leq +++++= 416)44(816 +=++= Leq = 20 mH

Chapter 6, Solution 54.

( )126010)39(4Leq +++= 34)40(124 +=++= Leq = 7H Chapter 6, Solution 55.

(a) L//L = 0.5L, L + L = 2L

LLLLLxLLLLLeq 4.1

5.025.025.0//2 =

++=+=

(b) L//L = 0.5L, L//L + L//L = L Leq = L//L = 0.5L

Chapter 6, Solution 56.

3L

L31LLL ==

Hence the given circuit is equivalent to that shown below: L

L/3 L

L/3

Page 24: Chapter 6, Solution 1Chapter 6, Solution 18. For the capacitors in parallel 1 = 15 + 5 + 40 = 60 µF Ceq Hence 10 1 60 1 30 1 20 1 C 1 eq = + + = Ceq = 10 µF Chapter 6, Solution 19.

=+

=

+=

L35L

L35Lx

L32LLLeq L

85

Chapter 6, Solution 57.

Let dtdiLeqv = (1)

221 vdtdi4vvv +=+= (2)

i = i1 + i2 i2 = i – i1 (3)

3

vdtdi

ordtdi

3v 2112 == (4)

and

0dtdi5

dtdi2v 2

2 =++−

dtdi5

dtdi2v 2

2 += (5)

Incorporating (3) and (4) into (5),

3

v5dtdi7

dtdi5

dtdi5

dtdi2v 21

2 −=−+=

dtdi7

351v2 =

+

dtdi

835v2 =

Substituting this into (2) gives

dtdi

835

dtdi4v +=

dtdi

867

=

Comparing this with (1),

==867Leq 8.375H

Page 25: Chapter 6, Solution 1Chapter 6, Solution 18. For the capacitors in parallel 1 = 15 + 5 + 40 = 60 µF Ceq Hence 10 1 60 1 30 1 20 1 C 1 eq = + + = Ceq = 10 µF Chapter 6, Solution 19.

Chapter 6, Solution 58.

===dtdi3

dtdiLv 3 x slope of i(t).

Thus v is sketched below:

6

t (s)

7 5 1 4 3 2

-6

v(t) (V) 6 Chapter 6, Solution 59.

(a) ( )dtdiLLv 21s +=

21

s

LLv

dtdi

+=

,dtdiL11 =v

dtdiL22 =v

,vLL

Lv s

21

11 += s

21

2L v

LLL

v+

=

(b) dtdi

Ldtdi

Lvv 22

112i ===

21s iii +=

( )

21

21

21

21s

LLLLv

Lv

Lv

dtdi

dtdi

dtdi +

=+=+=

∫∫ =+

== dtdtdi

LLLL

L1vdt

L1i s

21

21

111 s

21

2 iLL

L+

Page 26: Chapter 6, Solution 1Chapter 6, Solution 18. For the capacitors in parallel 1 = 15 + 5 + 40 = 60 µF Ceq Hence 10 1 60 1 30 1 20 1 C 1 eq = + + = Ceq = 10 µF Chapter 6, Solution 19.

=+

== ∫∫ dtdtdi

LLLL

L1vdt

L1i s

21

21

222 s

21

1 iLL

L+

Chapter 6, Solution 60

8

155//3 ==eqL

( ) tteqo ee

dtd

dtdiLv 22 154

815 −− −===

∫∫ −−− +=+=−+=+=t

tt

ttt

ooo eeeidttvLIi

0

2

0

22

0

A 5.15.05.12)15(512)0()(

Chapter 6, Solution 61.

(a) is = i1 + i2 i )0(i)0(i)0( 21s += 6 i)0(i4 2+= 2(0) = 2mA (b) Using current division:

( ) ==+

= − t2s1 e64.0i

203020i 2.4e-2t mA

=−= 1s2 iii 3.6e-2t mA

(c) mH1250

20x302030 ==

( ) === −−− 3t231 10xe6

dtd10x10

dtdiLv -120e-2t µV

( ) === −−− 3t232 10xe6

dtd10x12

dtdiLv -144e-2t µV

(d) ( )6t43mH10 10xe3610x30x

21w −−−=

Je8.021t

t4 µ=

−=

= 24.36nJ

( ) 2/1t6t43

mH30 10xe76.510x30x21w =

−−−=

= 11.693nJ

( ) 2/1t6t43

mH20 10xe96.1210x20x21w =

−−−=

= 17.54 nJ

Page 27: Chapter 6, Solution 1Chapter 6, Solution 18. For the capacitors in parallel 1 = 15 + 5 + 40 = 60 µF Ceq Hence 10 1 60 1 30 1 20 1 C 1 eq = + + = Ceq = 10 µF Chapter 6, Solution 19.

Chapter 6, Solution 62.

(a) mH 4080

60202560//2025 =+=+=xLeq

∫∫ +−−=+=+=→= −−−

− ttt

eqeq ieidte

xidttv

Li

dtdiLv

0

333

3

)0()1(1.0)0(121040

10)0()(1

Using current division,

iiiii41,

43

8060

21 ===

01333.0)0(01.0)0(75.0)0(43)0(1 −=→−=→= iiii

mA 67.2125e- A )08667.01.0(41 3t-3

2 +=+−= − tei

mA 33.367.2125)0(2 −=+−=i

(b) mA 6575e- A )08667.01.0(43 3t-3

1 +=+−= − tei

mA 67.2125e- -3t2 +=i

Chapter 6, Solution 63. We apply superposition principle and let

21 vvvo += where v1 and v2 are due to i1 and i2 respectively.

<<−<<

===63,2

30,22 11

1 tt

dtdi

dtdiLv

<<−<<<<

===64,4

42,020,4

2 222

ttt

dtdi

dtdiLv

Page 28: Chapter 6, Solution 1Chapter 6, Solution 18. For the capacitors in parallel 1 = 15 + 5 + 40 = 60 µF Ceq Hence 10 1 60 1 30 1 20 1 C 1 eq = + + = Ceq = 10 µF Chapter 6, Solution 19.

v1 v2 2 4 0 3 6 t 0 2 4 6 t -2 -4 Adding v1 and v2 gives vo, which is shown below. vo(t) V 6 2 0 2 3 4 6 t (s) -2 -6 Chapter 6, Solution 64.

(a) When the switch is in position A, i=-6 =i(0) When the switch is in position B,

8/1/,34/12)( ====∞ RLi τ

A 93)]()0([)()( 8/ tt eeiiiti −− −=∞−+∞= ι (b) -12 + 4i(0) + v=0, i.e. v=12 – 4i(0) = 36 V (c) At steady state, the inductor becomes a short circuit so that v= 0 V

Page 29: Chapter 6, Solution 1Chapter 6, Solution 18. For the capacitors in parallel 1 = 15 + 5 + 40 = 60 µF Ceq Hence 10 1 60 1 30 1 20 1 C 1 eq = + + = Ceq = 10 µF Chapter 6, Solution 19.

Chapter 6, Solution 65.

(a) === 22115 )4(x5x

21iL

21w 40 W

=−= 220 )2)(20(

21w 40 W

(b) w = w5 + w20 = 80 W

(c) ( )( )3t20011 10xe502005

dtdvLi −−−==

= -50e-200tA

( )3t20022 10xe50)200(20

dtdvLi −−−==

= -200e-200tA

( )3t20022 10xe50)200(20

dtdvLi −−−==

= -200e-200t A (d) i = i1 + i2 = -250e-200t A

Chapter 6, Solution 66. mH60243640601620Leq =+=++=

dtdiLv =

∫ +=t

o)0(ivdt

L1i

∫= 121 dt + 0 mA −

t

o3 t4sin10x60

=−= tot4cos50i 50(1 - cos 4t) mA

mH244060 =

mV)t4cos1)(50(dtd10x24

dtdiLv 3 −== −

= 4.8 sin 4t mV

Page 30: Chapter 6, Solution 1Chapter 6, Solution 18. For the capacitors in parallel 1 = 15 + 5 + 40 = 60 µF Ceq Hence 10 1 60 1 30 1 20 1 C 1 eq = + + = Ceq = 10 µF Chapter 6, Solution 19.

Chapter 6, Solution 67.

∫−= viRC1vo dt, RC = 50 x 103 x 0.04 x 10-6 = 2 x 10-3

∫−

= t50sin10210v

3

o dt

vo = 100 cos 50t mV Chapter 6, Solution 68.

∫−= viRC1vo dt + v(0), RC = 50 x 103 x 100 x 10-6 = 5

vo = ∫ −=+−t

ot20dt10

51

The op amp will saturate at vo = 12± -12 = -2t t = 6s

Chapter 6, Solution 69. RC = 4 x 106 x 1 x 10-6 = 4

∫ ∫−=−= dtv41dtv

RC1v iio

For 0 < t < 1, vi = 20, ∫ =−=t

oo dt2041v -5t mV

For 1 < t < 2, vi = 10, ∫ −−−=+−=t

1o 5)1t(5.2)1(vdt1041v

= -2.5t - 2.5mV

For 2 < t < 4, vi = - 20, ∫ −−=++=t

2o 5.7)2t(5)2(vdt2041v

= 5t - 17.5 mV

For 4 < t < 5m, vi = -10, 5.2)4t(5.2)4(vdt1041v

t

4o +−=+= ∫

= 2.5t - 7.5 mV

For 5 < t < 6, vi = 20, ∫ +−−=+−=t

5o 5)5t(5)5(vdt2041v

= - 5t + 30 mV

Page 31: Chapter 6, Solution 1Chapter 6, Solution 18. For the capacitors in parallel 1 = 15 + 5 + 40 = 60 µF Ceq Hence 10 1 60 1 30 1 20 1 C 1 eq = + + = Ceq = 10 µF Chapter 6, Solution 19.

Thus vo(t) is as shown below:

2 5

6

5

751 432

5

0 Chapter 6, Solution 70.

One possibility is as follows:

50RC

=1

Let R = 100 kΩ, F2.010x100x50

13 µ==C

Chapter 6, Solution 71. By combining a summer with an integrator, we have the circuit below:

∫ ∫ ∫−−−= dtvCR

1dtvCR

1dtvCR

1v 22

22

11

o

−+

For the given problem, C = 2µF, R1C = 1 R1 = 1/(C) = 1006/(2) = 500 kΩ R2C = 1/(4) R2 = 1/(4C) = 500kΩ/(4) = 125 kΩ R3C = 1/(10) R3 = 1/(10C) = 50 kΩ

Page 32: Chapter 6, Solution 1Chapter 6, Solution 18. For the capacitors in parallel 1 = 15 + 5 + 40 = 60 µF Ceq Hence 10 1 60 1 30 1 20 1 C 1 eq = + + = Ceq = 10 µF Chapter 6, Solution 19.

Chapter 6, Solution 72.

The output of the first op amp is

∫−= i1 vRC1v dt = ∫ −=−

t

o63 2t100idt

10x2x10x101

= - 50t

∫−= io vRC1v dt = ∫ −−

t

o63 dt)t50(10x5.0x10x20

1−

= 2500t2 At t = 1.5ms, == −62

o 10x)5.1(2500v 5.625 mV Chapter 6, Solution 73.

Consider the op amp as shown below: Let va = vb = v

At node a, R

vvR

v0 o−=

− 2v - vo = 0 (1)

v +

vo

b + − vi C

R

v R

a

R

−+

R

At node b, dtdvC

Rvv

Rvv oi +

−=

Page 33: Chapter 6, Solution 1Chapter 6, Solution 18. For the capacitors in parallel 1 = 15 + 5 + 40 = 60 µF Ceq Hence 10 1 60 1 30 1 20 1 C 1 eq = + + = Ceq = 10 µF Chapter 6, Solution 19.

dtdvRCvv2v oi +−= (2)

Combining (1) and (2),

dt

dv2

RCvvv oooi +−=

or

∫= io vRC2v dt

showing that the circuit is a noninverting integrator. Chapter 6, Solution 74.

RC = 0.01 x 20 x 10-3 sec

secmdtdv2.0

dtdvRCv i

o −=−=

<<−<<<<−

=4t3,V23t1,V21t0,V2

vo

Thus vo(t) is as sketched below:

3

t (ms)

2 1

-2

vo(t) (V) 2

Page 34: Chapter 6, Solution 1Chapter 6, Solution 18. For the capacitors in parallel 1 = 15 + 5 + 40 = 60 µF Ceq Hence 10 1 60 1 30 1 20 1 C 1 eq = + + = Ceq = 10 µF Chapter 6, Solution 19.

Chapter 6, Solution 75.

,dt

dvRCv i0 −= 5.210x10x10x250RC 63 == −

=−= )t12(dtd5.2vo -30 mV

Chapter 6, Solution 76.

,dt

dvRCv io −= RC = 50 x 103 x 10 x 10-6 = 0.5

<<<<−

==5t5,55t0,10

dtdv5.0v i

o

The input is sketched in Fig. (a), while the output is sketched in Fig. (b).

t (ms)

5

5

0 10

(b)

15

-10

t (ms)

vi(t) (V)

5

5

0 10

(a)

15

vo(t) (V) Chapter 6, Solution 77. i = iR + iC

( )oF

0i v0dtdC

Rv0

R0v

−+−

=−

110x10CR 66F == −

Page 35: Chapter 6, Solution 1Chapter 6, Solution 18. For the capacitors in parallel 1 = 15 + 5 + 40 = 60 µF Ceq Hence 10 1 60 1 30 1 20 1 C 1 eq = + + = Ceq = 10 µF Chapter 6, Solution 19.

Hence

+−=

dtdv

vv ooi

Thus vi is obtained from vo as shown below: –dvo(t)/dt – vo(t) (V)

4

-4

t (ms)

1

4

0 2 3

vi(t) (V)

3

8

2 1

t (ms)

-8

4 -4

4

-4

t (ms)

1

4

0 2 3

Chapter 6, Solution 78.

ooo

2

vdtdv2

t2sin10dtvd

−−=

Thus, by combining integrators with a summer, we obtain the appropriate analog computer as shown below:

Page 36: Chapter 6, Solution 1Chapter 6, Solution 18. For the capacitors in parallel 1 = 15 + 5 + 40 = 60 µF Ceq Hence 10 1 60 1 30 1 20 1 C 1 eq = + + = Ceq = 10 µF Chapter 6, Solution 19.

Chapter 6, Solution 79.

We can write the equation as

)(4)( tytfdtdy

−=

which is implemented by the circuit below. 1 V t=0 C R R R R/4 R dy/dt - - -

+ -y + + R dy/dt

f(t)

R

t = 0

-dvo/dt

dvo/dt

d2vo/dt2

d2vo/dt2

-sin2t

2vo

C C

R

R/10

R

R

R

R/2

R

R

− +

−+

− +

−+

− +

+ − sin2t

−+

vo

R

Page 37: Chapter 6, Solution 1Chapter 6, Solution 18. For the capacitors in parallel 1 = 15 + 5 + 40 = 60 µF Ceq Hence 10 1 60 1 30 1 20 1 C 1 eq = + + = Ceq = 10 µF Chapter 6, Solution 19.

Chapter 6, Solution 80.

From the given circuit,

dt

dvk200k1000v

k5000k1000)t(f

dtvd o

o2o

2

ΩΩ

−ΩΩ

−=

or

)t(fv2dt

dv5

dtvd

oo

2o

2

=++

Chapter 6, Solution 81

We can write the equation as

)(252

2

tfvdtvd

−−=

which is implemented by the circuit below. C C R R - R R/5 d2v/dt2 + - -dv/dt + v - + d2v/dt2 R/2 f(t)

Page 38: Chapter 6, Solution 1Chapter 6, Solution 18. For the capacitors in parallel 1 = 15 + 5 + 40 = 60 µF Ceq Hence 10 1 60 1 30 1 20 1 C 1 eq = + + = Ceq = 10 µF Chapter 6, Solution 19.

Chapter 6, Solution 82 The circuit consists of a summer, an inverter, and an integrator. Such circuit is shown below. 10R R R R - + - vo + R C=1/(2R) R - + + vs - Chapter 6, Solution 83.

Since two 10µF capacitors in series gives 5µF, rated at 600V, it requires 8 groups in parallel with each group consisting of two capacitors in series, as shown below:

+

600

Answer: 8 groups in parallel with each group made up of 2 capacitors in series.

Page 39: Chapter 6, Solution 1Chapter 6, Solution 18. For the capacitors in parallel 1 = 15 + 5 + 40 = 60 µF Ceq Hence 10 1 60 1 30 1 20 1 C 1 eq = + + = Ceq = 10 µF Chapter 6, Solution 19.

Chapter 6, Solution 84.

tqI∆∆

=∆ ∆I x ∆t = ∆q

∆q = 0.6 x 4 x 10-6

= 2.4µC

62.4 10 150

(36 20)q xC nv

−∆= = =∆ −

F

Chapter 6, Solution 85. It is evident that differentiating i will give a waveform similar to v. Hence,

dtdiLv =

<<−

<<=

2t1,t481t0,t4

i

<<−

<<==

2t1,L41t0,L4

dtdiLv

But,

<<−

<<=

2t1,mV51t0,mV5

v

Thus, 4L = 5 x 10-3 L = 1.25 mH in a 1.25 mH inductor Chapter 6, Solution 86. (a) For the series-connected capacitor

Cs = 8C

C1....

CC

=+++

111

For the parallel-connected strings,

=µ=== F3

1000x108C10

C10C sseq 1250µF

Page 40: Chapter 6, Solution 1Chapter 6, Solution 18. For the capacitors in parallel 1 = 15 + 5 + 40 = 60 µF Ceq Hence 10 1 60 1 30 1 20 1 C 1 eq = + + = Ceq = 10 µF Chapter 6, Solution 19.

(b) vT = 8 x 100V = 800V

( ) 262Teq )800(10x1250

21vC

21w −==

= 400J