Top Banner
Vermelding onderdeel organisatie February 1, 2012 1 Chapter 6: Data collection ct5308 Breakwaters and Closure Dams H.J. Verhagen Faculty of Civil Engineering and Geosciences Section Hydraulic Engineering
46

Chapter 6: Data Collection

Jun 19, 2015

Download

Technology

6. Data Collection
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Chapter 6: Data Collection

Vermelding onderdeel organisatie

February 1 2012

1

Chapter 6 Data collection

ct5308 Breakwaters and Closure Dams

HJ Verhagen

Faculty of Civil Engineering and Geosciences Section Hydraulic Engineering

February 1 2012 2

Type of data to be collected

bull Hydrographic data

bull bathymetry

bull tides

bull storm surges

bull waves

bull meteorological data

bull geotechnical data

bull data needed for the construction

bull construction materials

bull equipment

bull labour

February 1 2012 3

Bathymetry

bull Nautical Charts

bull reference level

bull list of symbols

bull date of production

bull Topographical maps

bull Satellite images

bull Custom made maps

bull lead and sextant

bull echosounder and GPS

February 1 2012 4

tides

bullvertical tide

bullhorizontal tide

tide tables (British admiralty)

internet (httptbonebiolscedutidesiteselhtml)

(httpeasytideukhogovuk)

(httpwwwshomfr)

(wwwgetijnl)

For horizontal tides

see hydrographic atlases

or make Delft3D computation

February 1 2012 5

storm surges

httpwwwhurricanecom

February 1 2012 6

waves measurements

February 1 2012 7

Global Wave Statistics (1)

February 1 2012 8

Global wave statistics (2)

February 1 2012 9

processed data

Atlas of the Oceans

Wind and Wave data

February 1 2012 10

ERA-40 wave atlas

httpwwwknminl

onderzkoceano

wavesera40

February 1 2012 11

wave data for North Sea

February 1 2012 12

example from Argoss (wwwwaveclimatecom)

standard histogram

February 1 2012 13

exceedance table

February 1 2012 14

exceedance graph

February 1 2012 15

comparison buoys and ship data

February 1 2012 16

Data from wwwhydrobasenet

February 1 2012 17

Sample output of Hydrobase

February 1 2012 18

Data from Hydrobase

February 1 2012 19

data from Meetpost Noordwijk

wwwgolfklimaatnl

0

50

100

150

200

250

300

350

400

450

0 200 400 600 800

time (hrs)

Hm

o (

cm

)

January 1979

February 1 2012 20

basic data

date time Hm0 accur H13 TTE3 Tm02 TH13 wave wind wind level setup

dir dir speed

cm cm cm 1 s 1 s 1 s degr degr 1 ms cm cm

19980101 0100 70 4 64 6 39 49 261 210 60 -27 27 222224000

19980101 0400 72 4 65 8 36 45 264 210 70 91 24 222224000

19980101 0700 62 4 56 8 36 46 258 200 80 58 11 222224000

19980101 1000 93 5 85 11 40 48 234 190 90 -31 6 222224000

19980101 1300 110 5 102 14 44 51 230 200 90 -83 -5 222224000

19980101 1600 162 7 148 17 42 52 230 200 120 43 -12 222224000

19980101 1900 132 6 121 11 40 48 224 190 130 40 -37 222224000

19980101 2200 205 8 190 18 51 61 220 190 170 -39 -33 222224000

19980102 0100 247 10 230 37 56 68 229 190 170 -114 -57 222224000

19980102 0400 275 11 255 40 55 68 236 210 160 -1 -1 222224000

19980102 0700 208 8 193 20 50 63 234 200 140 -2 -72 222224000

19980102 1000 142 6 132 14 47 59 227 190 120 -59 -13 222224000

19980102 1300 130 6 120 14 50 64 223 160 110 -97 -22 222224000

19980102 1600 117 5 108 13 43 53 213 170 100 73 87 222224000

19980102 1900 91 5 84 10 39 49 232 210 100 152 58 222224000

19980102 2200 243 10 226 22 52 62 267 280 150 119 118 222224000

19980103 0100 287 12 269 32 59 70 269 260 110 25 73 222224000

19980103 0400 240 10 224 21 55 66 265 230 90 28 60 222224000

19980103 0700 177 7 163 13 46 56 245 200 130 122 37 222224000

19980103 1000 179 7 165 16 47 56 223 180 170 -30 3 222224000

19980103 1300 285 12 266 35 58 70 230 210 190 -43 16 222224000

19980103 1600 341 15 318 56 61 73 242 250 130 -36 14 222224000

19980103 1900 342 15 319 53 60 73 246 260 170 133 20 222224000

19980103 2200 414 21 388 85 65 77 249 260 190 72 46 222224000

19980104 0100 465 21 435 228 72 88 254 260 190 40 68 222224000

19980104 0400 358 16 334 92 64 78 259 240 90 -22 18 222224000

19980104 0700 324 14 302 52 60 73 256 250 120 129 43 222224000

19980104 1000 247 10 229 33 55 69 252 220 100 34 33 222224000

February 1 2012 21

sort data in classes

Waveheight class Hs (cm)

Number of observations

P Q -ln(Q)

0 25 35 35 0000599 0999401 0000599

25 50 8260 8295 0141940 0858060 0153082 50 75 11424 19719 0337423 0662577 0411618

75 100 10004 29723 0508607 0491393 0710511

100 125 7649 37372 0639493 0360507 1020245

125 150 5563 42935 0734685 0265315 1326838

150 175 4389 47324 0809788 0190212 1659615

175 200 3167 50491 0863980 0136020 1994954

200 225 2360 52851 0904363 0095637 2347200

225 250 1671 54522 0932957 0067043 2702419

250 275 1234 55756 0954073 0045927 3080692

275 300 851 56607 0968634 0031366 3462047

300 325 556 57163 0978149 0021851 3823487

325 350 392 57555 0984856 0015144 4190168

350 375 276 57831 0989579 0010421 4563938

375 400 206 58037 0993104 0006896 4976819

400 425 136 58173 0995431 0004569 5388507

425 450 82 58255 0996834 0003166 5755400

450 475 66 58321 0997964 0002036 6196632

475 500 38 58359 0998614 0001386 6581307

500 525 30 58389 0999127 0000873 7043930

525 550 20 58409 0999470 0000530 7541769

550 575 22 58431 0999846 0000154 8778531

575 600 9 58440 1000000 0000000

58440

( )s sP P H H

( ) 1s sQ Q H H P

all data Noordwijk

y = 00151x - 05001

R2 = 09881

0

1

2

3

4

5

6

7

8

9

10

0 200 400 600Hs-l

nQ

February 1 2012 22

exceedance graph for Noordwijk

indivudual observations

0

200

400

600

800

1000

000001000001000001000001000001000001000000

exceedance

wave h

eig

ht

But what means that in a year during 01

of the time the Hs is larger than 5 m

February 1 2012 23

Peak over Threshold method

A storm is defined as a time that the wave is higher than a

certain value the height of the storm Hss is equal to the

highest observed Hs during that storm

Threshold = 15

In this period 9

storms observed

nr Hss

1 180 m

2 294 m

3 225 m

4 176 m

5 261 m

6 389 m

7 172 m

8 240 m

9 194 m

February 1 2012 24

Table with Hss classes

= 124 Wave height class

150 cumul P Q Qs W

150 175 384 384 021993 078007 6810 032522 175 200 381 765 043814 056186 4905 064136 200 225 266 1031 059049 040951 3575 091261 225 250 157 1188 068041 031959 2790 111202 250 275 148 1336 076518 023482 2050 134858 275 300 111 1447 082875 017125 1495 158094 300 325 81 1528 087514 012486 1090 180552 325 350 63 1591 091123 008877 775 204065 350 375 31 1622 092898 007102 620 219099 375 400 32 1654 094731 005269 460 238832 400 425 23 1677 096048 003952 345 257486 425 450 11 1688 096678 003322 290 268590 450 475 20 1708 097824 002176 190 295184 475 500 9 1717 098339 001661 145 311883 500 525 7 1724 098740 001260 110 328731 525 550 9 1733 099255 000745 065 360263 550 575 8 1741 099714 000286 025 415922 575 600 5 1746 1 0 000 DIV0 1746 20 year 873 Slope 085586 Intercept -104906 correlation 099524 beta 116842 gamma 122575

Hss for condition 1 10 668997

( )ss ssP P H H

1ss ssQ Q H H P

threshold 15 m

y = -07849Ln(x) + 16329

R2 = 09854

0

2

4

6

8

000010000100001000010000100000probability of exceedence

sto

rm h

eig

ht

Hss

February 1 2012 25

How to get storm exceedance

Q = probability of exceedance of a wave

Qs = probability of exceedance of a storm

s sQ N Qthreshold 15 m

y = -07849Ln(x) + 5141

R2 = 09854

0

2

4

6

8

10

001010100100010000

storm exceedence probability per year

sto

rm h

eig

ht

Hss

Statistically

nonsense

February 1 2012 26

The ldquoonce in 500 years stormrdquo

0785ln( )

10785ln 5141

500

100

ss sH Q

m

threshold 15 m

y = -07849Ln(x) + 5141

R2 = 09854

0

2

4

6

8

10

001010100100010000

storm exceedence probability per year

sto

rm h

eig

ht

Hss

February 1 2012 27

Using the Gumbel distribution

exp exp ssHP

February 1 2012 28

determination of and

ln exp

1ln ln

ss

ss

ssss

GAH B

HP

HP H

1ln lnG

P

Perform linear regression

for G = A Hss - B

February 1 2012 29

data for calculation of Gumbel 150 cumul P Q ln(Qs) -ln(H) Qs G

150 175 384 384 021993 078007 422098 -056 6810 -0415046

175 200 381 765 043814 056186 389284 -069 4905 0192121

200 225 266 1031 059049 040951 357655 -081 3575 0640938

225 250 157 1188 068041 031959 332863 -092 2790 0954366

250 275 148 1336 076518 023482 302042 -101 2050 1318085

275 300 111 1447 082875 017125 270471 -11 1495 1672191

300 325 81 1528 087514 012486 238876 -118 1090 2014645

325 350 63 1591 091123 008877 204769 -125 775 2375535

350 375 31 1622 092898 007102 182455 -132 620 2608194

375 400 32 1654 094731 005269 152606 -139 460 2916351

400 425 23 1677 096048 003952 123837 -145 345 3210883

425 450 11 1688 096678 003322 106471 -15 290 3387796

450 475 20 1708 097824 002176 064185 -156 190 3816515

475 500 9 1717 098339 001661 037156 -161 145 4089424

500 525 7 1724 098740 001260 009531 -166 110 4367707

525 550 9 1733 099255 000745 -043078 -17 065 4896399

550 575 8 1741 099714 000286 -138629 -175 025 5854211

575 600 5 1746 1 0 NUM -179 000 NUM

February 1 2012 30

Gumbel exceedance graph

Gumbel distribution

y = 07234x + 1882

R2 = 09871

0

2

4

6

8

10

0 2 4 6 8 10Gumbel Reduced variable

Sto

rm h

eig

ht

Hs

s

ssG AH B

= 1A = 0723

= B =1882

February 1 2012 31

calculation of a value

1ln ln

1ln ln

1

1ln ln

1

ln ln

ss

s

s

s

s s

HP

Q

QN

N

N Q

1500

873188 073ln ln 967

1873500

sH

= 1A = 073

= B =188

February 1 2012 32

transformation of the axis

Gumbel distribution

y = 07234x + 1882

R2 = 09871

0

2

4

6

8

10

0 2 4 6 8 10Gumbel Reduced variable

Sto

rm h

eig

ht

Hs

s

ln ln s

s s

NG

N Q

Ns = 873 storms per year

Qs G

110

1100

11000

110000

677

907

1138

1368

Figure Error No text of specified style in document-1 Storm exceedance on basis of Gumbel

10 100

February 1 2012 33

Weibull distribution

exp ssHQ

February 1 2012 34

determination of the reduced variable

1

1

ln

ln

1ln

ss

ss

ss

ss

WAH B

HQ

HQ

Q H

1

lnW Q

Three variables

and

So iteration is needed

February 1 2012 35

calculation for Weibull

alfa= 124

150 cumul P Q ln(Qs) -ln(H) Qs W

150 175 384 384 021993 078007 422098 -056 6810 032522

175 200 381 765 043814 056186 389284 -069 4905 064136

200 225 266 1031 059049 040951 357655 -081 3575 091261

225 250 157 1188 068041 031959 332863 -092 2790 111202

250 275 148 1336 076518 023482 302042 -101 2050 134858

275 300 111 1447 082875 017125 270471 -11 1495 158094

300 325 81 1528 087514 012486 238876 -118 1090 180552

325 350 63 1591 091123 008877 204769 -125 775 204065

350 375 31 1622 092898 007102 182455 -132 620 219099

375 400 32 1654 094731 005269 152606 -139 460 238832

400 425 23 1677 096048 003952 123837 -145 345 257486

425 450 11 1688 096678 003322 106471 -15 290 268590

450 475 20 1708 097824 002176 064185 -156 190 295184

475 500 9 1717 098339 001661 037156 -161 145 311883

500 525 7 1724 098740 001260 009531 -166 110 328731

525 550 9 1733 099255 000745 -043078 -17 065 360263

550 575 8 1741 099714 000286 -138629 -175 025 415922

575 600 5 1746 1 0 NUM -179 000 DIV0

1746

20 year 873 085586

-104906

099524

-07849

541 beta 116842

gamma 122575

Hs for condition 1 500 1028785 911838

1

lnssH Q

1

ln sss

s

QH

N

1124

1500

1500122 117 ln

873

122 117 675

912

sH

m

February 1 2012 36

Weibull exceedance graph

Weibull distribution

y = 11573x + 12497

R2 = 09905

0

2

4

6

8

10

0 2 4 6 8 10

Weibull Reduced variable

Str

om

heig

ht

Hss

10 100 1000 10000

February 1 2012 37

Summary

HT threshold value

Exponential

Gumbel

Weibull

150 m 163 m 136 m 122 m

HT 150 200 250 300 350 400

Ns 873 596 389 194 108 53

Hs 1500 Exponential Hs 1500 Gumbel Hs 1500 Weibull

1000 969 912

1009 950 990

948 917 963

939 893 948

908 886 917

876 818 890

February 1 2012 38

What to do if only random data are available

storm exceedance

0

200

400

600

800

01110100100010000

probability per year

Hs

s

February 1 2012 39

Example of long term data

This are

Hs-classes

February 1 2012 40

Long term (continuation)

So from this last column we can conclude

100 of time H gt 0 m s

23 of time H gt 1 m s

12 of time H gt 2 m s

001 of time H gt 9 m s

0

2

4

6

8

10

12

14

1E-071E-061E-051E-041E-031E-021E-011E+00

exceedance per year

wave

he

igh

t H

s (

m)

February 1 2012 41

From probability of waves to probability of storms

Suppose a ldquostormrdquo lasts for 12 hrs

===gt 730 stormsyear

once per year storm = 100730 = 013 =gt 67 m

once per 10 year storm = 0013 =gt 94 m

once per 100 year storm = 00013 =gt 119 m

0

5

10

15

20

1 10 100 1000 10000

return period in years

Hs o

f th

e g

ive

n s

torm

February 1 2012 42

Meteorological data

bull Not of direct importance for design

bull Can be important for hindcast of wave data and storm surge

bull Extremely important for the execution of the works (workability)

February 1 2012 43

Waves from Wind (Brettschneider)

February 1 2012 44

required soil data

February 1 2012 45

in situ test methods

February 1 2012 46

During construction

bull Quarry stone

bull Concrete

bull Local Equipment

bull Labour

bull skilled

bull cost

bull availability

bull expatriates

Page 2: Chapter 6: Data Collection

February 1 2012 2

Type of data to be collected

bull Hydrographic data

bull bathymetry

bull tides

bull storm surges

bull waves

bull meteorological data

bull geotechnical data

bull data needed for the construction

bull construction materials

bull equipment

bull labour

February 1 2012 3

Bathymetry

bull Nautical Charts

bull reference level

bull list of symbols

bull date of production

bull Topographical maps

bull Satellite images

bull Custom made maps

bull lead and sextant

bull echosounder and GPS

February 1 2012 4

tides

bullvertical tide

bullhorizontal tide

tide tables (British admiralty)

internet (httptbonebiolscedutidesiteselhtml)

(httpeasytideukhogovuk)

(httpwwwshomfr)

(wwwgetijnl)

For horizontal tides

see hydrographic atlases

or make Delft3D computation

February 1 2012 5

storm surges

httpwwwhurricanecom

February 1 2012 6

waves measurements

February 1 2012 7

Global Wave Statistics (1)

February 1 2012 8

Global wave statistics (2)

February 1 2012 9

processed data

Atlas of the Oceans

Wind and Wave data

February 1 2012 10

ERA-40 wave atlas

httpwwwknminl

onderzkoceano

wavesera40

February 1 2012 11

wave data for North Sea

February 1 2012 12

example from Argoss (wwwwaveclimatecom)

standard histogram

February 1 2012 13

exceedance table

February 1 2012 14

exceedance graph

February 1 2012 15

comparison buoys and ship data

February 1 2012 16

Data from wwwhydrobasenet

February 1 2012 17

Sample output of Hydrobase

February 1 2012 18

Data from Hydrobase

February 1 2012 19

data from Meetpost Noordwijk

wwwgolfklimaatnl

0

50

100

150

200

250

300

350

400

450

0 200 400 600 800

time (hrs)

Hm

o (

cm

)

January 1979

February 1 2012 20

basic data

date time Hm0 accur H13 TTE3 Tm02 TH13 wave wind wind level setup

dir dir speed

cm cm cm 1 s 1 s 1 s degr degr 1 ms cm cm

19980101 0100 70 4 64 6 39 49 261 210 60 -27 27 222224000

19980101 0400 72 4 65 8 36 45 264 210 70 91 24 222224000

19980101 0700 62 4 56 8 36 46 258 200 80 58 11 222224000

19980101 1000 93 5 85 11 40 48 234 190 90 -31 6 222224000

19980101 1300 110 5 102 14 44 51 230 200 90 -83 -5 222224000

19980101 1600 162 7 148 17 42 52 230 200 120 43 -12 222224000

19980101 1900 132 6 121 11 40 48 224 190 130 40 -37 222224000

19980101 2200 205 8 190 18 51 61 220 190 170 -39 -33 222224000

19980102 0100 247 10 230 37 56 68 229 190 170 -114 -57 222224000

19980102 0400 275 11 255 40 55 68 236 210 160 -1 -1 222224000

19980102 0700 208 8 193 20 50 63 234 200 140 -2 -72 222224000

19980102 1000 142 6 132 14 47 59 227 190 120 -59 -13 222224000

19980102 1300 130 6 120 14 50 64 223 160 110 -97 -22 222224000

19980102 1600 117 5 108 13 43 53 213 170 100 73 87 222224000

19980102 1900 91 5 84 10 39 49 232 210 100 152 58 222224000

19980102 2200 243 10 226 22 52 62 267 280 150 119 118 222224000

19980103 0100 287 12 269 32 59 70 269 260 110 25 73 222224000

19980103 0400 240 10 224 21 55 66 265 230 90 28 60 222224000

19980103 0700 177 7 163 13 46 56 245 200 130 122 37 222224000

19980103 1000 179 7 165 16 47 56 223 180 170 -30 3 222224000

19980103 1300 285 12 266 35 58 70 230 210 190 -43 16 222224000

19980103 1600 341 15 318 56 61 73 242 250 130 -36 14 222224000

19980103 1900 342 15 319 53 60 73 246 260 170 133 20 222224000

19980103 2200 414 21 388 85 65 77 249 260 190 72 46 222224000

19980104 0100 465 21 435 228 72 88 254 260 190 40 68 222224000

19980104 0400 358 16 334 92 64 78 259 240 90 -22 18 222224000

19980104 0700 324 14 302 52 60 73 256 250 120 129 43 222224000

19980104 1000 247 10 229 33 55 69 252 220 100 34 33 222224000

February 1 2012 21

sort data in classes

Waveheight class Hs (cm)

Number of observations

P Q -ln(Q)

0 25 35 35 0000599 0999401 0000599

25 50 8260 8295 0141940 0858060 0153082 50 75 11424 19719 0337423 0662577 0411618

75 100 10004 29723 0508607 0491393 0710511

100 125 7649 37372 0639493 0360507 1020245

125 150 5563 42935 0734685 0265315 1326838

150 175 4389 47324 0809788 0190212 1659615

175 200 3167 50491 0863980 0136020 1994954

200 225 2360 52851 0904363 0095637 2347200

225 250 1671 54522 0932957 0067043 2702419

250 275 1234 55756 0954073 0045927 3080692

275 300 851 56607 0968634 0031366 3462047

300 325 556 57163 0978149 0021851 3823487

325 350 392 57555 0984856 0015144 4190168

350 375 276 57831 0989579 0010421 4563938

375 400 206 58037 0993104 0006896 4976819

400 425 136 58173 0995431 0004569 5388507

425 450 82 58255 0996834 0003166 5755400

450 475 66 58321 0997964 0002036 6196632

475 500 38 58359 0998614 0001386 6581307

500 525 30 58389 0999127 0000873 7043930

525 550 20 58409 0999470 0000530 7541769

550 575 22 58431 0999846 0000154 8778531

575 600 9 58440 1000000 0000000

58440

( )s sP P H H

( ) 1s sQ Q H H P

all data Noordwijk

y = 00151x - 05001

R2 = 09881

0

1

2

3

4

5

6

7

8

9

10

0 200 400 600Hs-l

nQ

February 1 2012 22

exceedance graph for Noordwijk

indivudual observations

0

200

400

600

800

1000

000001000001000001000001000001000001000000

exceedance

wave h

eig

ht

But what means that in a year during 01

of the time the Hs is larger than 5 m

February 1 2012 23

Peak over Threshold method

A storm is defined as a time that the wave is higher than a

certain value the height of the storm Hss is equal to the

highest observed Hs during that storm

Threshold = 15

In this period 9

storms observed

nr Hss

1 180 m

2 294 m

3 225 m

4 176 m

5 261 m

6 389 m

7 172 m

8 240 m

9 194 m

February 1 2012 24

Table with Hss classes

= 124 Wave height class

150 cumul P Q Qs W

150 175 384 384 021993 078007 6810 032522 175 200 381 765 043814 056186 4905 064136 200 225 266 1031 059049 040951 3575 091261 225 250 157 1188 068041 031959 2790 111202 250 275 148 1336 076518 023482 2050 134858 275 300 111 1447 082875 017125 1495 158094 300 325 81 1528 087514 012486 1090 180552 325 350 63 1591 091123 008877 775 204065 350 375 31 1622 092898 007102 620 219099 375 400 32 1654 094731 005269 460 238832 400 425 23 1677 096048 003952 345 257486 425 450 11 1688 096678 003322 290 268590 450 475 20 1708 097824 002176 190 295184 475 500 9 1717 098339 001661 145 311883 500 525 7 1724 098740 001260 110 328731 525 550 9 1733 099255 000745 065 360263 550 575 8 1741 099714 000286 025 415922 575 600 5 1746 1 0 000 DIV0 1746 20 year 873 Slope 085586 Intercept -104906 correlation 099524 beta 116842 gamma 122575

Hss for condition 1 10 668997

( )ss ssP P H H

1ss ssQ Q H H P

threshold 15 m

y = -07849Ln(x) + 16329

R2 = 09854

0

2

4

6

8

000010000100001000010000100000probability of exceedence

sto

rm h

eig

ht

Hss

February 1 2012 25

How to get storm exceedance

Q = probability of exceedance of a wave

Qs = probability of exceedance of a storm

s sQ N Qthreshold 15 m

y = -07849Ln(x) + 5141

R2 = 09854

0

2

4

6

8

10

001010100100010000

storm exceedence probability per year

sto

rm h

eig

ht

Hss

Statistically

nonsense

February 1 2012 26

The ldquoonce in 500 years stormrdquo

0785ln( )

10785ln 5141

500

100

ss sH Q

m

threshold 15 m

y = -07849Ln(x) + 5141

R2 = 09854

0

2

4

6

8

10

001010100100010000

storm exceedence probability per year

sto

rm h

eig

ht

Hss

February 1 2012 27

Using the Gumbel distribution

exp exp ssHP

February 1 2012 28

determination of and

ln exp

1ln ln

ss

ss

ssss

GAH B

HP

HP H

1ln lnG

P

Perform linear regression

for G = A Hss - B

February 1 2012 29

data for calculation of Gumbel 150 cumul P Q ln(Qs) -ln(H) Qs G

150 175 384 384 021993 078007 422098 -056 6810 -0415046

175 200 381 765 043814 056186 389284 -069 4905 0192121

200 225 266 1031 059049 040951 357655 -081 3575 0640938

225 250 157 1188 068041 031959 332863 -092 2790 0954366

250 275 148 1336 076518 023482 302042 -101 2050 1318085

275 300 111 1447 082875 017125 270471 -11 1495 1672191

300 325 81 1528 087514 012486 238876 -118 1090 2014645

325 350 63 1591 091123 008877 204769 -125 775 2375535

350 375 31 1622 092898 007102 182455 -132 620 2608194

375 400 32 1654 094731 005269 152606 -139 460 2916351

400 425 23 1677 096048 003952 123837 -145 345 3210883

425 450 11 1688 096678 003322 106471 -15 290 3387796

450 475 20 1708 097824 002176 064185 -156 190 3816515

475 500 9 1717 098339 001661 037156 -161 145 4089424

500 525 7 1724 098740 001260 009531 -166 110 4367707

525 550 9 1733 099255 000745 -043078 -17 065 4896399

550 575 8 1741 099714 000286 -138629 -175 025 5854211

575 600 5 1746 1 0 NUM -179 000 NUM

February 1 2012 30

Gumbel exceedance graph

Gumbel distribution

y = 07234x + 1882

R2 = 09871

0

2

4

6

8

10

0 2 4 6 8 10Gumbel Reduced variable

Sto

rm h

eig

ht

Hs

s

ssG AH B

= 1A = 0723

= B =1882

February 1 2012 31

calculation of a value

1ln ln

1ln ln

1

1ln ln

1

ln ln

ss

s

s

s

s s

HP

Q

QN

N

N Q

1500

873188 073ln ln 967

1873500

sH

= 1A = 073

= B =188

February 1 2012 32

transformation of the axis

Gumbel distribution

y = 07234x + 1882

R2 = 09871

0

2

4

6

8

10

0 2 4 6 8 10Gumbel Reduced variable

Sto

rm h

eig

ht

Hs

s

ln ln s

s s

NG

N Q

Ns = 873 storms per year

Qs G

110

1100

11000

110000

677

907

1138

1368

Figure Error No text of specified style in document-1 Storm exceedance on basis of Gumbel

10 100

February 1 2012 33

Weibull distribution

exp ssHQ

February 1 2012 34

determination of the reduced variable

1

1

ln

ln

1ln

ss

ss

ss

ss

WAH B

HQ

HQ

Q H

1

lnW Q

Three variables

and

So iteration is needed

February 1 2012 35

calculation for Weibull

alfa= 124

150 cumul P Q ln(Qs) -ln(H) Qs W

150 175 384 384 021993 078007 422098 -056 6810 032522

175 200 381 765 043814 056186 389284 -069 4905 064136

200 225 266 1031 059049 040951 357655 -081 3575 091261

225 250 157 1188 068041 031959 332863 -092 2790 111202

250 275 148 1336 076518 023482 302042 -101 2050 134858

275 300 111 1447 082875 017125 270471 -11 1495 158094

300 325 81 1528 087514 012486 238876 -118 1090 180552

325 350 63 1591 091123 008877 204769 -125 775 204065

350 375 31 1622 092898 007102 182455 -132 620 219099

375 400 32 1654 094731 005269 152606 -139 460 238832

400 425 23 1677 096048 003952 123837 -145 345 257486

425 450 11 1688 096678 003322 106471 -15 290 268590

450 475 20 1708 097824 002176 064185 -156 190 295184

475 500 9 1717 098339 001661 037156 -161 145 311883

500 525 7 1724 098740 001260 009531 -166 110 328731

525 550 9 1733 099255 000745 -043078 -17 065 360263

550 575 8 1741 099714 000286 -138629 -175 025 415922

575 600 5 1746 1 0 NUM -179 000 DIV0

1746

20 year 873 085586

-104906

099524

-07849

541 beta 116842

gamma 122575

Hs for condition 1 500 1028785 911838

1

lnssH Q

1

ln sss

s

QH

N

1124

1500

1500122 117 ln

873

122 117 675

912

sH

m

February 1 2012 36

Weibull exceedance graph

Weibull distribution

y = 11573x + 12497

R2 = 09905

0

2

4

6

8

10

0 2 4 6 8 10

Weibull Reduced variable

Str

om

heig

ht

Hss

10 100 1000 10000

February 1 2012 37

Summary

HT threshold value

Exponential

Gumbel

Weibull

150 m 163 m 136 m 122 m

HT 150 200 250 300 350 400

Ns 873 596 389 194 108 53

Hs 1500 Exponential Hs 1500 Gumbel Hs 1500 Weibull

1000 969 912

1009 950 990

948 917 963

939 893 948

908 886 917

876 818 890

February 1 2012 38

What to do if only random data are available

storm exceedance

0

200

400

600

800

01110100100010000

probability per year

Hs

s

February 1 2012 39

Example of long term data

This are

Hs-classes

February 1 2012 40

Long term (continuation)

So from this last column we can conclude

100 of time H gt 0 m s

23 of time H gt 1 m s

12 of time H gt 2 m s

001 of time H gt 9 m s

0

2

4

6

8

10

12

14

1E-071E-061E-051E-041E-031E-021E-011E+00

exceedance per year

wave

he

igh

t H

s (

m)

February 1 2012 41

From probability of waves to probability of storms

Suppose a ldquostormrdquo lasts for 12 hrs

===gt 730 stormsyear

once per year storm = 100730 = 013 =gt 67 m

once per 10 year storm = 0013 =gt 94 m

once per 100 year storm = 00013 =gt 119 m

0

5

10

15

20

1 10 100 1000 10000

return period in years

Hs o

f th

e g

ive

n s

torm

February 1 2012 42

Meteorological data

bull Not of direct importance for design

bull Can be important for hindcast of wave data and storm surge

bull Extremely important for the execution of the works (workability)

February 1 2012 43

Waves from Wind (Brettschneider)

February 1 2012 44

required soil data

February 1 2012 45

in situ test methods

February 1 2012 46

During construction

bull Quarry stone

bull Concrete

bull Local Equipment

bull Labour

bull skilled

bull cost

bull availability

bull expatriates

Page 3: Chapter 6: Data Collection

February 1 2012 3

Bathymetry

bull Nautical Charts

bull reference level

bull list of symbols

bull date of production

bull Topographical maps

bull Satellite images

bull Custom made maps

bull lead and sextant

bull echosounder and GPS

February 1 2012 4

tides

bullvertical tide

bullhorizontal tide

tide tables (British admiralty)

internet (httptbonebiolscedutidesiteselhtml)

(httpeasytideukhogovuk)

(httpwwwshomfr)

(wwwgetijnl)

For horizontal tides

see hydrographic atlases

or make Delft3D computation

February 1 2012 5

storm surges

httpwwwhurricanecom

February 1 2012 6

waves measurements

February 1 2012 7

Global Wave Statistics (1)

February 1 2012 8

Global wave statistics (2)

February 1 2012 9

processed data

Atlas of the Oceans

Wind and Wave data

February 1 2012 10

ERA-40 wave atlas

httpwwwknminl

onderzkoceano

wavesera40

February 1 2012 11

wave data for North Sea

February 1 2012 12

example from Argoss (wwwwaveclimatecom)

standard histogram

February 1 2012 13

exceedance table

February 1 2012 14

exceedance graph

February 1 2012 15

comparison buoys and ship data

February 1 2012 16

Data from wwwhydrobasenet

February 1 2012 17

Sample output of Hydrobase

February 1 2012 18

Data from Hydrobase

February 1 2012 19

data from Meetpost Noordwijk

wwwgolfklimaatnl

0

50

100

150

200

250

300

350

400

450

0 200 400 600 800

time (hrs)

Hm

o (

cm

)

January 1979

February 1 2012 20

basic data

date time Hm0 accur H13 TTE3 Tm02 TH13 wave wind wind level setup

dir dir speed

cm cm cm 1 s 1 s 1 s degr degr 1 ms cm cm

19980101 0100 70 4 64 6 39 49 261 210 60 -27 27 222224000

19980101 0400 72 4 65 8 36 45 264 210 70 91 24 222224000

19980101 0700 62 4 56 8 36 46 258 200 80 58 11 222224000

19980101 1000 93 5 85 11 40 48 234 190 90 -31 6 222224000

19980101 1300 110 5 102 14 44 51 230 200 90 -83 -5 222224000

19980101 1600 162 7 148 17 42 52 230 200 120 43 -12 222224000

19980101 1900 132 6 121 11 40 48 224 190 130 40 -37 222224000

19980101 2200 205 8 190 18 51 61 220 190 170 -39 -33 222224000

19980102 0100 247 10 230 37 56 68 229 190 170 -114 -57 222224000

19980102 0400 275 11 255 40 55 68 236 210 160 -1 -1 222224000

19980102 0700 208 8 193 20 50 63 234 200 140 -2 -72 222224000

19980102 1000 142 6 132 14 47 59 227 190 120 -59 -13 222224000

19980102 1300 130 6 120 14 50 64 223 160 110 -97 -22 222224000

19980102 1600 117 5 108 13 43 53 213 170 100 73 87 222224000

19980102 1900 91 5 84 10 39 49 232 210 100 152 58 222224000

19980102 2200 243 10 226 22 52 62 267 280 150 119 118 222224000

19980103 0100 287 12 269 32 59 70 269 260 110 25 73 222224000

19980103 0400 240 10 224 21 55 66 265 230 90 28 60 222224000

19980103 0700 177 7 163 13 46 56 245 200 130 122 37 222224000

19980103 1000 179 7 165 16 47 56 223 180 170 -30 3 222224000

19980103 1300 285 12 266 35 58 70 230 210 190 -43 16 222224000

19980103 1600 341 15 318 56 61 73 242 250 130 -36 14 222224000

19980103 1900 342 15 319 53 60 73 246 260 170 133 20 222224000

19980103 2200 414 21 388 85 65 77 249 260 190 72 46 222224000

19980104 0100 465 21 435 228 72 88 254 260 190 40 68 222224000

19980104 0400 358 16 334 92 64 78 259 240 90 -22 18 222224000

19980104 0700 324 14 302 52 60 73 256 250 120 129 43 222224000

19980104 1000 247 10 229 33 55 69 252 220 100 34 33 222224000

February 1 2012 21

sort data in classes

Waveheight class Hs (cm)

Number of observations

P Q -ln(Q)

0 25 35 35 0000599 0999401 0000599

25 50 8260 8295 0141940 0858060 0153082 50 75 11424 19719 0337423 0662577 0411618

75 100 10004 29723 0508607 0491393 0710511

100 125 7649 37372 0639493 0360507 1020245

125 150 5563 42935 0734685 0265315 1326838

150 175 4389 47324 0809788 0190212 1659615

175 200 3167 50491 0863980 0136020 1994954

200 225 2360 52851 0904363 0095637 2347200

225 250 1671 54522 0932957 0067043 2702419

250 275 1234 55756 0954073 0045927 3080692

275 300 851 56607 0968634 0031366 3462047

300 325 556 57163 0978149 0021851 3823487

325 350 392 57555 0984856 0015144 4190168

350 375 276 57831 0989579 0010421 4563938

375 400 206 58037 0993104 0006896 4976819

400 425 136 58173 0995431 0004569 5388507

425 450 82 58255 0996834 0003166 5755400

450 475 66 58321 0997964 0002036 6196632

475 500 38 58359 0998614 0001386 6581307

500 525 30 58389 0999127 0000873 7043930

525 550 20 58409 0999470 0000530 7541769

550 575 22 58431 0999846 0000154 8778531

575 600 9 58440 1000000 0000000

58440

( )s sP P H H

( ) 1s sQ Q H H P

all data Noordwijk

y = 00151x - 05001

R2 = 09881

0

1

2

3

4

5

6

7

8

9

10

0 200 400 600Hs-l

nQ

February 1 2012 22

exceedance graph for Noordwijk

indivudual observations

0

200

400

600

800

1000

000001000001000001000001000001000001000000

exceedance

wave h

eig

ht

But what means that in a year during 01

of the time the Hs is larger than 5 m

February 1 2012 23

Peak over Threshold method

A storm is defined as a time that the wave is higher than a

certain value the height of the storm Hss is equal to the

highest observed Hs during that storm

Threshold = 15

In this period 9

storms observed

nr Hss

1 180 m

2 294 m

3 225 m

4 176 m

5 261 m

6 389 m

7 172 m

8 240 m

9 194 m

February 1 2012 24

Table with Hss classes

= 124 Wave height class

150 cumul P Q Qs W

150 175 384 384 021993 078007 6810 032522 175 200 381 765 043814 056186 4905 064136 200 225 266 1031 059049 040951 3575 091261 225 250 157 1188 068041 031959 2790 111202 250 275 148 1336 076518 023482 2050 134858 275 300 111 1447 082875 017125 1495 158094 300 325 81 1528 087514 012486 1090 180552 325 350 63 1591 091123 008877 775 204065 350 375 31 1622 092898 007102 620 219099 375 400 32 1654 094731 005269 460 238832 400 425 23 1677 096048 003952 345 257486 425 450 11 1688 096678 003322 290 268590 450 475 20 1708 097824 002176 190 295184 475 500 9 1717 098339 001661 145 311883 500 525 7 1724 098740 001260 110 328731 525 550 9 1733 099255 000745 065 360263 550 575 8 1741 099714 000286 025 415922 575 600 5 1746 1 0 000 DIV0 1746 20 year 873 Slope 085586 Intercept -104906 correlation 099524 beta 116842 gamma 122575

Hss for condition 1 10 668997

( )ss ssP P H H

1ss ssQ Q H H P

threshold 15 m

y = -07849Ln(x) + 16329

R2 = 09854

0

2

4

6

8

000010000100001000010000100000probability of exceedence

sto

rm h

eig

ht

Hss

February 1 2012 25

How to get storm exceedance

Q = probability of exceedance of a wave

Qs = probability of exceedance of a storm

s sQ N Qthreshold 15 m

y = -07849Ln(x) + 5141

R2 = 09854

0

2

4

6

8

10

001010100100010000

storm exceedence probability per year

sto

rm h

eig

ht

Hss

Statistically

nonsense

February 1 2012 26

The ldquoonce in 500 years stormrdquo

0785ln( )

10785ln 5141

500

100

ss sH Q

m

threshold 15 m

y = -07849Ln(x) + 5141

R2 = 09854

0

2

4

6

8

10

001010100100010000

storm exceedence probability per year

sto

rm h

eig

ht

Hss

February 1 2012 27

Using the Gumbel distribution

exp exp ssHP

February 1 2012 28

determination of and

ln exp

1ln ln

ss

ss

ssss

GAH B

HP

HP H

1ln lnG

P

Perform linear regression

for G = A Hss - B

February 1 2012 29

data for calculation of Gumbel 150 cumul P Q ln(Qs) -ln(H) Qs G

150 175 384 384 021993 078007 422098 -056 6810 -0415046

175 200 381 765 043814 056186 389284 -069 4905 0192121

200 225 266 1031 059049 040951 357655 -081 3575 0640938

225 250 157 1188 068041 031959 332863 -092 2790 0954366

250 275 148 1336 076518 023482 302042 -101 2050 1318085

275 300 111 1447 082875 017125 270471 -11 1495 1672191

300 325 81 1528 087514 012486 238876 -118 1090 2014645

325 350 63 1591 091123 008877 204769 -125 775 2375535

350 375 31 1622 092898 007102 182455 -132 620 2608194

375 400 32 1654 094731 005269 152606 -139 460 2916351

400 425 23 1677 096048 003952 123837 -145 345 3210883

425 450 11 1688 096678 003322 106471 -15 290 3387796

450 475 20 1708 097824 002176 064185 -156 190 3816515

475 500 9 1717 098339 001661 037156 -161 145 4089424

500 525 7 1724 098740 001260 009531 -166 110 4367707

525 550 9 1733 099255 000745 -043078 -17 065 4896399

550 575 8 1741 099714 000286 -138629 -175 025 5854211

575 600 5 1746 1 0 NUM -179 000 NUM

February 1 2012 30

Gumbel exceedance graph

Gumbel distribution

y = 07234x + 1882

R2 = 09871

0

2

4

6

8

10

0 2 4 6 8 10Gumbel Reduced variable

Sto

rm h

eig

ht

Hs

s

ssG AH B

= 1A = 0723

= B =1882

February 1 2012 31

calculation of a value

1ln ln

1ln ln

1

1ln ln

1

ln ln

ss

s

s

s

s s

HP

Q

QN

N

N Q

1500

873188 073ln ln 967

1873500

sH

= 1A = 073

= B =188

February 1 2012 32

transformation of the axis

Gumbel distribution

y = 07234x + 1882

R2 = 09871

0

2

4

6

8

10

0 2 4 6 8 10Gumbel Reduced variable

Sto

rm h

eig

ht

Hs

s

ln ln s

s s

NG

N Q

Ns = 873 storms per year

Qs G

110

1100

11000

110000

677

907

1138

1368

Figure Error No text of specified style in document-1 Storm exceedance on basis of Gumbel

10 100

February 1 2012 33

Weibull distribution

exp ssHQ

February 1 2012 34

determination of the reduced variable

1

1

ln

ln

1ln

ss

ss

ss

ss

WAH B

HQ

HQ

Q H

1

lnW Q

Three variables

and

So iteration is needed

February 1 2012 35

calculation for Weibull

alfa= 124

150 cumul P Q ln(Qs) -ln(H) Qs W

150 175 384 384 021993 078007 422098 -056 6810 032522

175 200 381 765 043814 056186 389284 -069 4905 064136

200 225 266 1031 059049 040951 357655 -081 3575 091261

225 250 157 1188 068041 031959 332863 -092 2790 111202

250 275 148 1336 076518 023482 302042 -101 2050 134858

275 300 111 1447 082875 017125 270471 -11 1495 158094

300 325 81 1528 087514 012486 238876 -118 1090 180552

325 350 63 1591 091123 008877 204769 -125 775 204065

350 375 31 1622 092898 007102 182455 -132 620 219099

375 400 32 1654 094731 005269 152606 -139 460 238832

400 425 23 1677 096048 003952 123837 -145 345 257486

425 450 11 1688 096678 003322 106471 -15 290 268590

450 475 20 1708 097824 002176 064185 -156 190 295184

475 500 9 1717 098339 001661 037156 -161 145 311883

500 525 7 1724 098740 001260 009531 -166 110 328731

525 550 9 1733 099255 000745 -043078 -17 065 360263

550 575 8 1741 099714 000286 -138629 -175 025 415922

575 600 5 1746 1 0 NUM -179 000 DIV0

1746

20 year 873 085586

-104906

099524

-07849

541 beta 116842

gamma 122575

Hs for condition 1 500 1028785 911838

1

lnssH Q

1

ln sss

s

QH

N

1124

1500

1500122 117 ln

873

122 117 675

912

sH

m

February 1 2012 36

Weibull exceedance graph

Weibull distribution

y = 11573x + 12497

R2 = 09905

0

2

4

6

8

10

0 2 4 6 8 10

Weibull Reduced variable

Str

om

heig

ht

Hss

10 100 1000 10000

February 1 2012 37

Summary

HT threshold value

Exponential

Gumbel

Weibull

150 m 163 m 136 m 122 m

HT 150 200 250 300 350 400

Ns 873 596 389 194 108 53

Hs 1500 Exponential Hs 1500 Gumbel Hs 1500 Weibull

1000 969 912

1009 950 990

948 917 963

939 893 948

908 886 917

876 818 890

February 1 2012 38

What to do if only random data are available

storm exceedance

0

200

400

600

800

01110100100010000

probability per year

Hs

s

February 1 2012 39

Example of long term data

This are

Hs-classes

February 1 2012 40

Long term (continuation)

So from this last column we can conclude

100 of time H gt 0 m s

23 of time H gt 1 m s

12 of time H gt 2 m s

001 of time H gt 9 m s

0

2

4

6

8

10

12

14

1E-071E-061E-051E-041E-031E-021E-011E+00

exceedance per year

wave

he

igh

t H

s (

m)

February 1 2012 41

From probability of waves to probability of storms

Suppose a ldquostormrdquo lasts for 12 hrs

===gt 730 stormsyear

once per year storm = 100730 = 013 =gt 67 m

once per 10 year storm = 0013 =gt 94 m

once per 100 year storm = 00013 =gt 119 m

0

5

10

15

20

1 10 100 1000 10000

return period in years

Hs o

f th

e g

ive

n s

torm

February 1 2012 42

Meteorological data

bull Not of direct importance for design

bull Can be important for hindcast of wave data and storm surge

bull Extremely important for the execution of the works (workability)

February 1 2012 43

Waves from Wind (Brettschneider)

February 1 2012 44

required soil data

February 1 2012 45

in situ test methods

February 1 2012 46

During construction

bull Quarry stone

bull Concrete

bull Local Equipment

bull Labour

bull skilled

bull cost

bull availability

bull expatriates

Page 4: Chapter 6: Data Collection

February 1 2012 4

tides

bullvertical tide

bullhorizontal tide

tide tables (British admiralty)

internet (httptbonebiolscedutidesiteselhtml)

(httpeasytideukhogovuk)

(httpwwwshomfr)

(wwwgetijnl)

For horizontal tides

see hydrographic atlases

or make Delft3D computation

February 1 2012 5

storm surges

httpwwwhurricanecom

February 1 2012 6

waves measurements

February 1 2012 7

Global Wave Statistics (1)

February 1 2012 8

Global wave statistics (2)

February 1 2012 9

processed data

Atlas of the Oceans

Wind and Wave data

February 1 2012 10

ERA-40 wave atlas

httpwwwknminl

onderzkoceano

wavesera40

February 1 2012 11

wave data for North Sea

February 1 2012 12

example from Argoss (wwwwaveclimatecom)

standard histogram

February 1 2012 13

exceedance table

February 1 2012 14

exceedance graph

February 1 2012 15

comparison buoys and ship data

February 1 2012 16

Data from wwwhydrobasenet

February 1 2012 17

Sample output of Hydrobase

February 1 2012 18

Data from Hydrobase

February 1 2012 19

data from Meetpost Noordwijk

wwwgolfklimaatnl

0

50

100

150

200

250

300

350

400

450

0 200 400 600 800

time (hrs)

Hm

o (

cm

)

January 1979

February 1 2012 20

basic data

date time Hm0 accur H13 TTE3 Tm02 TH13 wave wind wind level setup

dir dir speed

cm cm cm 1 s 1 s 1 s degr degr 1 ms cm cm

19980101 0100 70 4 64 6 39 49 261 210 60 -27 27 222224000

19980101 0400 72 4 65 8 36 45 264 210 70 91 24 222224000

19980101 0700 62 4 56 8 36 46 258 200 80 58 11 222224000

19980101 1000 93 5 85 11 40 48 234 190 90 -31 6 222224000

19980101 1300 110 5 102 14 44 51 230 200 90 -83 -5 222224000

19980101 1600 162 7 148 17 42 52 230 200 120 43 -12 222224000

19980101 1900 132 6 121 11 40 48 224 190 130 40 -37 222224000

19980101 2200 205 8 190 18 51 61 220 190 170 -39 -33 222224000

19980102 0100 247 10 230 37 56 68 229 190 170 -114 -57 222224000

19980102 0400 275 11 255 40 55 68 236 210 160 -1 -1 222224000

19980102 0700 208 8 193 20 50 63 234 200 140 -2 -72 222224000

19980102 1000 142 6 132 14 47 59 227 190 120 -59 -13 222224000

19980102 1300 130 6 120 14 50 64 223 160 110 -97 -22 222224000

19980102 1600 117 5 108 13 43 53 213 170 100 73 87 222224000

19980102 1900 91 5 84 10 39 49 232 210 100 152 58 222224000

19980102 2200 243 10 226 22 52 62 267 280 150 119 118 222224000

19980103 0100 287 12 269 32 59 70 269 260 110 25 73 222224000

19980103 0400 240 10 224 21 55 66 265 230 90 28 60 222224000

19980103 0700 177 7 163 13 46 56 245 200 130 122 37 222224000

19980103 1000 179 7 165 16 47 56 223 180 170 -30 3 222224000

19980103 1300 285 12 266 35 58 70 230 210 190 -43 16 222224000

19980103 1600 341 15 318 56 61 73 242 250 130 -36 14 222224000

19980103 1900 342 15 319 53 60 73 246 260 170 133 20 222224000

19980103 2200 414 21 388 85 65 77 249 260 190 72 46 222224000

19980104 0100 465 21 435 228 72 88 254 260 190 40 68 222224000

19980104 0400 358 16 334 92 64 78 259 240 90 -22 18 222224000

19980104 0700 324 14 302 52 60 73 256 250 120 129 43 222224000

19980104 1000 247 10 229 33 55 69 252 220 100 34 33 222224000

February 1 2012 21

sort data in classes

Waveheight class Hs (cm)

Number of observations

P Q -ln(Q)

0 25 35 35 0000599 0999401 0000599

25 50 8260 8295 0141940 0858060 0153082 50 75 11424 19719 0337423 0662577 0411618

75 100 10004 29723 0508607 0491393 0710511

100 125 7649 37372 0639493 0360507 1020245

125 150 5563 42935 0734685 0265315 1326838

150 175 4389 47324 0809788 0190212 1659615

175 200 3167 50491 0863980 0136020 1994954

200 225 2360 52851 0904363 0095637 2347200

225 250 1671 54522 0932957 0067043 2702419

250 275 1234 55756 0954073 0045927 3080692

275 300 851 56607 0968634 0031366 3462047

300 325 556 57163 0978149 0021851 3823487

325 350 392 57555 0984856 0015144 4190168

350 375 276 57831 0989579 0010421 4563938

375 400 206 58037 0993104 0006896 4976819

400 425 136 58173 0995431 0004569 5388507

425 450 82 58255 0996834 0003166 5755400

450 475 66 58321 0997964 0002036 6196632

475 500 38 58359 0998614 0001386 6581307

500 525 30 58389 0999127 0000873 7043930

525 550 20 58409 0999470 0000530 7541769

550 575 22 58431 0999846 0000154 8778531

575 600 9 58440 1000000 0000000

58440

( )s sP P H H

( ) 1s sQ Q H H P

all data Noordwijk

y = 00151x - 05001

R2 = 09881

0

1

2

3

4

5

6

7

8

9

10

0 200 400 600Hs-l

nQ

February 1 2012 22

exceedance graph for Noordwijk

indivudual observations

0

200

400

600

800

1000

000001000001000001000001000001000001000000

exceedance

wave h

eig

ht

But what means that in a year during 01

of the time the Hs is larger than 5 m

February 1 2012 23

Peak over Threshold method

A storm is defined as a time that the wave is higher than a

certain value the height of the storm Hss is equal to the

highest observed Hs during that storm

Threshold = 15

In this period 9

storms observed

nr Hss

1 180 m

2 294 m

3 225 m

4 176 m

5 261 m

6 389 m

7 172 m

8 240 m

9 194 m

February 1 2012 24

Table with Hss classes

= 124 Wave height class

150 cumul P Q Qs W

150 175 384 384 021993 078007 6810 032522 175 200 381 765 043814 056186 4905 064136 200 225 266 1031 059049 040951 3575 091261 225 250 157 1188 068041 031959 2790 111202 250 275 148 1336 076518 023482 2050 134858 275 300 111 1447 082875 017125 1495 158094 300 325 81 1528 087514 012486 1090 180552 325 350 63 1591 091123 008877 775 204065 350 375 31 1622 092898 007102 620 219099 375 400 32 1654 094731 005269 460 238832 400 425 23 1677 096048 003952 345 257486 425 450 11 1688 096678 003322 290 268590 450 475 20 1708 097824 002176 190 295184 475 500 9 1717 098339 001661 145 311883 500 525 7 1724 098740 001260 110 328731 525 550 9 1733 099255 000745 065 360263 550 575 8 1741 099714 000286 025 415922 575 600 5 1746 1 0 000 DIV0 1746 20 year 873 Slope 085586 Intercept -104906 correlation 099524 beta 116842 gamma 122575

Hss for condition 1 10 668997

( )ss ssP P H H

1ss ssQ Q H H P

threshold 15 m

y = -07849Ln(x) + 16329

R2 = 09854

0

2

4

6

8

000010000100001000010000100000probability of exceedence

sto

rm h

eig

ht

Hss

February 1 2012 25

How to get storm exceedance

Q = probability of exceedance of a wave

Qs = probability of exceedance of a storm

s sQ N Qthreshold 15 m

y = -07849Ln(x) + 5141

R2 = 09854

0

2

4

6

8

10

001010100100010000

storm exceedence probability per year

sto

rm h

eig

ht

Hss

Statistically

nonsense

February 1 2012 26

The ldquoonce in 500 years stormrdquo

0785ln( )

10785ln 5141

500

100

ss sH Q

m

threshold 15 m

y = -07849Ln(x) + 5141

R2 = 09854

0

2

4

6

8

10

001010100100010000

storm exceedence probability per year

sto

rm h

eig

ht

Hss

February 1 2012 27

Using the Gumbel distribution

exp exp ssHP

February 1 2012 28

determination of and

ln exp

1ln ln

ss

ss

ssss

GAH B

HP

HP H

1ln lnG

P

Perform linear regression

for G = A Hss - B

February 1 2012 29

data for calculation of Gumbel 150 cumul P Q ln(Qs) -ln(H) Qs G

150 175 384 384 021993 078007 422098 -056 6810 -0415046

175 200 381 765 043814 056186 389284 -069 4905 0192121

200 225 266 1031 059049 040951 357655 -081 3575 0640938

225 250 157 1188 068041 031959 332863 -092 2790 0954366

250 275 148 1336 076518 023482 302042 -101 2050 1318085

275 300 111 1447 082875 017125 270471 -11 1495 1672191

300 325 81 1528 087514 012486 238876 -118 1090 2014645

325 350 63 1591 091123 008877 204769 -125 775 2375535

350 375 31 1622 092898 007102 182455 -132 620 2608194

375 400 32 1654 094731 005269 152606 -139 460 2916351

400 425 23 1677 096048 003952 123837 -145 345 3210883

425 450 11 1688 096678 003322 106471 -15 290 3387796

450 475 20 1708 097824 002176 064185 -156 190 3816515

475 500 9 1717 098339 001661 037156 -161 145 4089424

500 525 7 1724 098740 001260 009531 -166 110 4367707

525 550 9 1733 099255 000745 -043078 -17 065 4896399

550 575 8 1741 099714 000286 -138629 -175 025 5854211

575 600 5 1746 1 0 NUM -179 000 NUM

February 1 2012 30

Gumbel exceedance graph

Gumbel distribution

y = 07234x + 1882

R2 = 09871

0

2

4

6

8

10

0 2 4 6 8 10Gumbel Reduced variable

Sto

rm h

eig

ht

Hs

s

ssG AH B

= 1A = 0723

= B =1882

February 1 2012 31

calculation of a value

1ln ln

1ln ln

1

1ln ln

1

ln ln

ss

s

s

s

s s

HP

Q

QN

N

N Q

1500

873188 073ln ln 967

1873500

sH

= 1A = 073

= B =188

February 1 2012 32

transformation of the axis

Gumbel distribution

y = 07234x + 1882

R2 = 09871

0

2

4

6

8

10

0 2 4 6 8 10Gumbel Reduced variable

Sto

rm h

eig

ht

Hs

s

ln ln s

s s

NG

N Q

Ns = 873 storms per year

Qs G

110

1100

11000

110000

677

907

1138

1368

Figure Error No text of specified style in document-1 Storm exceedance on basis of Gumbel

10 100

February 1 2012 33

Weibull distribution

exp ssHQ

February 1 2012 34

determination of the reduced variable

1

1

ln

ln

1ln

ss

ss

ss

ss

WAH B

HQ

HQ

Q H

1

lnW Q

Three variables

and

So iteration is needed

February 1 2012 35

calculation for Weibull

alfa= 124

150 cumul P Q ln(Qs) -ln(H) Qs W

150 175 384 384 021993 078007 422098 -056 6810 032522

175 200 381 765 043814 056186 389284 -069 4905 064136

200 225 266 1031 059049 040951 357655 -081 3575 091261

225 250 157 1188 068041 031959 332863 -092 2790 111202

250 275 148 1336 076518 023482 302042 -101 2050 134858

275 300 111 1447 082875 017125 270471 -11 1495 158094

300 325 81 1528 087514 012486 238876 -118 1090 180552

325 350 63 1591 091123 008877 204769 -125 775 204065

350 375 31 1622 092898 007102 182455 -132 620 219099

375 400 32 1654 094731 005269 152606 -139 460 238832

400 425 23 1677 096048 003952 123837 -145 345 257486

425 450 11 1688 096678 003322 106471 -15 290 268590

450 475 20 1708 097824 002176 064185 -156 190 295184

475 500 9 1717 098339 001661 037156 -161 145 311883

500 525 7 1724 098740 001260 009531 -166 110 328731

525 550 9 1733 099255 000745 -043078 -17 065 360263

550 575 8 1741 099714 000286 -138629 -175 025 415922

575 600 5 1746 1 0 NUM -179 000 DIV0

1746

20 year 873 085586

-104906

099524

-07849

541 beta 116842

gamma 122575

Hs for condition 1 500 1028785 911838

1

lnssH Q

1

ln sss

s

QH

N

1124

1500

1500122 117 ln

873

122 117 675

912

sH

m

February 1 2012 36

Weibull exceedance graph

Weibull distribution

y = 11573x + 12497

R2 = 09905

0

2

4

6

8

10

0 2 4 6 8 10

Weibull Reduced variable

Str

om

heig

ht

Hss

10 100 1000 10000

February 1 2012 37

Summary

HT threshold value

Exponential

Gumbel

Weibull

150 m 163 m 136 m 122 m

HT 150 200 250 300 350 400

Ns 873 596 389 194 108 53

Hs 1500 Exponential Hs 1500 Gumbel Hs 1500 Weibull

1000 969 912

1009 950 990

948 917 963

939 893 948

908 886 917

876 818 890

February 1 2012 38

What to do if only random data are available

storm exceedance

0

200

400

600

800

01110100100010000

probability per year

Hs

s

February 1 2012 39

Example of long term data

This are

Hs-classes

February 1 2012 40

Long term (continuation)

So from this last column we can conclude

100 of time H gt 0 m s

23 of time H gt 1 m s

12 of time H gt 2 m s

001 of time H gt 9 m s

0

2

4

6

8

10

12

14

1E-071E-061E-051E-041E-031E-021E-011E+00

exceedance per year

wave

he

igh

t H

s (

m)

February 1 2012 41

From probability of waves to probability of storms

Suppose a ldquostormrdquo lasts for 12 hrs

===gt 730 stormsyear

once per year storm = 100730 = 013 =gt 67 m

once per 10 year storm = 0013 =gt 94 m

once per 100 year storm = 00013 =gt 119 m

0

5

10

15

20

1 10 100 1000 10000

return period in years

Hs o

f th

e g

ive

n s

torm

February 1 2012 42

Meteorological data

bull Not of direct importance for design

bull Can be important for hindcast of wave data and storm surge

bull Extremely important for the execution of the works (workability)

February 1 2012 43

Waves from Wind (Brettschneider)

February 1 2012 44

required soil data

February 1 2012 45

in situ test methods

February 1 2012 46

During construction

bull Quarry stone

bull Concrete

bull Local Equipment

bull Labour

bull skilled

bull cost

bull availability

bull expatriates

Page 5: Chapter 6: Data Collection

February 1 2012 5

storm surges

httpwwwhurricanecom

February 1 2012 6

waves measurements

February 1 2012 7

Global Wave Statistics (1)

February 1 2012 8

Global wave statistics (2)

February 1 2012 9

processed data

Atlas of the Oceans

Wind and Wave data

February 1 2012 10

ERA-40 wave atlas

httpwwwknminl

onderzkoceano

wavesera40

February 1 2012 11

wave data for North Sea

February 1 2012 12

example from Argoss (wwwwaveclimatecom)

standard histogram

February 1 2012 13

exceedance table

February 1 2012 14

exceedance graph

February 1 2012 15

comparison buoys and ship data

February 1 2012 16

Data from wwwhydrobasenet

February 1 2012 17

Sample output of Hydrobase

February 1 2012 18

Data from Hydrobase

February 1 2012 19

data from Meetpost Noordwijk

wwwgolfklimaatnl

0

50

100

150

200

250

300

350

400

450

0 200 400 600 800

time (hrs)

Hm

o (

cm

)

January 1979

February 1 2012 20

basic data

date time Hm0 accur H13 TTE3 Tm02 TH13 wave wind wind level setup

dir dir speed

cm cm cm 1 s 1 s 1 s degr degr 1 ms cm cm

19980101 0100 70 4 64 6 39 49 261 210 60 -27 27 222224000

19980101 0400 72 4 65 8 36 45 264 210 70 91 24 222224000

19980101 0700 62 4 56 8 36 46 258 200 80 58 11 222224000

19980101 1000 93 5 85 11 40 48 234 190 90 -31 6 222224000

19980101 1300 110 5 102 14 44 51 230 200 90 -83 -5 222224000

19980101 1600 162 7 148 17 42 52 230 200 120 43 -12 222224000

19980101 1900 132 6 121 11 40 48 224 190 130 40 -37 222224000

19980101 2200 205 8 190 18 51 61 220 190 170 -39 -33 222224000

19980102 0100 247 10 230 37 56 68 229 190 170 -114 -57 222224000

19980102 0400 275 11 255 40 55 68 236 210 160 -1 -1 222224000

19980102 0700 208 8 193 20 50 63 234 200 140 -2 -72 222224000

19980102 1000 142 6 132 14 47 59 227 190 120 -59 -13 222224000

19980102 1300 130 6 120 14 50 64 223 160 110 -97 -22 222224000

19980102 1600 117 5 108 13 43 53 213 170 100 73 87 222224000

19980102 1900 91 5 84 10 39 49 232 210 100 152 58 222224000

19980102 2200 243 10 226 22 52 62 267 280 150 119 118 222224000

19980103 0100 287 12 269 32 59 70 269 260 110 25 73 222224000

19980103 0400 240 10 224 21 55 66 265 230 90 28 60 222224000

19980103 0700 177 7 163 13 46 56 245 200 130 122 37 222224000

19980103 1000 179 7 165 16 47 56 223 180 170 -30 3 222224000

19980103 1300 285 12 266 35 58 70 230 210 190 -43 16 222224000

19980103 1600 341 15 318 56 61 73 242 250 130 -36 14 222224000

19980103 1900 342 15 319 53 60 73 246 260 170 133 20 222224000

19980103 2200 414 21 388 85 65 77 249 260 190 72 46 222224000

19980104 0100 465 21 435 228 72 88 254 260 190 40 68 222224000

19980104 0400 358 16 334 92 64 78 259 240 90 -22 18 222224000

19980104 0700 324 14 302 52 60 73 256 250 120 129 43 222224000

19980104 1000 247 10 229 33 55 69 252 220 100 34 33 222224000

February 1 2012 21

sort data in classes

Waveheight class Hs (cm)

Number of observations

P Q -ln(Q)

0 25 35 35 0000599 0999401 0000599

25 50 8260 8295 0141940 0858060 0153082 50 75 11424 19719 0337423 0662577 0411618

75 100 10004 29723 0508607 0491393 0710511

100 125 7649 37372 0639493 0360507 1020245

125 150 5563 42935 0734685 0265315 1326838

150 175 4389 47324 0809788 0190212 1659615

175 200 3167 50491 0863980 0136020 1994954

200 225 2360 52851 0904363 0095637 2347200

225 250 1671 54522 0932957 0067043 2702419

250 275 1234 55756 0954073 0045927 3080692

275 300 851 56607 0968634 0031366 3462047

300 325 556 57163 0978149 0021851 3823487

325 350 392 57555 0984856 0015144 4190168

350 375 276 57831 0989579 0010421 4563938

375 400 206 58037 0993104 0006896 4976819

400 425 136 58173 0995431 0004569 5388507

425 450 82 58255 0996834 0003166 5755400

450 475 66 58321 0997964 0002036 6196632

475 500 38 58359 0998614 0001386 6581307

500 525 30 58389 0999127 0000873 7043930

525 550 20 58409 0999470 0000530 7541769

550 575 22 58431 0999846 0000154 8778531

575 600 9 58440 1000000 0000000

58440

( )s sP P H H

( ) 1s sQ Q H H P

all data Noordwijk

y = 00151x - 05001

R2 = 09881

0

1

2

3

4

5

6

7

8

9

10

0 200 400 600Hs-l

nQ

February 1 2012 22

exceedance graph for Noordwijk

indivudual observations

0

200

400

600

800

1000

000001000001000001000001000001000001000000

exceedance

wave h

eig

ht

But what means that in a year during 01

of the time the Hs is larger than 5 m

February 1 2012 23

Peak over Threshold method

A storm is defined as a time that the wave is higher than a

certain value the height of the storm Hss is equal to the

highest observed Hs during that storm

Threshold = 15

In this period 9

storms observed

nr Hss

1 180 m

2 294 m

3 225 m

4 176 m

5 261 m

6 389 m

7 172 m

8 240 m

9 194 m

February 1 2012 24

Table with Hss classes

= 124 Wave height class

150 cumul P Q Qs W

150 175 384 384 021993 078007 6810 032522 175 200 381 765 043814 056186 4905 064136 200 225 266 1031 059049 040951 3575 091261 225 250 157 1188 068041 031959 2790 111202 250 275 148 1336 076518 023482 2050 134858 275 300 111 1447 082875 017125 1495 158094 300 325 81 1528 087514 012486 1090 180552 325 350 63 1591 091123 008877 775 204065 350 375 31 1622 092898 007102 620 219099 375 400 32 1654 094731 005269 460 238832 400 425 23 1677 096048 003952 345 257486 425 450 11 1688 096678 003322 290 268590 450 475 20 1708 097824 002176 190 295184 475 500 9 1717 098339 001661 145 311883 500 525 7 1724 098740 001260 110 328731 525 550 9 1733 099255 000745 065 360263 550 575 8 1741 099714 000286 025 415922 575 600 5 1746 1 0 000 DIV0 1746 20 year 873 Slope 085586 Intercept -104906 correlation 099524 beta 116842 gamma 122575

Hss for condition 1 10 668997

( )ss ssP P H H

1ss ssQ Q H H P

threshold 15 m

y = -07849Ln(x) + 16329

R2 = 09854

0

2

4

6

8

000010000100001000010000100000probability of exceedence

sto

rm h

eig

ht

Hss

February 1 2012 25

How to get storm exceedance

Q = probability of exceedance of a wave

Qs = probability of exceedance of a storm

s sQ N Qthreshold 15 m

y = -07849Ln(x) + 5141

R2 = 09854

0

2

4

6

8

10

001010100100010000

storm exceedence probability per year

sto

rm h

eig

ht

Hss

Statistically

nonsense

February 1 2012 26

The ldquoonce in 500 years stormrdquo

0785ln( )

10785ln 5141

500

100

ss sH Q

m

threshold 15 m

y = -07849Ln(x) + 5141

R2 = 09854

0

2

4

6

8

10

001010100100010000

storm exceedence probability per year

sto

rm h

eig

ht

Hss

February 1 2012 27

Using the Gumbel distribution

exp exp ssHP

February 1 2012 28

determination of and

ln exp

1ln ln

ss

ss

ssss

GAH B

HP

HP H

1ln lnG

P

Perform linear regression

for G = A Hss - B

February 1 2012 29

data for calculation of Gumbel 150 cumul P Q ln(Qs) -ln(H) Qs G

150 175 384 384 021993 078007 422098 -056 6810 -0415046

175 200 381 765 043814 056186 389284 -069 4905 0192121

200 225 266 1031 059049 040951 357655 -081 3575 0640938

225 250 157 1188 068041 031959 332863 -092 2790 0954366

250 275 148 1336 076518 023482 302042 -101 2050 1318085

275 300 111 1447 082875 017125 270471 -11 1495 1672191

300 325 81 1528 087514 012486 238876 -118 1090 2014645

325 350 63 1591 091123 008877 204769 -125 775 2375535

350 375 31 1622 092898 007102 182455 -132 620 2608194

375 400 32 1654 094731 005269 152606 -139 460 2916351

400 425 23 1677 096048 003952 123837 -145 345 3210883

425 450 11 1688 096678 003322 106471 -15 290 3387796

450 475 20 1708 097824 002176 064185 -156 190 3816515

475 500 9 1717 098339 001661 037156 -161 145 4089424

500 525 7 1724 098740 001260 009531 -166 110 4367707

525 550 9 1733 099255 000745 -043078 -17 065 4896399

550 575 8 1741 099714 000286 -138629 -175 025 5854211

575 600 5 1746 1 0 NUM -179 000 NUM

February 1 2012 30

Gumbel exceedance graph

Gumbel distribution

y = 07234x + 1882

R2 = 09871

0

2

4

6

8

10

0 2 4 6 8 10Gumbel Reduced variable

Sto

rm h

eig

ht

Hs

s

ssG AH B

= 1A = 0723

= B =1882

February 1 2012 31

calculation of a value

1ln ln

1ln ln

1

1ln ln

1

ln ln

ss

s

s

s

s s

HP

Q

QN

N

N Q

1500

873188 073ln ln 967

1873500

sH

= 1A = 073

= B =188

February 1 2012 32

transformation of the axis

Gumbel distribution

y = 07234x + 1882

R2 = 09871

0

2

4

6

8

10

0 2 4 6 8 10Gumbel Reduced variable

Sto

rm h

eig

ht

Hs

s

ln ln s

s s

NG

N Q

Ns = 873 storms per year

Qs G

110

1100

11000

110000

677

907

1138

1368

Figure Error No text of specified style in document-1 Storm exceedance on basis of Gumbel

10 100

February 1 2012 33

Weibull distribution

exp ssHQ

February 1 2012 34

determination of the reduced variable

1

1

ln

ln

1ln

ss

ss

ss

ss

WAH B

HQ

HQ

Q H

1

lnW Q

Three variables

and

So iteration is needed

February 1 2012 35

calculation for Weibull

alfa= 124

150 cumul P Q ln(Qs) -ln(H) Qs W

150 175 384 384 021993 078007 422098 -056 6810 032522

175 200 381 765 043814 056186 389284 -069 4905 064136

200 225 266 1031 059049 040951 357655 -081 3575 091261

225 250 157 1188 068041 031959 332863 -092 2790 111202

250 275 148 1336 076518 023482 302042 -101 2050 134858

275 300 111 1447 082875 017125 270471 -11 1495 158094

300 325 81 1528 087514 012486 238876 -118 1090 180552

325 350 63 1591 091123 008877 204769 -125 775 204065

350 375 31 1622 092898 007102 182455 -132 620 219099

375 400 32 1654 094731 005269 152606 -139 460 238832

400 425 23 1677 096048 003952 123837 -145 345 257486

425 450 11 1688 096678 003322 106471 -15 290 268590

450 475 20 1708 097824 002176 064185 -156 190 295184

475 500 9 1717 098339 001661 037156 -161 145 311883

500 525 7 1724 098740 001260 009531 -166 110 328731

525 550 9 1733 099255 000745 -043078 -17 065 360263

550 575 8 1741 099714 000286 -138629 -175 025 415922

575 600 5 1746 1 0 NUM -179 000 DIV0

1746

20 year 873 085586

-104906

099524

-07849

541 beta 116842

gamma 122575

Hs for condition 1 500 1028785 911838

1

lnssH Q

1

ln sss

s

QH

N

1124

1500

1500122 117 ln

873

122 117 675

912

sH

m

February 1 2012 36

Weibull exceedance graph

Weibull distribution

y = 11573x + 12497

R2 = 09905

0

2

4

6

8

10

0 2 4 6 8 10

Weibull Reduced variable

Str

om

heig

ht

Hss

10 100 1000 10000

February 1 2012 37

Summary

HT threshold value

Exponential

Gumbel

Weibull

150 m 163 m 136 m 122 m

HT 150 200 250 300 350 400

Ns 873 596 389 194 108 53

Hs 1500 Exponential Hs 1500 Gumbel Hs 1500 Weibull

1000 969 912

1009 950 990

948 917 963

939 893 948

908 886 917

876 818 890

February 1 2012 38

What to do if only random data are available

storm exceedance

0

200

400

600

800

01110100100010000

probability per year

Hs

s

February 1 2012 39

Example of long term data

This are

Hs-classes

February 1 2012 40

Long term (continuation)

So from this last column we can conclude

100 of time H gt 0 m s

23 of time H gt 1 m s

12 of time H gt 2 m s

001 of time H gt 9 m s

0

2

4

6

8

10

12

14

1E-071E-061E-051E-041E-031E-021E-011E+00

exceedance per year

wave

he

igh

t H

s (

m)

February 1 2012 41

From probability of waves to probability of storms

Suppose a ldquostormrdquo lasts for 12 hrs

===gt 730 stormsyear

once per year storm = 100730 = 013 =gt 67 m

once per 10 year storm = 0013 =gt 94 m

once per 100 year storm = 00013 =gt 119 m

0

5

10

15

20

1 10 100 1000 10000

return period in years

Hs o

f th

e g

ive

n s

torm

February 1 2012 42

Meteorological data

bull Not of direct importance for design

bull Can be important for hindcast of wave data and storm surge

bull Extremely important for the execution of the works (workability)

February 1 2012 43

Waves from Wind (Brettschneider)

February 1 2012 44

required soil data

February 1 2012 45

in situ test methods

February 1 2012 46

During construction

bull Quarry stone

bull Concrete

bull Local Equipment

bull Labour

bull skilled

bull cost

bull availability

bull expatriates

Page 6: Chapter 6: Data Collection

February 1 2012 6

waves measurements

February 1 2012 7

Global Wave Statistics (1)

February 1 2012 8

Global wave statistics (2)

February 1 2012 9

processed data

Atlas of the Oceans

Wind and Wave data

February 1 2012 10

ERA-40 wave atlas

httpwwwknminl

onderzkoceano

wavesera40

February 1 2012 11

wave data for North Sea

February 1 2012 12

example from Argoss (wwwwaveclimatecom)

standard histogram

February 1 2012 13

exceedance table

February 1 2012 14

exceedance graph

February 1 2012 15

comparison buoys and ship data

February 1 2012 16

Data from wwwhydrobasenet

February 1 2012 17

Sample output of Hydrobase

February 1 2012 18

Data from Hydrobase

February 1 2012 19

data from Meetpost Noordwijk

wwwgolfklimaatnl

0

50

100

150

200

250

300

350

400

450

0 200 400 600 800

time (hrs)

Hm

o (

cm

)

January 1979

February 1 2012 20

basic data

date time Hm0 accur H13 TTE3 Tm02 TH13 wave wind wind level setup

dir dir speed

cm cm cm 1 s 1 s 1 s degr degr 1 ms cm cm

19980101 0100 70 4 64 6 39 49 261 210 60 -27 27 222224000

19980101 0400 72 4 65 8 36 45 264 210 70 91 24 222224000

19980101 0700 62 4 56 8 36 46 258 200 80 58 11 222224000

19980101 1000 93 5 85 11 40 48 234 190 90 -31 6 222224000

19980101 1300 110 5 102 14 44 51 230 200 90 -83 -5 222224000

19980101 1600 162 7 148 17 42 52 230 200 120 43 -12 222224000

19980101 1900 132 6 121 11 40 48 224 190 130 40 -37 222224000

19980101 2200 205 8 190 18 51 61 220 190 170 -39 -33 222224000

19980102 0100 247 10 230 37 56 68 229 190 170 -114 -57 222224000

19980102 0400 275 11 255 40 55 68 236 210 160 -1 -1 222224000

19980102 0700 208 8 193 20 50 63 234 200 140 -2 -72 222224000

19980102 1000 142 6 132 14 47 59 227 190 120 -59 -13 222224000

19980102 1300 130 6 120 14 50 64 223 160 110 -97 -22 222224000

19980102 1600 117 5 108 13 43 53 213 170 100 73 87 222224000

19980102 1900 91 5 84 10 39 49 232 210 100 152 58 222224000

19980102 2200 243 10 226 22 52 62 267 280 150 119 118 222224000

19980103 0100 287 12 269 32 59 70 269 260 110 25 73 222224000

19980103 0400 240 10 224 21 55 66 265 230 90 28 60 222224000

19980103 0700 177 7 163 13 46 56 245 200 130 122 37 222224000

19980103 1000 179 7 165 16 47 56 223 180 170 -30 3 222224000

19980103 1300 285 12 266 35 58 70 230 210 190 -43 16 222224000

19980103 1600 341 15 318 56 61 73 242 250 130 -36 14 222224000

19980103 1900 342 15 319 53 60 73 246 260 170 133 20 222224000

19980103 2200 414 21 388 85 65 77 249 260 190 72 46 222224000

19980104 0100 465 21 435 228 72 88 254 260 190 40 68 222224000

19980104 0400 358 16 334 92 64 78 259 240 90 -22 18 222224000

19980104 0700 324 14 302 52 60 73 256 250 120 129 43 222224000

19980104 1000 247 10 229 33 55 69 252 220 100 34 33 222224000

February 1 2012 21

sort data in classes

Waveheight class Hs (cm)

Number of observations

P Q -ln(Q)

0 25 35 35 0000599 0999401 0000599

25 50 8260 8295 0141940 0858060 0153082 50 75 11424 19719 0337423 0662577 0411618

75 100 10004 29723 0508607 0491393 0710511

100 125 7649 37372 0639493 0360507 1020245

125 150 5563 42935 0734685 0265315 1326838

150 175 4389 47324 0809788 0190212 1659615

175 200 3167 50491 0863980 0136020 1994954

200 225 2360 52851 0904363 0095637 2347200

225 250 1671 54522 0932957 0067043 2702419

250 275 1234 55756 0954073 0045927 3080692

275 300 851 56607 0968634 0031366 3462047

300 325 556 57163 0978149 0021851 3823487

325 350 392 57555 0984856 0015144 4190168

350 375 276 57831 0989579 0010421 4563938

375 400 206 58037 0993104 0006896 4976819

400 425 136 58173 0995431 0004569 5388507

425 450 82 58255 0996834 0003166 5755400

450 475 66 58321 0997964 0002036 6196632

475 500 38 58359 0998614 0001386 6581307

500 525 30 58389 0999127 0000873 7043930

525 550 20 58409 0999470 0000530 7541769

550 575 22 58431 0999846 0000154 8778531

575 600 9 58440 1000000 0000000

58440

( )s sP P H H

( ) 1s sQ Q H H P

all data Noordwijk

y = 00151x - 05001

R2 = 09881

0

1

2

3

4

5

6

7

8

9

10

0 200 400 600Hs-l

nQ

February 1 2012 22

exceedance graph for Noordwijk

indivudual observations

0

200

400

600

800

1000

000001000001000001000001000001000001000000

exceedance

wave h

eig

ht

But what means that in a year during 01

of the time the Hs is larger than 5 m

February 1 2012 23

Peak over Threshold method

A storm is defined as a time that the wave is higher than a

certain value the height of the storm Hss is equal to the

highest observed Hs during that storm

Threshold = 15

In this period 9

storms observed

nr Hss

1 180 m

2 294 m

3 225 m

4 176 m

5 261 m

6 389 m

7 172 m

8 240 m

9 194 m

February 1 2012 24

Table with Hss classes

= 124 Wave height class

150 cumul P Q Qs W

150 175 384 384 021993 078007 6810 032522 175 200 381 765 043814 056186 4905 064136 200 225 266 1031 059049 040951 3575 091261 225 250 157 1188 068041 031959 2790 111202 250 275 148 1336 076518 023482 2050 134858 275 300 111 1447 082875 017125 1495 158094 300 325 81 1528 087514 012486 1090 180552 325 350 63 1591 091123 008877 775 204065 350 375 31 1622 092898 007102 620 219099 375 400 32 1654 094731 005269 460 238832 400 425 23 1677 096048 003952 345 257486 425 450 11 1688 096678 003322 290 268590 450 475 20 1708 097824 002176 190 295184 475 500 9 1717 098339 001661 145 311883 500 525 7 1724 098740 001260 110 328731 525 550 9 1733 099255 000745 065 360263 550 575 8 1741 099714 000286 025 415922 575 600 5 1746 1 0 000 DIV0 1746 20 year 873 Slope 085586 Intercept -104906 correlation 099524 beta 116842 gamma 122575

Hss for condition 1 10 668997

( )ss ssP P H H

1ss ssQ Q H H P

threshold 15 m

y = -07849Ln(x) + 16329

R2 = 09854

0

2

4

6

8

000010000100001000010000100000probability of exceedence

sto

rm h

eig

ht

Hss

February 1 2012 25

How to get storm exceedance

Q = probability of exceedance of a wave

Qs = probability of exceedance of a storm

s sQ N Qthreshold 15 m

y = -07849Ln(x) + 5141

R2 = 09854

0

2

4

6

8

10

001010100100010000

storm exceedence probability per year

sto

rm h

eig

ht

Hss

Statistically

nonsense

February 1 2012 26

The ldquoonce in 500 years stormrdquo

0785ln( )

10785ln 5141

500

100

ss sH Q

m

threshold 15 m

y = -07849Ln(x) + 5141

R2 = 09854

0

2

4

6

8

10

001010100100010000

storm exceedence probability per year

sto

rm h

eig

ht

Hss

February 1 2012 27

Using the Gumbel distribution

exp exp ssHP

February 1 2012 28

determination of and

ln exp

1ln ln

ss

ss

ssss

GAH B

HP

HP H

1ln lnG

P

Perform linear regression

for G = A Hss - B

February 1 2012 29

data for calculation of Gumbel 150 cumul P Q ln(Qs) -ln(H) Qs G

150 175 384 384 021993 078007 422098 -056 6810 -0415046

175 200 381 765 043814 056186 389284 -069 4905 0192121

200 225 266 1031 059049 040951 357655 -081 3575 0640938

225 250 157 1188 068041 031959 332863 -092 2790 0954366

250 275 148 1336 076518 023482 302042 -101 2050 1318085

275 300 111 1447 082875 017125 270471 -11 1495 1672191

300 325 81 1528 087514 012486 238876 -118 1090 2014645

325 350 63 1591 091123 008877 204769 -125 775 2375535

350 375 31 1622 092898 007102 182455 -132 620 2608194

375 400 32 1654 094731 005269 152606 -139 460 2916351

400 425 23 1677 096048 003952 123837 -145 345 3210883

425 450 11 1688 096678 003322 106471 -15 290 3387796

450 475 20 1708 097824 002176 064185 -156 190 3816515

475 500 9 1717 098339 001661 037156 -161 145 4089424

500 525 7 1724 098740 001260 009531 -166 110 4367707

525 550 9 1733 099255 000745 -043078 -17 065 4896399

550 575 8 1741 099714 000286 -138629 -175 025 5854211

575 600 5 1746 1 0 NUM -179 000 NUM

February 1 2012 30

Gumbel exceedance graph

Gumbel distribution

y = 07234x + 1882

R2 = 09871

0

2

4

6

8

10

0 2 4 6 8 10Gumbel Reduced variable

Sto

rm h

eig

ht

Hs

s

ssG AH B

= 1A = 0723

= B =1882

February 1 2012 31

calculation of a value

1ln ln

1ln ln

1

1ln ln

1

ln ln

ss

s

s

s

s s

HP

Q

QN

N

N Q

1500

873188 073ln ln 967

1873500

sH

= 1A = 073

= B =188

February 1 2012 32

transformation of the axis

Gumbel distribution

y = 07234x + 1882

R2 = 09871

0

2

4

6

8

10

0 2 4 6 8 10Gumbel Reduced variable

Sto

rm h

eig

ht

Hs

s

ln ln s

s s

NG

N Q

Ns = 873 storms per year

Qs G

110

1100

11000

110000

677

907

1138

1368

Figure Error No text of specified style in document-1 Storm exceedance on basis of Gumbel

10 100

February 1 2012 33

Weibull distribution

exp ssHQ

February 1 2012 34

determination of the reduced variable

1

1

ln

ln

1ln

ss

ss

ss

ss

WAH B

HQ

HQ

Q H

1

lnW Q

Three variables

and

So iteration is needed

February 1 2012 35

calculation for Weibull

alfa= 124

150 cumul P Q ln(Qs) -ln(H) Qs W

150 175 384 384 021993 078007 422098 -056 6810 032522

175 200 381 765 043814 056186 389284 -069 4905 064136

200 225 266 1031 059049 040951 357655 -081 3575 091261

225 250 157 1188 068041 031959 332863 -092 2790 111202

250 275 148 1336 076518 023482 302042 -101 2050 134858

275 300 111 1447 082875 017125 270471 -11 1495 158094

300 325 81 1528 087514 012486 238876 -118 1090 180552

325 350 63 1591 091123 008877 204769 -125 775 204065

350 375 31 1622 092898 007102 182455 -132 620 219099

375 400 32 1654 094731 005269 152606 -139 460 238832

400 425 23 1677 096048 003952 123837 -145 345 257486

425 450 11 1688 096678 003322 106471 -15 290 268590

450 475 20 1708 097824 002176 064185 -156 190 295184

475 500 9 1717 098339 001661 037156 -161 145 311883

500 525 7 1724 098740 001260 009531 -166 110 328731

525 550 9 1733 099255 000745 -043078 -17 065 360263

550 575 8 1741 099714 000286 -138629 -175 025 415922

575 600 5 1746 1 0 NUM -179 000 DIV0

1746

20 year 873 085586

-104906

099524

-07849

541 beta 116842

gamma 122575

Hs for condition 1 500 1028785 911838

1

lnssH Q

1

ln sss

s

QH

N

1124

1500

1500122 117 ln

873

122 117 675

912

sH

m

February 1 2012 36

Weibull exceedance graph

Weibull distribution

y = 11573x + 12497

R2 = 09905

0

2

4

6

8

10

0 2 4 6 8 10

Weibull Reduced variable

Str

om

heig

ht

Hss

10 100 1000 10000

February 1 2012 37

Summary

HT threshold value

Exponential

Gumbel

Weibull

150 m 163 m 136 m 122 m

HT 150 200 250 300 350 400

Ns 873 596 389 194 108 53

Hs 1500 Exponential Hs 1500 Gumbel Hs 1500 Weibull

1000 969 912

1009 950 990

948 917 963

939 893 948

908 886 917

876 818 890

February 1 2012 38

What to do if only random data are available

storm exceedance

0

200

400

600

800

01110100100010000

probability per year

Hs

s

February 1 2012 39

Example of long term data

This are

Hs-classes

February 1 2012 40

Long term (continuation)

So from this last column we can conclude

100 of time H gt 0 m s

23 of time H gt 1 m s

12 of time H gt 2 m s

001 of time H gt 9 m s

0

2

4

6

8

10

12

14

1E-071E-061E-051E-041E-031E-021E-011E+00

exceedance per year

wave

he

igh

t H

s (

m)

February 1 2012 41

From probability of waves to probability of storms

Suppose a ldquostormrdquo lasts for 12 hrs

===gt 730 stormsyear

once per year storm = 100730 = 013 =gt 67 m

once per 10 year storm = 0013 =gt 94 m

once per 100 year storm = 00013 =gt 119 m

0

5

10

15

20

1 10 100 1000 10000

return period in years

Hs o

f th

e g

ive

n s

torm

February 1 2012 42

Meteorological data

bull Not of direct importance for design

bull Can be important for hindcast of wave data and storm surge

bull Extremely important for the execution of the works (workability)

February 1 2012 43

Waves from Wind (Brettschneider)

February 1 2012 44

required soil data

February 1 2012 45

in situ test methods

February 1 2012 46

During construction

bull Quarry stone

bull Concrete

bull Local Equipment

bull Labour

bull skilled

bull cost

bull availability

bull expatriates

Page 7: Chapter 6: Data Collection

February 1 2012 7

Global Wave Statistics (1)

February 1 2012 8

Global wave statistics (2)

February 1 2012 9

processed data

Atlas of the Oceans

Wind and Wave data

February 1 2012 10

ERA-40 wave atlas

httpwwwknminl

onderzkoceano

wavesera40

February 1 2012 11

wave data for North Sea

February 1 2012 12

example from Argoss (wwwwaveclimatecom)

standard histogram

February 1 2012 13

exceedance table

February 1 2012 14

exceedance graph

February 1 2012 15

comparison buoys and ship data

February 1 2012 16

Data from wwwhydrobasenet

February 1 2012 17

Sample output of Hydrobase

February 1 2012 18

Data from Hydrobase

February 1 2012 19

data from Meetpost Noordwijk

wwwgolfklimaatnl

0

50

100

150

200

250

300

350

400

450

0 200 400 600 800

time (hrs)

Hm

o (

cm

)

January 1979

February 1 2012 20

basic data

date time Hm0 accur H13 TTE3 Tm02 TH13 wave wind wind level setup

dir dir speed

cm cm cm 1 s 1 s 1 s degr degr 1 ms cm cm

19980101 0100 70 4 64 6 39 49 261 210 60 -27 27 222224000

19980101 0400 72 4 65 8 36 45 264 210 70 91 24 222224000

19980101 0700 62 4 56 8 36 46 258 200 80 58 11 222224000

19980101 1000 93 5 85 11 40 48 234 190 90 -31 6 222224000

19980101 1300 110 5 102 14 44 51 230 200 90 -83 -5 222224000

19980101 1600 162 7 148 17 42 52 230 200 120 43 -12 222224000

19980101 1900 132 6 121 11 40 48 224 190 130 40 -37 222224000

19980101 2200 205 8 190 18 51 61 220 190 170 -39 -33 222224000

19980102 0100 247 10 230 37 56 68 229 190 170 -114 -57 222224000

19980102 0400 275 11 255 40 55 68 236 210 160 -1 -1 222224000

19980102 0700 208 8 193 20 50 63 234 200 140 -2 -72 222224000

19980102 1000 142 6 132 14 47 59 227 190 120 -59 -13 222224000

19980102 1300 130 6 120 14 50 64 223 160 110 -97 -22 222224000

19980102 1600 117 5 108 13 43 53 213 170 100 73 87 222224000

19980102 1900 91 5 84 10 39 49 232 210 100 152 58 222224000

19980102 2200 243 10 226 22 52 62 267 280 150 119 118 222224000

19980103 0100 287 12 269 32 59 70 269 260 110 25 73 222224000

19980103 0400 240 10 224 21 55 66 265 230 90 28 60 222224000

19980103 0700 177 7 163 13 46 56 245 200 130 122 37 222224000

19980103 1000 179 7 165 16 47 56 223 180 170 -30 3 222224000

19980103 1300 285 12 266 35 58 70 230 210 190 -43 16 222224000

19980103 1600 341 15 318 56 61 73 242 250 130 -36 14 222224000

19980103 1900 342 15 319 53 60 73 246 260 170 133 20 222224000

19980103 2200 414 21 388 85 65 77 249 260 190 72 46 222224000

19980104 0100 465 21 435 228 72 88 254 260 190 40 68 222224000

19980104 0400 358 16 334 92 64 78 259 240 90 -22 18 222224000

19980104 0700 324 14 302 52 60 73 256 250 120 129 43 222224000

19980104 1000 247 10 229 33 55 69 252 220 100 34 33 222224000

February 1 2012 21

sort data in classes

Waveheight class Hs (cm)

Number of observations

P Q -ln(Q)

0 25 35 35 0000599 0999401 0000599

25 50 8260 8295 0141940 0858060 0153082 50 75 11424 19719 0337423 0662577 0411618

75 100 10004 29723 0508607 0491393 0710511

100 125 7649 37372 0639493 0360507 1020245

125 150 5563 42935 0734685 0265315 1326838

150 175 4389 47324 0809788 0190212 1659615

175 200 3167 50491 0863980 0136020 1994954

200 225 2360 52851 0904363 0095637 2347200

225 250 1671 54522 0932957 0067043 2702419

250 275 1234 55756 0954073 0045927 3080692

275 300 851 56607 0968634 0031366 3462047

300 325 556 57163 0978149 0021851 3823487

325 350 392 57555 0984856 0015144 4190168

350 375 276 57831 0989579 0010421 4563938

375 400 206 58037 0993104 0006896 4976819

400 425 136 58173 0995431 0004569 5388507

425 450 82 58255 0996834 0003166 5755400

450 475 66 58321 0997964 0002036 6196632

475 500 38 58359 0998614 0001386 6581307

500 525 30 58389 0999127 0000873 7043930

525 550 20 58409 0999470 0000530 7541769

550 575 22 58431 0999846 0000154 8778531

575 600 9 58440 1000000 0000000

58440

( )s sP P H H

( ) 1s sQ Q H H P

all data Noordwijk

y = 00151x - 05001

R2 = 09881

0

1

2

3

4

5

6

7

8

9

10

0 200 400 600Hs-l

nQ

February 1 2012 22

exceedance graph for Noordwijk

indivudual observations

0

200

400

600

800

1000

000001000001000001000001000001000001000000

exceedance

wave h

eig

ht

But what means that in a year during 01

of the time the Hs is larger than 5 m

February 1 2012 23

Peak over Threshold method

A storm is defined as a time that the wave is higher than a

certain value the height of the storm Hss is equal to the

highest observed Hs during that storm

Threshold = 15

In this period 9

storms observed

nr Hss

1 180 m

2 294 m

3 225 m

4 176 m

5 261 m

6 389 m

7 172 m

8 240 m

9 194 m

February 1 2012 24

Table with Hss classes

= 124 Wave height class

150 cumul P Q Qs W

150 175 384 384 021993 078007 6810 032522 175 200 381 765 043814 056186 4905 064136 200 225 266 1031 059049 040951 3575 091261 225 250 157 1188 068041 031959 2790 111202 250 275 148 1336 076518 023482 2050 134858 275 300 111 1447 082875 017125 1495 158094 300 325 81 1528 087514 012486 1090 180552 325 350 63 1591 091123 008877 775 204065 350 375 31 1622 092898 007102 620 219099 375 400 32 1654 094731 005269 460 238832 400 425 23 1677 096048 003952 345 257486 425 450 11 1688 096678 003322 290 268590 450 475 20 1708 097824 002176 190 295184 475 500 9 1717 098339 001661 145 311883 500 525 7 1724 098740 001260 110 328731 525 550 9 1733 099255 000745 065 360263 550 575 8 1741 099714 000286 025 415922 575 600 5 1746 1 0 000 DIV0 1746 20 year 873 Slope 085586 Intercept -104906 correlation 099524 beta 116842 gamma 122575

Hss for condition 1 10 668997

( )ss ssP P H H

1ss ssQ Q H H P

threshold 15 m

y = -07849Ln(x) + 16329

R2 = 09854

0

2

4

6

8

000010000100001000010000100000probability of exceedence

sto

rm h

eig

ht

Hss

February 1 2012 25

How to get storm exceedance

Q = probability of exceedance of a wave

Qs = probability of exceedance of a storm

s sQ N Qthreshold 15 m

y = -07849Ln(x) + 5141

R2 = 09854

0

2

4

6

8

10

001010100100010000

storm exceedence probability per year

sto

rm h

eig

ht

Hss

Statistically

nonsense

February 1 2012 26

The ldquoonce in 500 years stormrdquo

0785ln( )

10785ln 5141

500

100

ss sH Q

m

threshold 15 m

y = -07849Ln(x) + 5141

R2 = 09854

0

2

4

6

8

10

001010100100010000

storm exceedence probability per year

sto

rm h

eig

ht

Hss

February 1 2012 27

Using the Gumbel distribution

exp exp ssHP

February 1 2012 28

determination of and

ln exp

1ln ln

ss

ss

ssss

GAH B

HP

HP H

1ln lnG

P

Perform linear regression

for G = A Hss - B

February 1 2012 29

data for calculation of Gumbel 150 cumul P Q ln(Qs) -ln(H) Qs G

150 175 384 384 021993 078007 422098 -056 6810 -0415046

175 200 381 765 043814 056186 389284 -069 4905 0192121

200 225 266 1031 059049 040951 357655 -081 3575 0640938

225 250 157 1188 068041 031959 332863 -092 2790 0954366

250 275 148 1336 076518 023482 302042 -101 2050 1318085

275 300 111 1447 082875 017125 270471 -11 1495 1672191

300 325 81 1528 087514 012486 238876 -118 1090 2014645

325 350 63 1591 091123 008877 204769 -125 775 2375535

350 375 31 1622 092898 007102 182455 -132 620 2608194

375 400 32 1654 094731 005269 152606 -139 460 2916351

400 425 23 1677 096048 003952 123837 -145 345 3210883

425 450 11 1688 096678 003322 106471 -15 290 3387796

450 475 20 1708 097824 002176 064185 -156 190 3816515

475 500 9 1717 098339 001661 037156 -161 145 4089424

500 525 7 1724 098740 001260 009531 -166 110 4367707

525 550 9 1733 099255 000745 -043078 -17 065 4896399

550 575 8 1741 099714 000286 -138629 -175 025 5854211

575 600 5 1746 1 0 NUM -179 000 NUM

February 1 2012 30

Gumbel exceedance graph

Gumbel distribution

y = 07234x + 1882

R2 = 09871

0

2

4

6

8

10

0 2 4 6 8 10Gumbel Reduced variable

Sto

rm h

eig

ht

Hs

s

ssG AH B

= 1A = 0723

= B =1882

February 1 2012 31

calculation of a value

1ln ln

1ln ln

1

1ln ln

1

ln ln

ss

s

s

s

s s

HP

Q

QN

N

N Q

1500

873188 073ln ln 967

1873500

sH

= 1A = 073

= B =188

February 1 2012 32

transformation of the axis

Gumbel distribution

y = 07234x + 1882

R2 = 09871

0

2

4

6

8

10

0 2 4 6 8 10Gumbel Reduced variable

Sto

rm h

eig

ht

Hs

s

ln ln s

s s

NG

N Q

Ns = 873 storms per year

Qs G

110

1100

11000

110000

677

907

1138

1368

Figure Error No text of specified style in document-1 Storm exceedance on basis of Gumbel

10 100

February 1 2012 33

Weibull distribution

exp ssHQ

February 1 2012 34

determination of the reduced variable

1

1

ln

ln

1ln

ss

ss

ss

ss

WAH B

HQ

HQ

Q H

1

lnW Q

Three variables

and

So iteration is needed

February 1 2012 35

calculation for Weibull

alfa= 124

150 cumul P Q ln(Qs) -ln(H) Qs W

150 175 384 384 021993 078007 422098 -056 6810 032522

175 200 381 765 043814 056186 389284 -069 4905 064136

200 225 266 1031 059049 040951 357655 -081 3575 091261

225 250 157 1188 068041 031959 332863 -092 2790 111202

250 275 148 1336 076518 023482 302042 -101 2050 134858

275 300 111 1447 082875 017125 270471 -11 1495 158094

300 325 81 1528 087514 012486 238876 -118 1090 180552

325 350 63 1591 091123 008877 204769 -125 775 204065

350 375 31 1622 092898 007102 182455 -132 620 219099

375 400 32 1654 094731 005269 152606 -139 460 238832

400 425 23 1677 096048 003952 123837 -145 345 257486

425 450 11 1688 096678 003322 106471 -15 290 268590

450 475 20 1708 097824 002176 064185 -156 190 295184

475 500 9 1717 098339 001661 037156 -161 145 311883

500 525 7 1724 098740 001260 009531 -166 110 328731

525 550 9 1733 099255 000745 -043078 -17 065 360263

550 575 8 1741 099714 000286 -138629 -175 025 415922

575 600 5 1746 1 0 NUM -179 000 DIV0

1746

20 year 873 085586

-104906

099524

-07849

541 beta 116842

gamma 122575

Hs for condition 1 500 1028785 911838

1

lnssH Q

1

ln sss

s

QH

N

1124

1500

1500122 117 ln

873

122 117 675

912

sH

m

February 1 2012 36

Weibull exceedance graph

Weibull distribution

y = 11573x + 12497

R2 = 09905

0

2

4

6

8

10

0 2 4 6 8 10

Weibull Reduced variable

Str

om

heig

ht

Hss

10 100 1000 10000

February 1 2012 37

Summary

HT threshold value

Exponential

Gumbel

Weibull

150 m 163 m 136 m 122 m

HT 150 200 250 300 350 400

Ns 873 596 389 194 108 53

Hs 1500 Exponential Hs 1500 Gumbel Hs 1500 Weibull

1000 969 912

1009 950 990

948 917 963

939 893 948

908 886 917

876 818 890

February 1 2012 38

What to do if only random data are available

storm exceedance

0

200

400

600

800

01110100100010000

probability per year

Hs

s

February 1 2012 39

Example of long term data

This are

Hs-classes

February 1 2012 40

Long term (continuation)

So from this last column we can conclude

100 of time H gt 0 m s

23 of time H gt 1 m s

12 of time H gt 2 m s

001 of time H gt 9 m s

0

2

4

6

8

10

12

14

1E-071E-061E-051E-041E-031E-021E-011E+00

exceedance per year

wave

he

igh

t H

s (

m)

February 1 2012 41

From probability of waves to probability of storms

Suppose a ldquostormrdquo lasts for 12 hrs

===gt 730 stormsyear

once per year storm = 100730 = 013 =gt 67 m

once per 10 year storm = 0013 =gt 94 m

once per 100 year storm = 00013 =gt 119 m

0

5

10

15

20

1 10 100 1000 10000

return period in years

Hs o

f th

e g

ive

n s

torm

February 1 2012 42

Meteorological data

bull Not of direct importance for design

bull Can be important for hindcast of wave data and storm surge

bull Extremely important for the execution of the works (workability)

February 1 2012 43

Waves from Wind (Brettschneider)

February 1 2012 44

required soil data

February 1 2012 45

in situ test methods

February 1 2012 46

During construction

bull Quarry stone

bull Concrete

bull Local Equipment

bull Labour

bull skilled

bull cost

bull availability

bull expatriates

Page 8: Chapter 6: Data Collection

February 1 2012 8

Global wave statistics (2)

February 1 2012 9

processed data

Atlas of the Oceans

Wind and Wave data

February 1 2012 10

ERA-40 wave atlas

httpwwwknminl

onderzkoceano

wavesera40

February 1 2012 11

wave data for North Sea

February 1 2012 12

example from Argoss (wwwwaveclimatecom)

standard histogram

February 1 2012 13

exceedance table

February 1 2012 14

exceedance graph

February 1 2012 15

comparison buoys and ship data

February 1 2012 16

Data from wwwhydrobasenet

February 1 2012 17

Sample output of Hydrobase

February 1 2012 18

Data from Hydrobase

February 1 2012 19

data from Meetpost Noordwijk

wwwgolfklimaatnl

0

50

100

150

200

250

300

350

400

450

0 200 400 600 800

time (hrs)

Hm

o (

cm

)

January 1979

February 1 2012 20

basic data

date time Hm0 accur H13 TTE3 Tm02 TH13 wave wind wind level setup

dir dir speed

cm cm cm 1 s 1 s 1 s degr degr 1 ms cm cm

19980101 0100 70 4 64 6 39 49 261 210 60 -27 27 222224000

19980101 0400 72 4 65 8 36 45 264 210 70 91 24 222224000

19980101 0700 62 4 56 8 36 46 258 200 80 58 11 222224000

19980101 1000 93 5 85 11 40 48 234 190 90 -31 6 222224000

19980101 1300 110 5 102 14 44 51 230 200 90 -83 -5 222224000

19980101 1600 162 7 148 17 42 52 230 200 120 43 -12 222224000

19980101 1900 132 6 121 11 40 48 224 190 130 40 -37 222224000

19980101 2200 205 8 190 18 51 61 220 190 170 -39 -33 222224000

19980102 0100 247 10 230 37 56 68 229 190 170 -114 -57 222224000

19980102 0400 275 11 255 40 55 68 236 210 160 -1 -1 222224000

19980102 0700 208 8 193 20 50 63 234 200 140 -2 -72 222224000

19980102 1000 142 6 132 14 47 59 227 190 120 -59 -13 222224000

19980102 1300 130 6 120 14 50 64 223 160 110 -97 -22 222224000

19980102 1600 117 5 108 13 43 53 213 170 100 73 87 222224000

19980102 1900 91 5 84 10 39 49 232 210 100 152 58 222224000

19980102 2200 243 10 226 22 52 62 267 280 150 119 118 222224000

19980103 0100 287 12 269 32 59 70 269 260 110 25 73 222224000

19980103 0400 240 10 224 21 55 66 265 230 90 28 60 222224000

19980103 0700 177 7 163 13 46 56 245 200 130 122 37 222224000

19980103 1000 179 7 165 16 47 56 223 180 170 -30 3 222224000

19980103 1300 285 12 266 35 58 70 230 210 190 -43 16 222224000

19980103 1600 341 15 318 56 61 73 242 250 130 -36 14 222224000

19980103 1900 342 15 319 53 60 73 246 260 170 133 20 222224000

19980103 2200 414 21 388 85 65 77 249 260 190 72 46 222224000

19980104 0100 465 21 435 228 72 88 254 260 190 40 68 222224000

19980104 0400 358 16 334 92 64 78 259 240 90 -22 18 222224000

19980104 0700 324 14 302 52 60 73 256 250 120 129 43 222224000

19980104 1000 247 10 229 33 55 69 252 220 100 34 33 222224000

February 1 2012 21

sort data in classes

Waveheight class Hs (cm)

Number of observations

P Q -ln(Q)

0 25 35 35 0000599 0999401 0000599

25 50 8260 8295 0141940 0858060 0153082 50 75 11424 19719 0337423 0662577 0411618

75 100 10004 29723 0508607 0491393 0710511

100 125 7649 37372 0639493 0360507 1020245

125 150 5563 42935 0734685 0265315 1326838

150 175 4389 47324 0809788 0190212 1659615

175 200 3167 50491 0863980 0136020 1994954

200 225 2360 52851 0904363 0095637 2347200

225 250 1671 54522 0932957 0067043 2702419

250 275 1234 55756 0954073 0045927 3080692

275 300 851 56607 0968634 0031366 3462047

300 325 556 57163 0978149 0021851 3823487

325 350 392 57555 0984856 0015144 4190168

350 375 276 57831 0989579 0010421 4563938

375 400 206 58037 0993104 0006896 4976819

400 425 136 58173 0995431 0004569 5388507

425 450 82 58255 0996834 0003166 5755400

450 475 66 58321 0997964 0002036 6196632

475 500 38 58359 0998614 0001386 6581307

500 525 30 58389 0999127 0000873 7043930

525 550 20 58409 0999470 0000530 7541769

550 575 22 58431 0999846 0000154 8778531

575 600 9 58440 1000000 0000000

58440

( )s sP P H H

( ) 1s sQ Q H H P

all data Noordwijk

y = 00151x - 05001

R2 = 09881

0

1

2

3

4

5

6

7

8

9

10

0 200 400 600Hs-l

nQ

February 1 2012 22

exceedance graph for Noordwijk

indivudual observations

0

200

400

600

800

1000

000001000001000001000001000001000001000000

exceedance

wave h

eig

ht

But what means that in a year during 01

of the time the Hs is larger than 5 m

February 1 2012 23

Peak over Threshold method

A storm is defined as a time that the wave is higher than a

certain value the height of the storm Hss is equal to the

highest observed Hs during that storm

Threshold = 15

In this period 9

storms observed

nr Hss

1 180 m

2 294 m

3 225 m

4 176 m

5 261 m

6 389 m

7 172 m

8 240 m

9 194 m

February 1 2012 24

Table with Hss classes

= 124 Wave height class

150 cumul P Q Qs W

150 175 384 384 021993 078007 6810 032522 175 200 381 765 043814 056186 4905 064136 200 225 266 1031 059049 040951 3575 091261 225 250 157 1188 068041 031959 2790 111202 250 275 148 1336 076518 023482 2050 134858 275 300 111 1447 082875 017125 1495 158094 300 325 81 1528 087514 012486 1090 180552 325 350 63 1591 091123 008877 775 204065 350 375 31 1622 092898 007102 620 219099 375 400 32 1654 094731 005269 460 238832 400 425 23 1677 096048 003952 345 257486 425 450 11 1688 096678 003322 290 268590 450 475 20 1708 097824 002176 190 295184 475 500 9 1717 098339 001661 145 311883 500 525 7 1724 098740 001260 110 328731 525 550 9 1733 099255 000745 065 360263 550 575 8 1741 099714 000286 025 415922 575 600 5 1746 1 0 000 DIV0 1746 20 year 873 Slope 085586 Intercept -104906 correlation 099524 beta 116842 gamma 122575

Hss for condition 1 10 668997

( )ss ssP P H H

1ss ssQ Q H H P

threshold 15 m

y = -07849Ln(x) + 16329

R2 = 09854

0

2

4

6

8

000010000100001000010000100000probability of exceedence

sto

rm h

eig

ht

Hss

February 1 2012 25

How to get storm exceedance

Q = probability of exceedance of a wave

Qs = probability of exceedance of a storm

s sQ N Qthreshold 15 m

y = -07849Ln(x) + 5141

R2 = 09854

0

2

4

6

8

10

001010100100010000

storm exceedence probability per year

sto

rm h

eig

ht

Hss

Statistically

nonsense

February 1 2012 26

The ldquoonce in 500 years stormrdquo

0785ln( )

10785ln 5141

500

100

ss sH Q

m

threshold 15 m

y = -07849Ln(x) + 5141

R2 = 09854

0

2

4

6

8

10

001010100100010000

storm exceedence probability per year

sto

rm h

eig

ht

Hss

February 1 2012 27

Using the Gumbel distribution

exp exp ssHP

February 1 2012 28

determination of and

ln exp

1ln ln

ss

ss

ssss

GAH B

HP

HP H

1ln lnG

P

Perform linear regression

for G = A Hss - B

February 1 2012 29

data for calculation of Gumbel 150 cumul P Q ln(Qs) -ln(H) Qs G

150 175 384 384 021993 078007 422098 -056 6810 -0415046

175 200 381 765 043814 056186 389284 -069 4905 0192121

200 225 266 1031 059049 040951 357655 -081 3575 0640938

225 250 157 1188 068041 031959 332863 -092 2790 0954366

250 275 148 1336 076518 023482 302042 -101 2050 1318085

275 300 111 1447 082875 017125 270471 -11 1495 1672191

300 325 81 1528 087514 012486 238876 -118 1090 2014645

325 350 63 1591 091123 008877 204769 -125 775 2375535

350 375 31 1622 092898 007102 182455 -132 620 2608194

375 400 32 1654 094731 005269 152606 -139 460 2916351

400 425 23 1677 096048 003952 123837 -145 345 3210883

425 450 11 1688 096678 003322 106471 -15 290 3387796

450 475 20 1708 097824 002176 064185 -156 190 3816515

475 500 9 1717 098339 001661 037156 -161 145 4089424

500 525 7 1724 098740 001260 009531 -166 110 4367707

525 550 9 1733 099255 000745 -043078 -17 065 4896399

550 575 8 1741 099714 000286 -138629 -175 025 5854211

575 600 5 1746 1 0 NUM -179 000 NUM

February 1 2012 30

Gumbel exceedance graph

Gumbel distribution

y = 07234x + 1882

R2 = 09871

0

2

4

6

8

10

0 2 4 6 8 10Gumbel Reduced variable

Sto

rm h

eig

ht

Hs

s

ssG AH B

= 1A = 0723

= B =1882

February 1 2012 31

calculation of a value

1ln ln

1ln ln

1

1ln ln

1

ln ln

ss

s

s

s

s s

HP

Q

QN

N

N Q

1500

873188 073ln ln 967

1873500

sH

= 1A = 073

= B =188

February 1 2012 32

transformation of the axis

Gumbel distribution

y = 07234x + 1882

R2 = 09871

0

2

4

6

8

10

0 2 4 6 8 10Gumbel Reduced variable

Sto

rm h

eig

ht

Hs

s

ln ln s

s s

NG

N Q

Ns = 873 storms per year

Qs G

110

1100

11000

110000

677

907

1138

1368

Figure Error No text of specified style in document-1 Storm exceedance on basis of Gumbel

10 100

February 1 2012 33

Weibull distribution

exp ssHQ

February 1 2012 34

determination of the reduced variable

1

1

ln

ln

1ln

ss

ss

ss

ss

WAH B

HQ

HQ

Q H

1

lnW Q

Three variables

and

So iteration is needed

February 1 2012 35

calculation for Weibull

alfa= 124

150 cumul P Q ln(Qs) -ln(H) Qs W

150 175 384 384 021993 078007 422098 -056 6810 032522

175 200 381 765 043814 056186 389284 -069 4905 064136

200 225 266 1031 059049 040951 357655 -081 3575 091261

225 250 157 1188 068041 031959 332863 -092 2790 111202

250 275 148 1336 076518 023482 302042 -101 2050 134858

275 300 111 1447 082875 017125 270471 -11 1495 158094

300 325 81 1528 087514 012486 238876 -118 1090 180552

325 350 63 1591 091123 008877 204769 -125 775 204065

350 375 31 1622 092898 007102 182455 -132 620 219099

375 400 32 1654 094731 005269 152606 -139 460 238832

400 425 23 1677 096048 003952 123837 -145 345 257486

425 450 11 1688 096678 003322 106471 -15 290 268590

450 475 20 1708 097824 002176 064185 -156 190 295184

475 500 9 1717 098339 001661 037156 -161 145 311883

500 525 7 1724 098740 001260 009531 -166 110 328731

525 550 9 1733 099255 000745 -043078 -17 065 360263

550 575 8 1741 099714 000286 -138629 -175 025 415922

575 600 5 1746 1 0 NUM -179 000 DIV0

1746

20 year 873 085586

-104906

099524

-07849

541 beta 116842

gamma 122575

Hs for condition 1 500 1028785 911838

1

lnssH Q

1

ln sss

s

QH

N

1124

1500

1500122 117 ln

873

122 117 675

912

sH

m

February 1 2012 36

Weibull exceedance graph

Weibull distribution

y = 11573x + 12497

R2 = 09905

0

2

4

6

8

10

0 2 4 6 8 10

Weibull Reduced variable

Str

om

heig

ht

Hss

10 100 1000 10000

February 1 2012 37

Summary

HT threshold value

Exponential

Gumbel

Weibull

150 m 163 m 136 m 122 m

HT 150 200 250 300 350 400

Ns 873 596 389 194 108 53

Hs 1500 Exponential Hs 1500 Gumbel Hs 1500 Weibull

1000 969 912

1009 950 990

948 917 963

939 893 948

908 886 917

876 818 890

February 1 2012 38

What to do if only random data are available

storm exceedance

0

200

400

600

800

01110100100010000

probability per year

Hs

s

February 1 2012 39

Example of long term data

This are

Hs-classes

February 1 2012 40

Long term (continuation)

So from this last column we can conclude

100 of time H gt 0 m s

23 of time H gt 1 m s

12 of time H gt 2 m s

001 of time H gt 9 m s

0

2

4

6

8

10

12

14

1E-071E-061E-051E-041E-031E-021E-011E+00

exceedance per year

wave

he

igh

t H

s (

m)

February 1 2012 41

From probability of waves to probability of storms

Suppose a ldquostormrdquo lasts for 12 hrs

===gt 730 stormsyear

once per year storm = 100730 = 013 =gt 67 m

once per 10 year storm = 0013 =gt 94 m

once per 100 year storm = 00013 =gt 119 m

0

5

10

15

20

1 10 100 1000 10000

return period in years

Hs o

f th

e g

ive

n s

torm

February 1 2012 42

Meteorological data

bull Not of direct importance for design

bull Can be important for hindcast of wave data and storm surge

bull Extremely important for the execution of the works (workability)

February 1 2012 43

Waves from Wind (Brettschneider)

February 1 2012 44

required soil data

February 1 2012 45

in situ test methods

February 1 2012 46

During construction

bull Quarry stone

bull Concrete

bull Local Equipment

bull Labour

bull skilled

bull cost

bull availability

bull expatriates

Page 9: Chapter 6: Data Collection

February 1 2012 9

processed data

Atlas of the Oceans

Wind and Wave data

February 1 2012 10

ERA-40 wave atlas

httpwwwknminl

onderzkoceano

wavesera40

February 1 2012 11

wave data for North Sea

February 1 2012 12

example from Argoss (wwwwaveclimatecom)

standard histogram

February 1 2012 13

exceedance table

February 1 2012 14

exceedance graph

February 1 2012 15

comparison buoys and ship data

February 1 2012 16

Data from wwwhydrobasenet

February 1 2012 17

Sample output of Hydrobase

February 1 2012 18

Data from Hydrobase

February 1 2012 19

data from Meetpost Noordwijk

wwwgolfklimaatnl

0

50

100

150

200

250

300

350

400

450

0 200 400 600 800

time (hrs)

Hm

o (

cm

)

January 1979

February 1 2012 20

basic data

date time Hm0 accur H13 TTE3 Tm02 TH13 wave wind wind level setup

dir dir speed

cm cm cm 1 s 1 s 1 s degr degr 1 ms cm cm

19980101 0100 70 4 64 6 39 49 261 210 60 -27 27 222224000

19980101 0400 72 4 65 8 36 45 264 210 70 91 24 222224000

19980101 0700 62 4 56 8 36 46 258 200 80 58 11 222224000

19980101 1000 93 5 85 11 40 48 234 190 90 -31 6 222224000

19980101 1300 110 5 102 14 44 51 230 200 90 -83 -5 222224000

19980101 1600 162 7 148 17 42 52 230 200 120 43 -12 222224000

19980101 1900 132 6 121 11 40 48 224 190 130 40 -37 222224000

19980101 2200 205 8 190 18 51 61 220 190 170 -39 -33 222224000

19980102 0100 247 10 230 37 56 68 229 190 170 -114 -57 222224000

19980102 0400 275 11 255 40 55 68 236 210 160 -1 -1 222224000

19980102 0700 208 8 193 20 50 63 234 200 140 -2 -72 222224000

19980102 1000 142 6 132 14 47 59 227 190 120 -59 -13 222224000

19980102 1300 130 6 120 14 50 64 223 160 110 -97 -22 222224000

19980102 1600 117 5 108 13 43 53 213 170 100 73 87 222224000

19980102 1900 91 5 84 10 39 49 232 210 100 152 58 222224000

19980102 2200 243 10 226 22 52 62 267 280 150 119 118 222224000

19980103 0100 287 12 269 32 59 70 269 260 110 25 73 222224000

19980103 0400 240 10 224 21 55 66 265 230 90 28 60 222224000

19980103 0700 177 7 163 13 46 56 245 200 130 122 37 222224000

19980103 1000 179 7 165 16 47 56 223 180 170 -30 3 222224000

19980103 1300 285 12 266 35 58 70 230 210 190 -43 16 222224000

19980103 1600 341 15 318 56 61 73 242 250 130 -36 14 222224000

19980103 1900 342 15 319 53 60 73 246 260 170 133 20 222224000

19980103 2200 414 21 388 85 65 77 249 260 190 72 46 222224000

19980104 0100 465 21 435 228 72 88 254 260 190 40 68 222224000

19980104 0400 358 16 334 92 64 78 259 240 90 -22 18 222224000

19980104 0700 324 14 302 52 60 73 256 250 120 129 43 222224000

19980104 1000 247 10 229 33 55 69 252 220 100 34 33 222224000

February 1 2012 21

sort data in classes

Waveheight class Hs (cm)

Number of observations

P Q -ln(Q)

0 25 35 35 0000599 0999401 0000599

25 50 8260 8295 0141940 0858060 0153082 50 75 11424 19719 0337423 0662577 0411618

75 100 10004 29723 0508607 0491393 0710511

100 125 7649 37372 0639493 0360507 1020245

125 150 5563 42935 0734685 0265315 1326838

150 175 4389 47324 0809788 0190212 1659615

175 200 3167 50491 0863980 0136020 1994954

200 225 2360 52851 0904363 0095637 2347200

225 250 1671 54522 0932957 0067043 2702419

250 275 1234 55756 0954073 0045927 3080692

275 300 851 56607 0968634 0031366 3462047

300 325 556 57163 0978149 0021851 3823487

325 350 392 57555 0984856 0015144 4190168

350 375 276 57831 0989579 0010421 4563938

375 400 206 58037 0993104 0006896 4976819

400 425 136 58173 0995431 0004569 5388507

425 450 82 58255 0996834 0003166 5755400

450 475 66 58321 0997964 0002036 6196632

475 500 38 58359 0998614 0001386 6581307

500 525 30 58389 0999127 0000873 7043930

525 550 20 58409 0999470 0000530 7541769

550 575 22 58431 0999846 0000154 8778531

575 600 9 58440 1000000 0000000

58440

( )s sP P H H

( ) 1s sQ Q H H P

all data Noordwijk

y = 00151x - 05001

R2 = 09881

0

1

2

3

4

5

6

7

8

9

10

0 200 400 600Hs-l

nQ

February 1 2012 22

exceedance graph for Noordwijk

indivudual observations

0

200

400

600

800

1000

000001000001000001000001000001000001000000

exceedance

wave h

eig

ht

But what means that in a year during 01

of the time the Hs is larger than 5 m

February 1 2012 23

Peak over Threshold method

A storm is defined as a time that the wave is higher than a

certain value the height of the storm Hss is equal to the

highest observed Hs during that storm

Threshold = 15

In this period 9

storms observed

nr Hss

1 180 m

2 294 m

3 225 m

4 176 m

5 261 m

6 389 m

7 172 m

8 240 m

9 194 m

February 1 2012 24

Table with Hss classes

= 124 Wave height class

150 cumul P Q Qs W

150 175 384 384 021993 078007 6810 032522 175 200 381 765 043814 056186 4905 064136 200 225 266 1031 059049 040951 3575 091261 225 250 157 1188 068041 031959 2790 111202 250 275 148 1336 076518 023482 2050 134858 275 300 111 1447 082875 017125 1495 158094 300 325 81 1528 087514 012486 1090 180552 325 350 63 1591 091123 008877 775 204065 350 375 31 1622 092898 007102 620 219099 375 400 32 1654 094731 005269 460 238832 400 425 23 1677 096048 003952 345 257486 425 450 11 1688 096678 003322 290 268590 450 475 20 1708 097824 002176 190 295184 475 500 9 1717 098339 001661 145 311883 500 525 7 1724 098740 001260 110 328731 525 550 9 1733 099255 000745 065 360263 550 575 8 1741 099714 000286 025 415922 575 600 5 1746 1 0 000 DIV0 1746 20 year 873 Slope 085586 Intercept -104906 correlation 099524 beta 116842 gamma 122575

Hss for condition 1 10 668997

( )ss ssP P H H

1ss ssQ Q H H P

threshold 15 m

y = -07849Ln(x) + 16329

R2 = 09854

0

2

4

6

8

000010000100001000010000100000probability of exceedence

sto

rm h

eig

ht

Hss

February 1 2012 25

How to get storm exceedance

Q = probability of exceedance of a wave

Qs = probability of exceedance of a storm

s sQ N Qthreshold 15 m

y = -07849Ln(x) + 5141

R2 = 09854

0

2

4

6

8

10

001010100100010000

storm exceedence probability per year

sto

rm h

eig

ht

Hss

Statistically

nonsense

February 1 2012 26

The ldquoonce in 500 years stormrdquo

0785ln( )

10785ln 5141

500

100

ss sH Q

m

threshold 15 m

y = -07849Ln(x) + 5141

R2 = 09854

0

2

4

6

8

10

001010100100010000

storm exceedence probability per year

sto

rm h

eig

ht

Hss

February 1 2012 27

Using the Gumbel distribution

exp exp ssHP

February 1 2012 28

determination of and

ln exp

1ln ln

ss

ss

ssss

GAH B

HP

HP H

1ln lnG

P

Perform linear regression

for G = A Hss - B

February 1 2012 29

data for calculation of Gumbel 150 cumul P Q ln(Qs) -ln(H) Qs G

150 175 384 384 021993 078007 422098 -056 6810 -0415046

175 200 381 765 043814 056186 389284 -069 4905 0192121

200 225 266 1031 059049 040951 357655 -081 3575 0640938

225 250 157 1188 068041 031959 332863 -092 2790 0954366

250 275 148 1336 076518 023482 302042 -101 2050 1318085

275 300 111 1447 082875 017125 270471 -11 1495 1672191

300 325 81 1528 087514 012486 238876 -118 1090 2014645

325 350 63 1591 091123 008877 204769 -125 775 2375535

350 375 31 1622 092898 007102 182455 -132 620 2608194

375 400 32 1654 094731 005269 152606 -139 460 2916351

400 425 23 1677 096048 003952 123837 -145 345 3210883

425 450 11 1688 096678 003322 106471 -15 290 3387796

450 475 20 1708 097824 002176 064185 -156 190 3816515

475 500 9 1717 098339 001661 037156 -161 145 4089424

500 525 7 1724 098740 001260 009531 -166 110 4367707

525 550 9 1733 099255 000745 -043078 -17 065 4896399

550 575 8 1741 099714 000286 -138629 -175 025 5854211

575 600 5 1746 1 0 NUM -179 000 NUM

February 1 2012 30

Gumbel exceedance graph

Gumbel distribution

y = 07234x + 1882

R2 = 09871

0

2

4

6

8

10

0 2 4 6 8 10Gumbel Reduced variable

Sto

rm h

eig

ht

Hs

s

ssG AH B

= 1A = 0723

= B =1882

February 1 2012 31

calculation of a value

1ln ln

1ln ln

1

1ln ln

1

ln ln

ss

s

s

s

s s

HP

Q

QN

N

N Q

1500

873188 073ln ln 967

1873500

sH

= 1A = 073

= B =188

February 1 2012 32

transformation of the axis

Gumbel distribution

y = 07234x + 1882

R2 = 09871

0

2

4

6

8

10

0 2 4 6 8 10Gumbel Reduced variable

Sto

rm h

eig

ht

Hs

s

ln ln s

s s

NG

N Q

Ns = 873 storms per year

Qs G

110

1100

11000

110000

677

907

1138

1368

Figure Error No text of specified style in document-1 Storm exceedance on basis of Gumbel

10 100

February 1 2012 33

Weibull distribution

exp ssHQ

February 1 2012 34

determination of the reduced variable

1

1

ln

ln

1ln

ss

ss

ss

ss

WAH B

HQ

HQ

Q H

1

lnW Q

Three variables

and

So iteration is needed

February 1 2012 35

calculation for Weibull

alfa= 124

150 cumul P Q ln(Qs) -ln(H) Qs W

150 175 384 384 021993 078007 422098 -056 6810 032522

175 200 381 765 043814 056186 389284 -069 4905 064136

200 225 266 1031 059049 040951 357655 -081 3575 091261

225 250 157 1188 068041 031959 332863 -092 2790 111202

250 275 148 1336 076518 023482 302042 -101 2050 134858

275 300 111 1447 082875 017125 270471 -11 1495 158094

300 325 81 1528 087514 012486 238876 -118 1090 180552

325 350 63 1591 091123 008877 204769 -125 775 204065

350 375 31 1622 092898 007102 182455 -132 620 219099

375 400 32 1654 094731 005269 152606 -139 460 238832

400 425 23 1677 096048 003952 123837 -145 345 257486

425 450 11 1688 096678 003322 106471 -15 290 268590

450 475 20 1708 097824 002176 064185 -156 190 295184

475 500 9 1717 098339 001661 037156 -161 145 311883

500 525 7 1724 098740 001260 009531 -166 110 328731

525 550 9 1733 099255 000745 -043078 -17 065 360263

550 575 8 1741 099714 000286 -138629 -175 025 415922

575 600 5 1746 1 0 NUM -179 000 DIV0

1746

20 year 873 085586

-104906

099524

-07849

541 beta 116842

gamma 122575

Hs for condition 1 500 1028785 911838

1

lnssH Q

1

ln sss

s

QH

N

1124

1500

1500122 117 ln

873

122 117 675

912

sH

m

February 1 2012 36

Weibull exceedance graph

Weibull distribution

y = 11573x + 12497

R2 = 09905

0

2

4

6

8

10

0 2 4 6 8 10

Weibull Reduced variable

Str

om

heig

ht

Hss

10 100 1000 10000

February 1 2012 37

Summary

HT threshold value

Exponential

Gumbel

Weibull

150 m 163 m 136 m 122 m

HT 150 200 250 300 350 400

Ns 873 596 389 194 108 53

Hs 1500 Exponential Hs 1500 Gumbel Hs 1500 Weibull

1000 969 912

1009 950 990

948 917 963

939 893 948

908 886 917

876 818 890

February 1 2012 38

What to do if only random data are available

storm exceedance

0

200

400

600

800

01110100100010000

probability per year

Hs

s

February 1 2012 39

Example of long term data

This are

Hs-classes

February 1 2012 40

Long term (continuation)

So from this last column we can conclude

100 of time H gt 0 m s

23 of time H gt 1 m s

12 of time H gt 2 m s

001 of time H gt 9 m s

0

2

4

6

8

10

12

14

1E-071E-061E-051E-041E-031E-021E-011E+00

exceedance per year

wave

he

igh

t H

s (

m)

February 1 2012 41

From probability of waves to probability of storms

Suppose a ldquostormrdquo lasts for 12 hrs

===gt 730 stormsyear

once per year storm = 100730 = 013 =gt 67 m

once per 10 year storm = 0013 =gt 94 m

once per 100 year storm = 00013 =gt 119 m

0

5

10

15

20

1 10 100 1000 10000

return period in years

Hs o

f th

e g

ive

n s

torm

February 1 2012 42

Meteorological data

bull Not of direct importance for design

bull Can be important for hindcast of wave data and storm surge

bull Extremely important for the execution of the works (workability)

February 1 2012 43

Waves from Wind (Brettschneider)

February 1 2012 44

required soil data

February 1 2012 45

in situ test methods

February 1 2012 46

During construction

bull Quarry stone

bull Concrete

bull Local Equipment

bull Labour

bull skilled

bull cost

bull availability

bull expatriates

Page 10: Chapter 6: Data Collection

February 1 2012 10

ERA-40 wave atlas

httpwwwknminl

onderzkoceano

wavesera40

February 1 2012 11

wave data for North Sea

February 1 2012 12

example from Argoss (wwwwaveclimatecom)

standard histogram

February 1 2012 13

exceedance table

February 1 2012 14

exceedance graph

February 1 2012 15

comparison buoys and ship data

February 1 2012 16

Data from wwwhydrobasenet

February 1 2012 17

Sample output of Hydrobase

February 1 2012 18

Data from Hydrobase

February 1 2012 19

data from Meetpost Noordwijk

wwwgolfklimaatnl

0

50

100

150

200

250

300

350

400

450

0 200 400 600 800

time (hrs)

Hm

o (

cm

)

January 1979

February 1 2012 20

basic data

date time Hm0 accur H13 TTE3 Tm02 TH13 wave wind wind level setup

dir dir speed

cm cm cm 1 s 1 s 1 s degr degr 1 ms cm cm

19980101 0100 70 4 64 6 39 49 261 210 60 -27 27 222224000

19980101 0400 72 4 65 8 36 45 264 210 70 91 24 222224000

19980101 0700 62 4 56 8 36 46 258 200 80 58 11 222224000

19980101 1000 93 5 85 11 40 48 234 190 90 -31 6 222224000

19980101 1300 110 5 102 14 44 51 230 200 90 -83 -5 222224000

19980101 1600 162 7 148 17 42 52 230 200 120 43 -12 222224000

19980101 1900 132 6 121 11 40 48 224 190 130 40 -37 222224000

19980101 2200 205 8 190 18 51 61 220 190 170 -39 -33 222224000

19980102 0100 247 10 230 37 56 68 229 190 170 -114 -57 222224000

19980102 0400 275 11 255 40 55 68 236 210 160 -1 -1 222224000

19980102 0700 208 8 193 20 50 63 234 200 140 -2 -72 222224000

19980102 1000 142 6 132 14 47 59 227 190 120 -59 -13 222224000

19980102 1300 130 6 120 14 50 64 223 160 110 -97 -22 222224000

19980102 1600 117 5 108 13 43 53 213 170 100 73 87 222224000

19980102 1900 91 5 84 10 39 49 232 210 100 152 58 222224000

19980102 2200 243 10 226 22 52 62 267 280 150 119 118 222224000

19980103 0100 287 12 269 32 59 70 269 260 110 25 73 222224000

19980103 0400 240 10 224 21 55 66 265 230 90 28 60 222224000

19980103 0700 177 7 163 13 46 56 245 200 130 122 37 222224000

19980103 1000 179 7 165 16 47 56 223 180 170 -30 3 222224000

19980103 1300 285 12 266 35 58 70 230 210 190 -43 16 222224000

19980103 1600 341 15 318 56 61 73 242 250 130 -36 14 222224000

19980103 1900 342 15 319 53 60 73 246 260 170 133 20 222224000

19980103 2200 414 21 388 85 65 77 249 260 190 72 46 222224000

19980104 0100 465 21 435 228 72 88 254 260 190 40 68 222224000

19980104 0400 358 16 334 92 64 78 259 240 90 -22 18 222224000

19980104 0700 324 14 302 52 60 73 256 250 120 129 43 222224000

19980104 1000 247 10 229 33 55 69 252 220 100 34 33 222224000

February 1 2012 21

sort data in classes

Waveheight class Hs (cm)

Number of observations

P Q -ln(Q)

0 25 35 35 0000599 0999401 0000599

25 50 8260 8295 0141940 0858060 0153082 50 75 11424 19719 0337423 0662577 0411618

75 100 10004 29723 0508607 0491393 0710511

100 125 7649 37372 0639493 0360507 1020245

125 150 5563 42935 0734685 0265315 1326838

150 175 4389 47324 0809788 0190212 1659615

175 200 3167 50491 0863980 0136020 1994954

200 225 2360 52851 0904363 0095637 2347200

225 250 1671 54522 0932957 0067043 2702419

250 275 1234 55756 0954073 0045927 3080692

275 300 851 56607 0968634 0031366 3462047

300 325 556 57163 0978149 0021851 3823487

325 350 392 57555 0984856 0015144 4190168

350 375 276 57831 0989579 0010421 4563938

375 400 206 58037 0993104 0006896 4976819

400 425 136 58173 0995431 0004569 5388507

425 450 82 58255 0996834 0003166 5755400

450 475 66 58321 0997964 0002036 6196632

475 500 38 58359 0998614 0001386 6581307

500 525 30 58389 0999127 0000873 7043930

525 550 20 58409 0999470 0000530 7541769

550 575 22 58431 0999846 0000154 8778531

575 600 9 58440 1000000 0000000

58440

( )s sP P H H

( ) 1s sQ Q H H P

all data Noordwijk

y = 00151x - 05001

R2 = 09881

0

1

2

3

4

5

6

7

8

9

10

0 200 400 600Hs-l

nQ

February 1 2012 22

exceedance graph for Noordwijk

indivudual observations

0

200

400

600

800

1000

000001000001000001000001000001000001000000

exceedance

wave h

eig

ht

But what means that in a year during 01

of the time the Hs is larger than 5 m

February 1 2012 23

Peak over Threshold method

A storm is defined as a time that the wave is higher than a

certain value the height of the storm Hss is equal to the

highest observed Hs during that storm

Threshold = 15

In this period 9

storms observed

nr Hss

1 180 m

2 294 m

3 225 m

4 176 m

5 261 m

6 389 m

7 172 m

8 240 m

9 194 m

February 1 2012 24

Table with Hss classes

= 124 Wave height class

150 cumul P Q Qs W

150 175 384 384 021993 078007 6810 032522 175 200 381 765 043814 056186 4905 064136 200 225 266 1031 059049 040951 3575 091261 225 250 157 1188 068041 031959 2790 111202 250 275 148 1336 076518 023482 2050 134858 275 300 111 1447 082875 017125 1495 158094 300 325 81 1528 087514 012486 1090 180552 325 350 63 1591 091123 008877 775 204065 350 375 31 1622 092898 007102 620 219099 375 400 32 1654 094731 005269 460 238832 400 425 23 1677 096048 003952 345 257486 425 450 11 1688 096678 003322 290 268590 450 475 20 1708 097824 002176 190 295184 475 500 9 1717 098339 001661 145 311883 500 525 7 1724 098740 001260 110 328731 525 550 9 1733 099255 000745 065 360263 550 575 8 1741 099714 000286 025 415922 575 600 5 1746 1 0 000 DIV0 1746 20 year 873 Slope 085586 Intercept -104906 correlation 099524 beta 116842 gamma 122575

Hss for condition 1 10 668997

( )ss ssP P H H

1ss ssQ Q H H P

threshold 15 m

y = -07849Ln(x) + 16329

R2 = 09854

0

2

4

6

8

000010000100001000010000100000probability of exceedence

sto

rm h

eig

ht

Hss

February 1 2012 25

How to get storm exceedance

Q = probability of exceedance of a wave

Qs = probability of exceedance of a storm

s sQ N Qthreshold 15 m

y = -07849Ln(x) + 5141

R2 = 09854

0

2

4

6

8

10

001010100100010000

storm exceedence probability per year

sto

rm h

eig

ht

Hss

Statistically

nonsense

February 1 2012 26

The ldquoonce in 500 years stormrdquo

0785ln( )

10785ln 5141

500

100

ss sH Q

m

threshold 15 m

y = -07849Ln(x) + 5141

R2 = 09854

0

2

4

6

8

10

001010100100010000

storm exceedence probability per year

sto

rm h

eig

ht

Hss

February 1 2012 27

Using the Gumbel distribution

exp exp ssHP

February 1 2012 28

determination of and

ln exp

1ln ln

ss

ss

ssss

GAH B

HP

HP H

1ln lnG

P

Perform linear regression

for G = A Hss - B

February 1 2012 29

data for calculation of Gumbel 150 cumul P Q ln(Qs) -ln(H) Qs G

150 175 384 384 021993 078007 422098 -056 6810 -0415046

175 200 381 765 043814 056186 389284 -069 4905 0192121

200 225 266 1031 059049 040951 357655 -081 3575 0640938

225 250 157 1188 068041 031959 332863 -092 2790 0954366

250 275 148 1336 076518 023482 302042 -101 2050 1318085

275 300 111 1447 082875 017125 270471 -11 1495 1672191

300 325 81 1528 087514 012486 238876 -118 1090 2014645

325 350 63 1591 091123 008877 204769 -125 775 2375535

350 375 31 1622 092898 007102 182455 -132 620 2608194

375 400 32 1654 094731 005269 152606 -139 460 2916351

400 425 23 1677 096048 003952 123837 -145 345 3210883

425 450 11 1688 096678 003322 106471 -15 290 3387796

450 475 20 1708 097824 002176 064185 -156 190 3816515

475 500 9 1717 098339 001661 037156 -161 145 4089424

500 525 7 1724 098740 001260 009531 -166 110 4367707

525 550 9 1733 099255 000745 -043078 -17 065 4896399

550 575 8 1741 099714 000286 -138629 -175 025 5854211

575 600 5 1746 1 0 NUM -179 000 NUM

February 1 2012 30

Gumbel exceedance graph

Gumbel distribution

y = 07234x + 1882

R2 = 09871

0

2

4

6

8

10

0 2 4 6 8 10Gumbel Reduced variable

Sto

rm h

eig

ht

Hs

s

ssG AH B

= 1A = 0723

= B =1882

February 1 2012 31

calculation of a value

1ln ln

1ln ln

1

1ln ln

1

ln ln

ss

s

s

s

s s

HP

Q

QN

N

N Q

1500

873188 073ln ln 967

1873500

sH

= 1A = 073

= B =188

February 1 2012 32

transformation of the axis

Gumbel distribution

y = 07234x + 1882

R2 = 09871

0

2

4

6

8

10

0 2 4 6 8 10Gumbel Reduced variable

Sto

rm h

eig

ht

Hs

s

ln ln s

s s

NG

N Q

Ns = 873 storms per year

Qs G

110

1100

11000

110000

677

907

1138

1368

Figure Error No text of specified style in document-1 Storm exceedance on basis of Gumbel

10 100

February 1 2012 33

Weibull distribution

exp ssHQ

February 1 2012 34

determination of the reduced variable

1

1

ln

ln

1ln

ss

ss

ss

ss

WAH B

HQ

HQ

Q H

1

lnW Q

Three variables

and

So iteration is needed

February 1 2012 35

calculation for Weibull

alfa= 124

150 cumul P Q ln(Qs) -ln(H) Qs W

150 175 384 384 021993 078007 422098 -056 6810 032522

175 200 381 765 043814 056186 389284 -069 4905 064136

200 225 266 1031 059049 040951 357655 -081 3575 091261

225 250 157 1188 068041 031959 332863 -092 2790 111202

250 275 148 1336 076518 023482 302042 -101 2050 134858

275 300 111 1447 082875 017125 270471 -11 1495 158094

300 325 81 1528 087514 012486 238876 -118 1090 180552

325 350 63 1591 091123 008877 204769 -125 775 204065

350 375 31 1622 092898 007102 182455 -132 620 219099

375 400 32 1654 094731 005269 152606 -139 460 238832

400 425 23 1677 096048 003952 123837 -145 345 257486

425 450 11 1688 096678 003322 106471 -15 290 268590

450 475 20 1708 097824 002176 064185 -156 190 295184

475 500 9 1717 098339 001661 037156 -161 145 311883

500 525 7 1724 098740 001260 009531 -166 110 328731

525 550 9 1733 099255 000745 -043078 -17 065 360263

550 575 8 1741 099714 000286 -138629 -175 025 415922

575 600 5 1746 1 0 NUM -179 000 DIV0

1746

20 year 873 085586

-104906

099524

-07849

541 beta 116842

gamma 122575

Hs for condition 1 500 1028785 911838

1

lnssH Q

1

ln sss

s

QH

N

1124

1500

1500122 117 ln

873

122 117 675

912

sH

m

February 1 2012 36

Weibull exceedance graph

Weibull distribution

y = 11573x + 12497

R2 = 09905

0

2

4

6

8

10

0 2 4 6 8 10

Weibull Reduced variable

Str

om

heig

ht

Hss

10 100 1000 10000

February 1 2012 37

Summary

HT threshold value

Exponential

Gumbel

Weibull

150 m 163 m 136 m 122 m

HT 150 200 250 300 350 400

Ns 873 596 389 194 108 53

Hs 1500 Exponential Hs 1500 Gumbel Hs 1500 Weibull

1000 969 912

1009 950 990

948 917 963

939 893 948

908 886 917

876 818 890

February 1 2012 38

What to do if only random data are available

storm exceedance

0

200

400

600

800

01110100100010000

probability per year

Hs

s

February 1 2012 39

Example of long term data

This are

Hs-classes

February 1 2012 40

Long term (continuation)

So from this last column we can conclude

100 of time H gt 0 m s

23 of time H gt 1 m s

12 of time H gt 2 m s

001 of time H gt 9 m s

0

2

4

6

8

10

12

14

1E-071E-061E-051E-041E-031E-021E-011E+00

exceedance per year

wave

he

igh

t H

s (

m)

February 1 2012 41

From probability of waves to probability of storms

Suppose a ldquostormrdquo lasts for 12 hrs

===gt 730 stormsyear

once per year storm = 100730 = 013 =gt 67 m

once per 10 year storm = 0013 =gt 94 m

once per 100 year storm = 00013 =gt 119 m

0

5

10

15

20

1 10 100 1000 10000

return period in years

Hs o

f th

e g

ive

n s

torm

February 1 2012 42

Meteorological data

bull Not of direct importance for design

bull Can be important for hindcast of wave data and storm surge

bull Extremely important for the execution of the works (workability)

February 1 2012 43

Waves from Wind (Brettschneider)

February 1 2012 44

required soil data

February 1 2012 45

in situ test methods

February 1 2012 46

During construction

bull Quarry stone

bull Concrete

bull Local Equipment

bull Labour

bull skilled

bull cost

bull availability

bull expatriates

Page 11: Chapter 6: Data Collection

February 1 2012 11

wave data for North Sea

February 1 2012 12

example from Argoss (wwwwaveclimatecom)

standard histogram

February 1 2012 13

exceedance table

February 1 2012 14

exceedance graph

February 1 2012 15

comparison buoys and ship data

February 1 2012 16

Data from wwwhydrobasenet

February 1 2012 17

Sample output of Hydrobase

February 1 2012 18

Data from Hydrobase

February 1 2012 19

data from Meetpost Noordwijk

wwwgolfklimaatnl

0

50

100

150

200

250

300

350

400

450

0 200 400 600 800

time (hrs)

Hm

o (

cm

)

January 1979

February 1 2012 20

basic data

date time Hm0 accur H13 TTE3 Tm02 TH13 wave wind wind level setup

dir dir speed

cm cm cm 1 s 1 s 1 s degr degr 1 ms cm cm

19980101 0100 70 4 64 6 39 49 261 210 60 -27 27 222224000

19980101 0400 72 4 65 8 36 45 264 210 70 91 24 222224000

19980101 0700 62 4 56 8 36 46 258 200 80 58 11 222224000

19980101 1000 93 5 85 11 40 48 234 190 90 -31 6 222224000

19980101 1300 110 5 102 14 44 51 230 200 90 -83 -5 222224000

19980101 1600 162 7 148 17 42 52 230 200 120 43 -12 222224000

19980101 1900 132 6 121 11 40 48 224 190 130 40 -37 222224000

19980101 2200 205 8 190 18 51 61 220 190 170 -39 -33 222224000

19980102 0100 247 10 230 37 56 68 229 190 170 -114 -57 222224000

19980102 0400 275 11 255 40 55 68 236 210 160 -1 -1 222224000

19980102 0700 208 8 193 20 50 63 234 200 140 -2 -72 222224000

19980102 1000 142 6 132 14 47 59 227 190 120 -59 -13 222224000

19980102 1300 130 6 120 14 50 64 223 160 110 -97 -22 222224000

19980102 1600 117 5 108 13 43 53 213 170 100 73 87 222224000

19980102 1900 91 5 84 10 39 49 232 210 100 152 58 222224000

19980102 2200 243 10 226 22 52 62 267 280 150 119 118 222224000

19980103 0100 287 12 269 32 59 70 269 260 110 25 73 222224000

19980103 0400 240 10 224 21 55 66 265 230 90 28 60 222224000

19980103 0700 177 7 163 13 46 56 245 200 130 122 37 222224000

19980103 1000 179 7 165 16 47 56 223 180 170 -30 3 222224000

19980103 1300 285 12 266 35 58 70 230 210 190 -43 16 222224000

19980103 1600 341 15 318 56 61 73 242 250 130 -36 14 222224000

19980103 1900 342 15 319 53 60 73 246 260 170 133 20 222224000

19980103 2200 414 21 388 85 65 77 249 260 190 72 46 222224000

19980104 0100 465 21 435 228 72 88 254 260 190 40 68 222224000

19980104 0400 358 16 334 92 64 78 259 240 90 -22 18 222224000

19980104 0700 324 14 302 52 60 73 256 250 120 129 43 222224000

19980104 1000 247 10 229 33 55 69 252 220 100 34 33 222224000

February 1 2012 21

sort data in classes

Waveheight class Hs (cm)

Number of observations

P Q -ln(Q)

0 25 35 35 0000599 0999401 0000599

25 50 8260 8295 0141940 0858060 0153082 50 75 11424 19719 0337423 0662577 0411618

75 100 10004 29723 0508607 0491393 0710511

100 125 7649 37372 0639493 0360507 1020245

125 150 5563 42935 0734685 0265315 1326838

150 175 4389 47324 0809788 0190212 1659615

175 200 3167 50491 0863980 0136020 1994954

200 225 2360 52851 0904363 0095637 2347200

225 250 1671 54522 0932957 0067043 2702419

250 275 1234 55756 0954073 0045927 3080692

275 300 851 56607 0968634 0031366 3462047

300 325 556 57163 0978149 0021851 3823487

325 350 392 57555 0984856 0015144 4190168

350 375 276 57831 0989579 0010421 4563938

375 400 206 58037 0993104 0006896 4976819

400 425 136 58173 0995431 0004569 5388507

425 450 82 58255 0996834 0003166 5755400

450 475 66 58321 0997964 0002036 6196632

475 500 38 58359 0998614 0001386 6581307

500 525 30 58389 0999127 0000873 7043930

525 550 20 58409 0999470 0000530 7541769

550 575 22 58431 0999846 0000154 8778531

575 600 9 58440 1000000 0000000

58440

( )s sP P H H

( ) 1s sQ Q H H P

all data Noordwijk

y = 00151x - 05001

R2 = 09881

0

1

2

3

4

5

6

7

8

9

10

0 200 400 600Hs-l

nQ

February 1 2012 22

exceedance graph for Noordwijk

indivudual observations

0

200

400

600

800

1000

000001000001000001000001000001000001000000

exceedance

wave h

eig

ht

But what means that in a year during 01

of the time the Hs is larger than 5 m

February 1 2012 23

Peak over Threshold method

A storm is defined as a time that the wave is higher than a

certain value the height of the storm Hss is equal to the

highest observed Hs during that storm

Threshold = 15

In this period 9

storms observed

nr Hss

1 180 m

2 294 m

3 225 m

4 176 m

5 261 m

6 389 m

7 172 m

8 240 m

9 194 m

February 1 2012 24

Table with Hss classes

= 124 Wave height class

150 cumul P Q Qs W

150 175 384 384 021993 078007 6810 032522 175 200 381 765 043814 056186 4905 064136 200 225 266 1031 059049 040951 3575 091261 225 250 157 1188 068041 031959 2790 111202 250 275 148 1336 076518 023482 2050 134858 275 300 111 1447 082875 017125 1495 158094 300 325 81 1528 087514 012486 1090 180552 325 350 63 1591 091123 008877 775 204065 350 375 31 1622 092898 007102 620 219099 375 400 32 1654 094731 005269 460 238832 400 425 23 1677 096048 003952 345 257486 425 450 11 1688 096678 003322 290 268590 450 475 20 1708 097824 002176 190 295184 475 500 9 1717 098339 001661 145 311883 500 525 7 1724 098740 001260 110 328731 525 550 9 1733 099255 000745 065 360263 550 575 8 1741 099714 000286 025 415922 575 600 5 1746 1 0 000 DIV0 1746 20 year 873 Slope 085586 Intercept -104906 correlation 099524 beta 116842 gamma 122575

Hss for condition 1 10 668997

( )ss ssP P H H

1ss ssQ Q H H P

threshold 15 m

y = -07849Ln(x) + 16329

R2 = 09854

0

2

4

6

8

000010000100001000010000100000probability of exceedence

sto

rm h

eig

ht

Hss

February 1 2012 25

How to get storm exceedance

Q = probability of exceedance of a wave

Qs = probability of exceedance of a storm

s sQ N Qthreshold 15 m

y = -07849Ln(x) + 5141

R2 = 09854

0

2

4

6

8

10

001010100100010000

storm exceedence probability per year

sto

rm h

eig

ht

Hss

Statistically

nonsense

February 1 2012 26

The ldquoonce in 500 years stormrdquo

0785ln( )

10785ln 5141

500

100

ss sH Q

m

threshold 15 m

y = -07849Ln(x) + 5141

R2 = 09854

0

2

4

6

8

10

001010100100010000

storm exceedence probability per year

sto

rm h

eig

ht

Hss

February 1 2012 27

Using the Gumbel distribution

exp exp ssHP

February 1 2012 28

determination of and

ln exp

1ln ln

ss

ss

ssss

GAH B

HP

HP H

1ln lnG

P

Perform linear regression

for G = A Hss - B

February 1 2012 29

data for calculation of Gumbel 150 cumul P Q ln(Qs) -ln(H) Qs G

150 175 384 384 021993 078007 422098 -056 6810 -0415046

175 200 381 765 043814 056186 389284 -069 4905 0192121

200 225 266 1031 059049 040951 357655 -081 3575 0640938

225 250 157 1188 068041 031959 332863 -092 2790 0954366

250 275 148 1336 076518 023482 302042 -101 2050 1318085

275 300 111 1447 082875 017125 270471 -11 1495 1672191

300 325 81 1528 087514 012486 238876 -118 1090 2014645

325 350 63 1591 091123 008877 204769 -125 775 2375535

350 375 31 1622 092898 007102 182455 -132 620 2608194

375 400 32 1654 094731 005269 152606 -139 460 2916351

400 425 23 1677 096048 003952 123837 -145 345 3210883

425 450 11 1688 096678 003322 106471 -15 290 3387796

450 475 20 1708 097824 002176 064185 -156 190 3816515

475 500 9 1717 098339 001661 037156 -161 145 4089424

500 525 7 1724 098740 001260 009531 -166 110 4367707

525 550 9 1733 099255 000745 -043078 -17 065 4896399

550 575 8 1741 099714 000286 -138629 -175 025 5854211

575 600 5 1746 1 0 NUM -179 000 NUM

February 1 2012 30

Gumbel exceedance graph

Gumbel distribution

y = 07234x + 1882

R2 = 09871

0

2

4

6

8

10

0 2 4 6 8 10Gumbel Reduced variable

Sto

rm h

eig

ht

Hs

s

ssG AH B

= 1A = 0723

= B =1882

February 1 2012 31

calculation of a value

1ln ln

1ln ln

1

1ln ln

1

ln ln

ss

s

s

s

s s

HP

Q

QN

N

N Q

1500

873188 073ln ln 967

1873500

sH

= 1A = 073

= B =188

February 1 2012 32

transformation of the axis

Gumbel distribution

y = 07234x + 1882

R2 = 09871

0

2

4

6

8

10

0 2 4 6 8 10Gumbel Reduced variable

Sto

rm h

eig

ht

Hs

s

ln ln s

s s

NG

N Q

Ns = 873 storms per year

Qs G

110

1100

11000

110000

677

907

1138

1368

Figure Error No text of specified style in document-1 Storm exceedance on basis of Gumbel

10 100

February 1 2012 33

Weibull distribution

exp ssHQ

February 1 2012 34

determination of the reduced variable

1

1

ln

ln

1ln

ss

ss

ss

ss

WAH B

HQ

HQ

Q H

1

lnW Q

Three variables

and

So iteration is needed

February 1 2012 35

calculation for Weibull

alfa= 124

150 cumul P Q ln(Qs) -ln(H) Qs W

150 175 384 384 021993 078007 422098 -056 6810 032522

175 200 381 765 043814 056186 389284 -069 4905 064136

200 225 266 1031 059049 040951 357655 -081 3575 091261

225 250 157 1188 068041 031959 332863 -092 2790 111202

250 275 148 1336 076518 023482 302042 -101 2050 134858

275 300 111 1447 082875 017125 270471 -11 1495 158094

300 325 81 1528 087514 012486 238876 -118 1090 180552

325 350 63 1591 091123 008877 204769 -125 775 204065

350 375 31 1622 092898 007102 182455 -132 620 219099

375 400 32 1654 094731 005269 152606 -139 460 238832

400 425 23 1677 096048 003952 123837 -145 345 257486

425 450 11 1688 096678 003322 106471 -15 290 268590

450 475 20 1708 097824 002176 064185 -156 190 295184

475 500 9 1717 098339 001661 037156 -161 145 311883

500 525 7 1724 098740 001260 009531 -166 110 328731

525 550 9 1733 099255 000745 -043078 -17 065 360263

550 575 8 1741 099714 000286 -138629 -175 025 415922

575 600 5 1746 1 0 NUM -179 000 DIV0

1746

20 year 873 085586

-104906

099524

-07849

541 beta 116842

gamma 122575

Hs for condition 1 500 1028785 911838

1

lnssH Q

1

ln sss

s

QH

N

1124

1500

1500122 117 ln

873

122 117 675

912

sH

m

February 1 2012 36

Weibull exceedance graph

Weibull distribution

y = 11573x + 12497

R2 = 09905

0

2

4

6

8

10

0 2 4 6 8 10

Weibull Reduced variable

Str

om

heig

ht

Hss

10 100 1000 10000

February 1 2012 37

Summary

HT threshold value

Exponential

Gumbel

Weibull

150 m 163 m 136 m 122 m

HT 150 200 250 300 350 400

Ns 873 596 389 194 108 53

Hs 1500 Exponential Hs 1500 Gumbel Hs 1500 Weibull

1000 969 912

1009 950 990

948 917 963

939 893 948

908 886 917

876 818 890

February 1 2012 38

What to do if only random data are available

storm exceedance

0

200

400

600

800

01110100100010000

probability per year

Hs

s

February 1 2012 39

Example of long term data

This are

Hs-classes

February 1 2012 40

Long term (continuation)

So from this last column we can conclude

100 of time H gt 0 m s

23 of time H gt 1 m s

12 of time H gt 2 m s

001 of time H gt 9 m s

0

2

4

6

8

10

12

14

1E-071E-061E-051E-041E-031E-021E-011E+00

exceedance per year

wave

he

igh

t H

s (

m)

February 1 2012 41

From probability of waves to probability of storms

Suppose a ldquostormrdquo lasts for 12 hrs

===gt 730 stormsyear

once per year storm = 100730 = 013 =gt 67 m

once per 10 year storm = 0013 =gt 94 m

once per 100 year storm = 00013 =gt 119 m

0

5

10

15

20

1 10 100 1000 10000

return period in years

Hs o

f th

e g

ive

n s

torm

February 1 2012 42

Meteorological data

bull Not of direct importance for design

bull Can be important for hindcast of wave data and storm surge

bull Extremely important for the execution of the works (workability)

February 1 2012 43

Waves from Wind (Brettschneider)

February 1 2012 44

required soil data

February 1 2012 45

in situ test methods

February 1 2012 46

During construction

bull Quarry stone

bull Concrete

bull Local Equipment

bull Labour

bull skilled

bull cost

bull availability

bull expatriates

Page 12: Chapter 6: Data Collection

February 1 2012 12

example from Argoss (wwwwaveclimatecom)

standard histogram

February 1 2012 13

exceedance table

February 1 2012 14

exceedance graph

February 1 2012 15

comparison buoys and ship data

February 1 2012 16

Data from wwwhydrobasenet

February 1 2012 17

Sample output of Hydrobase

February 1 2012 18

Data from Hydrobase

February 1 2012 19

data from Meetpost Noordwijk

wwwgolfklimaatnl

0

50

100

150

200

250

300

350

400

450

0 200 400 600 800

time (hrs)

Hm

o (

cm

)

January 1979

February 1 2012 20

basic data

date time Hm0 accur H13 TTE3 Tm02 TH13 wave wind wind level setup

dir dir speed

cm cm cm 1 s 1 s 1 s degr degr 1 ms cm cm

19980101 0100 70 4 64 6 39 49 261 210 60 -27 27 222224000

19980101 0400 72 4 65 8 36 45 264 210 70 91 24 222224000

19980101 0700 62 4 56 8 36 46 258 200 80 58 11 222224000

19980101 1000 93 5 85 11 40 48 234 190 90 -31 6 222224000

19980101 1300 110 5 102 14 44 51 230 200 90 -83 -5 222224000

19980101 1600 162 7 148 17 42 52 230 200 120 43 -12 222224000

19980101 1900 132 6 121 11 40 48 224 190 130 40 -37 222224000

19980101 2200 205 8 190 18 51 61 220 190 170 -39 -33 222224000

19980102 0100 247 10 230 37 56 68 229 190 170 -114 -57 222224000

19980102 0400 275 11 255 40 55 68 236 210 160 -1 -1 222224000

19980102 0700 208 8 193 20 50 63 234 200 140 -2 -72 222224000

19980102 1000 142 6 132 14 47 59 227 190 120 -59 -13 222224000

19980102 1300 130 6 120 14 50 64 223 160 110 -97 -22 222224000

19980102 1600 117 5 108 13 43 53 213 170 100 73 87 222224000

19980102 1900 91 5 84 10 39 49 232 210 100 152 58 222224000

19980102 2200 243 10 226 22 52 62 267 280 150 119 118 222224000

19980103 0100 287 12 269 32 59 70 269 260 110 25 73 222224000

19980103 0400 240 10 224 21 55 66 265 230 90 28 60 222224000

19980103 0700 177 7 163 13 46 56 245 200 130 122 37 222224000

19980103 1000 179 7 165 16 47 56 223 180 170 -30 3 222224000

19980103 1300 285 12 266 35 58 70 230 210 190 -43 16 222224000

19980103 1600 341 15 318 56 61 73 242 250 130 -36 14 222224000

19980103 1900 342 15 319 53 60 73 246 260 170 133 20 222224000

19980103 2200 414 21 388 85 65 77 249 260 190 72 46 222224000

19980104 0100 465 21 435 228 72 88 254 260 190 40 68 222224000

19980104 0400 358 16 334 92 64 78 259 240 90 -22 18 222224000

19980104 0700 324 14 302 52 60 73 256 250 120 129 43 222224000

19980104 1000 247 10 229 33 55 69 252 220 100 34 33 222224000

February 1 2012 21

sort data in classes

Waveheight class Hs (cm)

Number of observations

P Q -ln(Q)

0 25 35 35 0000599 0999401 0000599

25 50 8260 8295 0141940 0858060 0153082 50 75 11424 19719 0337423 0662577 0411618

75 100 10004 29723 0508607 0491393 0710511

100 125 7649 37372 0639493 0360507 1020245

125 150 5563 42935 0734685 0265315 1326838

150 175 4389 47324 0809788 0190212 1659615

175 200 3167 50491 0863980 0136020 1994954

200 225 2360 52851 0904363 0095637 2347200

225 250 1671 54522 0932957 0067043 2702419

250 275 1234 55756 0954073 0045927 3080692

275 300 851 56607 0968634 0031366 3462047

300 325 556 57163 0978149 0021851 3823487

325 350 392 57555 0984856 0015144 4190168

350 375 276 57831 0989579 0010421 4563938

375 400 206 58037 0993104 0006896 4976819

400 425 136 58173 0995431 0004569 5388507

425 450 82 58255 0996834 0003166 5755400

450 475 66 58321 0997964 0002036 6196632

475 500 38 58359 0998614 0001386 6581307

500 525 30 58389 0999127 0000873 7043930

525 550 20 58409 0999470 0000530 7541769

550 575 22 58431 0999846 0000154 8778531

575 600 9 58440 1000000 0000000

58440

( )s sP P H H

( ) 1s sQ Q H H P

all data Noordwijk

y = 00151x - 05001

R2 = 09881

0

1

2

3

4

5

6

7

8

9

10

0 200 400 600Hs-l

nQ

February 1 2012 22

exceedance graph for Noordwijk

indivudual observations

0

200

400

600

800

1000

000001000001000001000001000001000001000000

exceedance

wave h

eig

ht

But what means that in a year during 01

of the time the Hs is larger than 5 m

February 1 2012 23

Peak over Threshold method

A storm is defined as a time that the wave is higher than a

certain value the height of the storm Hss is equal to the

highest observed Hs during that storm

Threshold = 15

In this period 9

storms observed

nr Hss

1 180 m

2 294 m

3 225 m

4 176 m

5 261 m

6 389 m

7 172 m

8 240 m

9 194 m

February 1 2012 24

Table with Hss classes

= 124 Wave height class

150 cumul P Q Qs W

150 175 384 384 021993 078007 6810 032522 175 200 381 765 043814 056186 4905 064136 200 225 266 1031 059049 040951 3575 091261 225 250 157 1188 068041 031959 2790 111202 250 275 148 1336 076518 023482 2050 134858 275 300 111 1447 082875 017125 1495 158094 300 325 81 1528 087514 012486 1090 180552 325 350 63 1591 091123 008877 775 204065 350 375 31 1622 092898 007102 620 219099 375 400 32 1654 094731 005269 460 238832 400 425 23 1677 096048 003952 345 257486 425 450 11 1688 096678 003322 290 268590 450 475 20 1708 097824 002176 190 295184 475 500 9 1717 098339 001661 145 311883 500 525 7 1724 098740 001260 110 328731 525 550 9 1733 099255 000745 065 360263 550 575 8 1741 099714 000286 025 415922 575 600 5 1746 1 0 000 DIV0 1746 20 year 873 Slope 085586 Intercept -104906 correlation 099524 beta 116842 gamma 122575

Hss for condition 1 10 668997

( )ss ssP P H H

1ss ssQ Q H H P

threshold 15 m

y = -07849Ln(x) + 16329

R2 = 09854

0

2

4

6

8

000010000100001000010000100000probability of exceedence

sto

rm h

eig

ht

Hss

February 1 2012 25

How to get storm exceedance

Q = probability of exceedance of a wave

Qs = probability of exceedance of a storm

s sQ N Qthreshold 15 m

y = -07849Ln(x) + 5141

R2 = 09854

0

2

4

6

8

10

001010100100010000

storm exceedence probability per year

sto

rm h

eig

ht

Hss

Statistically

nonsense

February 1 2012 26

The ldquoonce in 500 years stormrdquo

0785ln( )

10785ln 5141

500

100

ss sH Q

m

threshold 15 m

y = -07849Ln(x) + 5141

R2 = 09854

0

2

4

6

8

10

001010100100010000

storm exceedence probability per year

sto

rm h

eig

ht

Hss

February 1 2012 27

Using the Gumbel distribution

exp exp ssHP

February 1 2012 28

determination of and

ln exp

1ln ln

ss

ss

ssss

GAH B

HP

HP H

1ln lnG

P

Perform linear regression

for G = A Hss - B

February 1 2012 29

data for calculation of Gumbel 150 cumul P Q ln(Qs) -ln(H) Qs G

150 175 384 384 021993 078007 422098 -056 6810 -0415046

175 200 381 765 043814 056186 389284 -069 4905 0192121

200 225 266 1031 059049 040951 357655 -081 3575 0640938

225 250 157 1188 068041 031959 332863 -092 2790 0954366

250 275 148 1336 076518 023482 302042 -101 2050 1318085

275 300 111 1447 082875 017125 270471 -11 1495 1672191

300 325 81 1528 087514 012486 238876 -118 1090 2014645

325 350 63 1591 091123 008877 204769 -125 775 2375535

350 375 31 1622 092898 007102 182455 -132 620 2608194

375 400 32 1654 094731 005269 152606 -139 460 2916351

400 425 23 1677 096048 003952 123837 -145 345 3210883

425 450 11 1688 096678 003322 106471 -15 290 3387796

450 475 20 1708 097824 002176 064185 -156 190 3816515

475 500 9 1717 098339 001661 037156 -161 145 4089424

500 525 7 1724 098740 001260 009531 -166 110 4367707

525 550 9 1733 099255 000745 -043078 -17 065 4896399

550 575 8 1741 099714 000286 -138629 -175 025 5854211

575 600 5 1746 1 0 NUM -179 000 NUM

February 1 2012 30

Gumbel exceedance graph

Gumbel distribution

y = 07234x + 1882

R2 = 09871

0

2

4

6

8

10

0 2 4 6 8 10Gumbel Reduced variable

Sto

rm h

eig

ht

Hs

s

ssG AH B

= 1A = 0723

= B =1882

February 1 2012 31

calculation of a value

1ln ln

1ln ln

1

1ln ln

1

ln ln

ss

s

s

s

s s

HP

Q

QN

N

N Q

1500

873188 073ln ln 967

1873500

sH

= 1A = 073

= B =188

February 1 2012 32

transformation of the axis

Gumbel distribution

y = 07234x + 1882

R2 = 09871

0

2

4

6

8

10

0 2 4 6 8 10Gumbel Reduced variable

Sto

rm h

eig

ht

Hs

s

ln ln s

s s

NG

N Q

Ns = 873 storms per year

Qs G

110

1100

11000

110000

677

907

1138

1368

Figure Error No text of specified style in document-1 Storm exceedance on basis of Gumbel

10 100

February 1 2012 33

Weibull distribution

exp ssHQ

February 1 2012 34

determination of the reduced variable

1

1

ln

ln

1ln

ss

ss

ss

ss

WAH B

HQ

HQ

Q H

1

lnW Q

Three variables

and

So iteration is needed

February 1 2012 35

calculation for Weibull

alfa= 124

150 cumul P Q ln(Qs) -ln(H) Qs W

150 175 384 384 021993 078007 422098 -056 6810 032522

175 200 381 765 043814 056186 389284 -069 4905 064136

200 225 266 1031 059049 040951 357655 -081 3575 091261

225 250 157 1188 068041 031959 332863 -092 2790 111202

250 275 148 1336 076518 023482 302042 -101 2050 134858

275 300 111 1447 082875 017125 270471 -11 1495 158094

300 325 81 1528 087514 012486 238876 -118 1090 180552

325 350 63 1591 091123 008877 204769 -125 775 204065

350 375 31 1622 092898 007102 182455 -132 620 219099

375 400 32 1654 094731 005269 152606 -139 460 238832

400 425 23 1677 096048 003952 123837 -145 345 257486

425 450 11 1688 096678 003322 106471 -15 290 268590

450 475 20 1708 097824 002176 064185 -156 190 295184

475 500 9 1717 098339 001661 037156 -161 145 311883

500 525 7 1724 098740 001260 009531 -166 110 328731

525 550 9 1733 099255 000745 -043078 -17 065 360263

550 575 8 1741 099714 000286 -138629 -175 025 415922

575 600 5 1746 1 0 NUM -179 000 DIV0

1746

20 year 873 085586

-104906

099524

-07849

541 beta 116842

gamma 122575

Hs for condition 1 500 1028785 911838

1

lnssH Q

1

ln sss

s

QH

N

1124

1500

1500122 117 ln

873

122 117 675

912

sH

m

February 1 2012 36

Weibull exceedance graph

Weibull distribution

y = 11573x + 12497

R2 = 09905

0

2

4

6

8

10

0 2 4 6 8 10

Weibull Reduced variable

Str

om

heig

ht

Hss

10 100 1000 10000

February 1 2012 37

Summary

HT threshold value

Exponential

Gumbel

Weibull

150 m 163 m 136 m 122 m

HT 150 200 250 300 350 400

Ns 873 596 389 194 108 53

Hs 1500 Exponential Hs 1500 Gumbel Hs 1500 Weibull

1000 969 912

1009 950 990

948 917 963

939 893 948

908 886 917

876 818 890

February 1 2012 38

What to do if only random data are available

storm exceedance

0

200

400

600

800

01110100100010000

probability per year

Hs

s

February 1 2012 39

Example of long term data

This are

Hs-classes

February 1 2012 40

Long term (continuation)

So from this last column we can conclude

100 of time H gt 0 m s

23 of time H gt 1 m s

12 of time H gt 2 m s

001 of time H gt 9 m s

0

2

4

6

8

10

12

14

1E-071E-061E-051E-041E-031E-021E-011E+00

exceedance per year

wave

he

igh

t H

s (

m)

February 1 2012 41

From probability of waves to probability of storms

Suppose a ldquostormrdquo lasts for 12 hrs

===gt 730 stormsyear

once per year storm = 100730 = 013 =gt 67 m

once per 10 year storm = 0013 =gt 94 m

once per 100 year storm = 00013 =gt 119 m

0

5

10

15

20

1 10 100 1000 10000

return period in years

Hs o

f th

e g

ive

n s

torm

February 1 2012 42

Meteorological data

bull Not of direct importance for design

bull Can be important for hindcast of wave data and storm surge

bull Extremely important for the execution of the works (workability)

February 1 2012 43

Waves from Wind (Brettschneider)

February 1 2012 44

required soil data

February 1 2012 45

in situ test methods

February 1 2012 46

During construction

bull Quarry stone

bull Concrete

bull Local Equipment

bull Labour

bull skilled

bull cost

bull availability

bull expatriates

Page 13: Chapter 6: Data Collection

February 1 2012 13

exceedance table

February 1 2012 14

exceedance graph

February 1 2012 15

comparison buoys and ship data

February 1 2012 16

Data from wwwhydrobasenet

February 1 2012 17

Sample output of Hydrobase

February 1 2012 18

Data from Hydrobase

February 1 2012 19

data from Meetpost Noordwijk

wwwgolfklimaatnl

0

50

100

150

200

250

300

350

400

450

0 200 400 600 800

time (hrs)

Hm

o (

cm

)

January 1979

February 1 2012 20

basic data

date time Hm0 accur H13 TTE3 Tm02 TH13 wave wind wind level setup

dir dir speed

cm cm cm 1 s 1 s 1 s degr degr 1 ms cm cm

19980101 0100 70 4 64 6 39 49 261 210 60 -27 27 222224000

19980101 0400 72 4 65 8 36 45 264 210 70 91 24 222224000

19980101 0700 62 4 56 8 36 46 258 200 80 58 11 222224000

19980101 1000 93 5 85 11 40 48 234 190 90 -31 6 222224000

19980101 1300 110 5 102 14 44 51 230 200 90 -83 -5 222224000

19980101 1600 162 7 148 17 42 52 230 200 120 43 -12 222224000

19980101 1900 132 6 121 11 40 48 224 190 130 40 -37 222224000

19980101 2200 205 8 190 18 51 61 220 190 170 -39 -33 222224000

19980102 0100 247 10 230 37 56 68 229 190 170 -114 -57 222224000

19980102 0400 275 11 255 40 55 68 236 210 160 -1 -1 222224000

19980102 0700 208 8 193 20 50 63 234 200 140 -2 -72 222224000

19980102 1000 142 6 132 14 47 59 227 190 120 -59 -13 222224000

19980102 1300 130 6 120 14 50 64 223 160 110 -97 -22 222224000

19980102 1600 117 5 108 13 43 53 213 170 100 73 87 222224000

19980102 1900 91 5 84 10 39 49 232 210 100 152 58 222224000

19980102 2200 243 10 226 22 52 62 267 280 150 119 118 222224000

19980103 0100 287 12 269 32 59 70 269 260 110 25 73 222224000

19980103 0400 240 10 224 21 55 66 265 230 90 28 60 222224000

19980103 0700 177 7 163 13 46 56 245 200 130 122 37 222224000

19980103 1000 179 7 165 16 47 56 223 180 170 -30 3 222224000

19980103 1300 285 12 266 35 58 70 230 210 190 -43 16 222224000

19980103 1600 341 15 318 56 61 73 242 250 130 -36 14 222224000

19980103 1900 342 15 319 53 60 73 246 260 170 133 20 222224000

19980103 2200 414 21 388 85 65 77 249 260 190 72 46 222224000

19980104 0100 465 21 435 228 72 88 254 260 190 40 68 222224000

19980104 0400 358 16 334 92 64 78 259 240 90 -22 18 222224000

19980104 0700 324 14 302 52 60 73 256 250 120 129 43 222224000

19980104 1000 247 10 229 33 55 69 252 220 100 34 33 222224000

February 1 2012 21

sort data in classes

Waveheight class Hs (cm)

Number of observations

P Q -ln(Q)

0 25 35 35 0000599 0999401 0000599

25 50 8260 8295 0141940 0858060 0153082 50 75 11424 19719 0337423 0662577 0411618

75 100 10004 29723 0508607 0491393 0710511

100 125 7649 37372 0639493 0360507 1020245

125 150 5563 42935 0734685 0265315 1326838

150 175 4389 47324 0809788 0190212 1659615

175 200 3167 50491 0863980 0136020 1994954

200 225 2360 52851 0904363 0095637 2347200

225 250 1671 54522 0932957 0067043 2702419

250 275 1234 55756 0954073 0045927 3080692

275 300 851 56607 0968634 0031366 3462047

300 325 556 57163 0978149 0021851 3823487

325 350 392 57555 0984856 0015144 4190168

350 375 276 57831 0989579 0010421 4563938

375 400 206 58037 0993104 0006896 4976819

400 425 136 58173 0995431 0004569 5388507

425 450 82 58255 0996834 0003166 5755400

450 475 66 58321 0997964 0002036 6196632

475 500 38 58359 0998614 0001386 6581307

500 525 30 58389 0999127 0000873 7043930

525 550 20 58409 0999470 0000530 7541769

550 575 22 58431 0999846 0000154 8778531

575 600 9 58440 1000000 0000000

58440

( )s sP P H H

( ) 1s sQ Q H H P

all data Noordwijk

y = 00151x - 05001

R2 = 09881

0

1

2

3

4

5

6

7

8

9

10

0 200 400 600Hs-l

nQ

February 1 2012 22

exceedance graph for Noordwijk

indivudual observations

0

200

400

600

800

1000

000001000001000001000001000001000001000000

exceedance

wave h

eig

ht

But what means that in a year during 01

of the time the Hs is larger than 5 m

February 1 2012 23

Peak over Threshold method

A storm is defined as a time that the wave is higher than a

certain value the height of the storm Hss is equal to the

highest observed Hs during that storm

Threshold = 15

In this period 9

storms observed

nr Hss

1 180 m

2 294 m

3 225 m

4 176 m

5 261 m

6 389 m

7 172 m

8 240 m

9 194 m

February 1 2012 24

Table with Hss classes

= 124 Wave height class

150 cumul P Q Qs W

150 175 384 384 021993 078007 6810 032522 175 200 381 765 043814 056186 4905 064136 200 225 266 1031 059049 040951 3575 091261 225 250 157 1188 068041 031959 2790 111202 250 275 148 1336 076518 023482 2050 134858 275 300 111 1447 082875 017125 1495 158094 300 325 81 1528 087514 012486 1090 180552 325 350 63 1591 091123 008877 775 204065 350 375 31 1622 092898 007102 620 219099 375 400 32 1654 094731 005269 460 238832 400 425 23 1677 096048 003952 345 257486 425 450 11 1688 096678 003322 290 268590 450 475 20 1708 097824 002176 190 295184 475 500 9 1717 098339 001661 145 311883 500 525 7 1724 098740 001260 110 328731 525 550 9 1733 099255 000745 065 360263 550 575 8 1741 099714 000286 025 415922 575 600 5 1746 1 0 000 DIV0 1746 20 year 873 Slope 085586 Intercept -104906 correlation 099524 beta 116842 gamma 122575

Hss for condition 1 10 668997

( )ss ssP P H H

1ss ssQ Q H H P

threshold 15 m

y = -07849Ln(x) + 16329

R2 = 09854

0

2

4

6

8

000010000100001000010000100000probability of exceedence

sto

rm h

eig

ht

Hss

February 1 2012 25

How to get storm exceedance

Q = probability of exceedance of a wave

Qs = probability of exceedance of a storm

s sQ N Qthreshold 15 m

y = -07849Ln(x) + 5141

R2 = 09854

0

2

4

6

8

10

001010100100010000

storm exceedence probability per year

sto

rm h

eig

ht

Hss

Statistically

nonsense

February 1 2012 26

The ldquoonce in 500 years stormrdquo

0785ln( )

10785ln 5141

500

100

ss sH Q

m

threshold 15 m

y = -07849Ln(x) + 5141

R2 = 09854

0

2

4

6

8

10

001010100100010000

storm exceedence probability per year

sto

rm h

eig

ht

Hss

February 1 2012 27

Using the Gumbel distribution

exp exp ssHP

February 1 2012 28

determination of and

ln exp

1ln ln

ss

ss

ssss

GAH B

HP

HP H

1ln lnG

P

Perform linear regression

for G = A Hss - B

February 1 2012 29

data for calculation of Gumbel 150 cumul P Q ln(Qs) -ln(H) Qs G

150 175 384 384 021993 078007 422098 -056 6810 -0415046

175 200 381 765 043814 056186 389284 -069 4905 0192121

200 225 266 1031 059049 040951 357655 -081 3575 0640938

225 250 157 1188 068041 031959 332863 -092 2790 0954366

250 275 148 1336 076518 023482 302042 -101 2050 1318085

275 300 111 1447 082875 017125 270471 -11 1495 1672191

300 325 81 1528 087514 012486 238876 -118 1090 2014645

325 350 63 1591 091123 008877 204769 -125 775 2375535

350 375 31 1622 092898 007102 182455 -132 620 2608194

375 400 32 1654 094731 005269 152606 -139 460 2916351

400 425 23 1677 096048 003952 123837 -145 345 3210883

425 450 11 1688 096678 003322 106471 -15 290 3387796

450 475 20 1708 097824 002176 064185 -156 190 3816515

475 500 9 1717 098339 001661 037156 -161 145 4089424

500 525 7 1724 098740 001260 009531 -166 110 4367707

525 550 9 1733 099255 000745 -043078 -17 065 4896399

550 575 8 1741 099714 000286 -138629 -175 025 5854211

575 600 5 1746 1 0 NUM -179 000 NUM

February 1 2012 30

Gumbel exceedance graph

Gumbel distribution

y = 07234x + 1882

R2 = 09871

0

2

4

6

8

10

0 2 4 6 8 10Gumbel Reduced variable

Sto

rm h

eig

ht

Hs

s

ssG AH B

= 1A = 0723

= B =1882

February 1 2012 31

calculation of a value

1ln ln

1ln ln

1

1ln ln

1

ln ln

ss

s

s

s

s s

HP

Q

QN

N

N Q

1500

873188 073ln ln 967

1873500

sH

= 1A = 073

= B =188

February 1 2012 32

transformation of the axis

Gumbel distribution

y = 07234x + 1882

R2 = 09871

0

2

4

6

8

10

0 2 4 6 8 10Gumbel Reduced variable

Sto

rm h

eig

ht

Hs

s

ln ln s

s s

NG

N Q

Ns = 873 storms per year

Qs G

110

1100

11000

110000

677

907

1138

1368

Figure Error No text of specified style in document-1 Storm exceedance on basis of Gumbel

10 100

February 1 2012 33

Weibull distribution

exp ssHQ

February 1 2012 34

determination of the reduced variable

1

1

ln

ln

1ln

ss

ss

ss

ss

WAH B

HQ

HQ

Q H

1

lnW Q

Three variables

and

So iteration is needed

February 1 2012 35

calculation for Weibull

alfa= 124

150 cumul P Q ln(Qs) -ln(H) Qs W

150 175 384 384 021993 078007 422098 -056 6810 032522

175 200 381 765 043814 056186 389284 -069 4905 064136

200 225 266 1031 059049 040951 357655 -081 3575 091261

225 250 157 1188 068041 031959 332863 -092 2790 111202

250 275 148 1336 076518 023482 302042 -101 2050 134858

275 300 111 1447 082875 017125 270471 -11 1495 158094

300 325 81 1528 087514 012486 238876 -118 1090 180552

325 350 63 1591 091123 008877 204769 -125 775 204065

350 375 31 1622 092898 007102 182455 -132 620 219099

375 400 32 1654 094731 005269 152606 -139 460 238832

400 425 23 1677 096048 003952 123837 -145 345 257486

425 450 11 1688 096678 003322 106471 -15 290 268590

450 475 20 1708 097824 002176 064185 -156 190 295184

475 500 9 1717 098339 001661 037156 -161 145 311883

500 525 7 1724 098740 001260 009531 -166 110 328731

525 550 9 1733 099255 000745 -043078 -17 065 360263

550 575 8 1741 099714 000286 -138629 -175 025 415922

575 600 5 1746 1 0 NUM -179 000 DIV0

1746

20 year 873 085586

-104906

099524

-07849

541 beta 116842

gamma 122575

Hs for condition 1 500 1028785 911838

1

lnssH Q

1

ln sss

s

QH

N

1124

1500

1500122 117 ln

873

122 117 675

912

sH

m

February 1 2012 36

Weibull exceedance graph

Weibull distribution

y = 11573x + 12497

R2 = 09905

0

2

4

6

8

10

0 2 4 6 8 10

Weibull Reduced variable

Str

om

heig

ht

Hss

10 100 1000 10000

February 1 2012 37

Summary

HT threshold value

Exponential

Gumbel

Weibull

150 m 163 m 136 m 122 m

HT 150 200 250 300 350 400

Ns 873 596 389 194 108 53

Hs 1500 Exponential Hs 1500 Gumbel Hs 1500 Weibull

1000 969 912

1009 950 990

948 917 963

939 893 948

908 886 917

876 818 890

February 1 2012 38

What to do if only random data are available

storm exceedance

0

200

400

600

800

01110100100010000

probability per year

Hs

s

February 1 2012 39

Example of long term data

This are

Hs-classes

February 1 2012 40

Long term (continuation)

So from this last column we can conclude

100 of time H gt 0 m s

23 of time H gt 1 m s

12 of time H gt 2 m s

001 of time H gt 9 m s

0

2

4

6

8

10

12

14

1E-071E-061E-051E-041E-031E-021E-011E+00

exceedance per year

wave

he

igh

t H

s (

m)

February 1 2012 41

From probability of waves to probability of storms

Suppose a ldquostormrdquo lasts for 12 hrs

===gt 730 stormsyear

once per year storm = 100730 = 013 =gt 67 m

once per 10 year storm = 0013 =gt 94 m

once per 100 year storm = 00013 =gt 119 m

0

5

10

15

20

1 10 100 1000 10000

return period in years

Hs o

f th

e g

ive

n s

torm

February 1 2012 42

Meteorological data

bull Not of direct importance for design

bull Can be important for hindcast of wave data and storm surge

bull Extremely important for the execution of the works (workability)

February 1 2012 43

Waves from Wind (Brettschneider)

February 1 2012 44

required soil data

February 1 2012 45

in situ test methods

February 1 2012 46

During construction

bull Quarry stone

bull Concrete

bull Local Equipment

bull Labour

bull skilled

bull cost

bull availability

bull expatriates

Page 14: Chapter 6: Data Collection

February 1 2012 14

exceedance graph

February 1 2012 15

comparison buoys and ship data

February 1 2012 16

Data from wwwhydrobasenet

February 1 2012 17

Sample output of Hydrobase

February 1 2012 18

Data from Hydrobase

February 1 2012 19

data from Meetpost Noordwijk

wwwgolfklimaatnl

0

50

100

150

200

250

300

350

400

450

0 200 400 600 800

time (hrs)

Hm

o (

cm

)

January 1979

February 1 2012 20

basic data

date time Hm0 accur H13 TTE3 Tm02 TH13 wave wind wind level setup

dir dir speed

cm cm cm 1 s 1 s 1 s degr degr 1 ms cm cm

19980101 0100 70 4 64 6 39 49 261 210 60 -27 27 222224000

19980101 0400 72 4 65 8 36 45 264 210 70 91 24 222224000

19980101 0700 62 4 56 8 36 46 258 200 80 58 11 222224000

19980101 1000 93 5 85 11 40 48 234 190 90 -31 6 222224000

19980101 1300 110 5 102 14 44 51 230 200 90 -83 -5 222224000

19980101 1600 162 7 148 17 42 52 230 200 120 43 -12 222224000

19980101 1900 132 6 121 11 40 48 224 190 130 40 -37 222224000

19980101 2200 205 8 190 18 51 61 220 190 170 -39 -33 222224000

19980102 0100 247 10 230 37 56 68 229 190 170 -114 -57 222224000

19980102 0400 275 11 255 40 55 68 236 210 160 -1 -1 222224000

19980102 0700 208 8 193 20 50 63 234 200 140 -2 -72 222224000

19980102 1000 142 6 132 14 47 59 227 190 120 -59 -13 222224000

19980102 1300 130 6 120 14 50 64 223 160 110 -97 -22 222224000

19980102 1600 117 5 108 13 43 53 213 170 100 73 87 222224000

19980102 1900 91 5 84 10 39 49 232 210 100 152 58 222224000

19980102 2200 243 10 226 22 52 62 267 280 150 119 118 222224000

19980103 0100 287 12 269 32 59 70 269 260 110 25 73 222224000

19980103 0400 240 10 224 21 55 66 265 230 90 28 60 222224000

19980103 0700 177 7 163 13 46 56 245 200 130 122 37 222224000

19980103 1000 179 7 165 16 47 56 223 180 170 -30 3 222224000

19980103 1300 285 12 266 35 58 70 230 210 190 -43 16 222224000

19980103 1600 341 15 318 56 61 73 242 250 130 -36 14 222224000

19980103 1900 342 15 319 53 60 73 246 260 170 133 20 222224000

19980103 2200 414 21 388 85 65 77 249 260 190 72 46 222224000

19980104 0100 465 21 435 228 72 88 254 260 190 40 68 222224000

19980104 0400 358 16 334 92 64 78 259 240 90 -22 18 222224000

19980104 0700 324 14 302 52 60 73 256 250 120 129 43 222224000

19980104 1000 247 10 229 33 55 69 252 220 100 34 33 222224000

February 1 2012 21

sort data in classes

Waveheight class Hs (cm)

Number of observations

P Q -ln(Q)

0 25 35 35 0000599 0999401 0000599

25 50 8260 8295 0141940 0858060 0153082 50 75 11424 19719 0337423 0662577 0411618

75 100 10004 29723 0508607 0491393 0710511

100 125 7649 37372 0639493 0360507 1020245

125 150 5563 42935 0734685 0265315 1326838

150 175 4389 47324 0809788 0190212 1659615

175 200 3167 50491 0863980 0136020 1994954

200 225 2360 52851 0904363 0095637 2347200

225 250 1671 54522 0932957 0067043 2702419

250 275 1234 55756 0954073 0045927 3080692

275 300 851 56607 0968634 0031366 3462047

300 325 556 57163 0978149 0021851 3823487

325 350 392 57555 0984856 0015144 4190168

350 375 276 57831 0989579 0010421 4563938

375 400 206 58037 0993104 0006896 4976819

400 425 136 58173 0995431 0004569 5388507

425 450 82 58255 0996834 0003166 5755400

450 475 66 58321 0997964 0002036 6196632

475 500 38 58359 0998614 0001386 6581307

500 525 30 58389 0999127 0000873 7043930

525 550 20 58409 0999470 0000530 7541769

550 575 22 58431 0999846 0000154 8778531

575 600 9 58440 1000000 0000000

58440

( )s sP P H H

( ) 1s sQ Q H H P

all data Noordwijk

y = 00151x - 05001

R2 = 09881

0

1

2

3

4

5

6

7

8

9

10

0 200 400 600Hs-l

nQ

February 1 2012 22

exceedance graph for Noordwijk

indivudual observations

0

200

400

600

800

1000

000001000001000001000001000001000001000000

exceedance

wave h

eig

ht

But what means that in a year during 01

of the time the Hs is larger than 5 m

February 1 2012 23

Peak over Threshold method

A storm is defined as a time that the wave is higher than a

certain value the height of the storm Hss is equal to the

highest observed Hs during that storm

Threshold = 15

In this period 9

storms observed

nr Hss

1 180 m

2 294 m

3 225 m

4 176 m

5 261 m

6 389 m

7 172 m

8 240 m

9 194 m

February 1 2012 24

Table with Hss classes

= 124 Wave height class

150 cumul P Q Qs W

150 175 384 384 021993 078007 6810 032522 175 200 381 765 043814 056186 4905 064136 200 225 266 1031 059049 040951 3575 091261 225 250 157 1188 068041 031959 2790 111202 250 275 148 1336 076518 023482 2050 134858 275 300 111 1447 082875 017125 1495 158094 300 325 81 1528 087514 012486 1090 180552 325 350 63 1591 091123 008877 775 204065 350 375 31 1622 092898 007102 620 219099 375 400 32 1654 094731 005269 460 238832 400 425 23 1677 096048 003952 345 257486 425 450 11 1688 096678 003322 290 268590 450 475 20 1708 097824 002176 190 295184 475 500 9 1717 098339 001661 145 311883 500 525 7 1724 098740 001260 110 328731 525 550 9 1733 099255 000745 065 360263 550 575 8 1741 099714 000286 025 415922 575 600 5 1746 1 0 000 DIV0 1746 20 year 873 Slope 085586 Intercept -104906 correlation 099524 beta 116842 gamma 122575

Hss for condition 1 10 668997

( )ss ssP P H H

1ss ssQ Q H H P

threshold 15 m

y = -07849Ln(x) + 16329

R2 = 09854

0

2

4

6

8

000010000100001000010000100000probability of exceedence

sto

rm h

eig

ht

Hss

February 1 2012 25

How to get storm exceedance

Q = probability of exceedance of a wave

Qs = probability of exceedance of a storm

s sQ N Qthreshold 15 m

y = -07849Ln(x) + 5141

R2 = 09854

0

2

4

6

8

10

001010100100010000

storm exceedence probability per year

sto

rm h

eig

ht

Hss

Statistically

nonsense

February 1 2012 26

The ldquoonce in 500 years stormrdquo

0785ln( )

10785ln 5141

500

100

ss sH Q

m

threshold 15 m

y = -07849Ln(x) + 5141

R2 = 09854

0

2

4

6

8

10

001010100100010000

storm exceedence probability per year

sto

rm h

eig

ht

Hss

February 1 2012 27

Using the Gumbel distribution

exp exp ssHP

February 1 2012 28

determination of and

ln exp

1ln ln

ss

ss

ssss

GAH B

HP

HP H

1ln lnG

P

Perform linear regression

for G = A Hss - B

February 1 2012 29

data for calculation of Gumbel 150 cumul P Q ln(Qs) -ln(H) Qs G

150 175 384 384 021993 078007 422098 -056 6810 -0415046

175 200 381 765 043814 056186 389284 -069 4905 0192121

200 225 266 1031 059049 040951 357655 -081 3575 0640938

225 250 157 1188 068041 031959 332863 -092 2790 0954366

250 275 148 1336 076518 023482 302042 -101 2050 1318085

275 300 111 1447 082875 017125 270471 -11 1495 1672191

300 325 81 1528 087514 012486 238876 -118 1090 2014645

325 350 63 1591 091123 008877 204769 -125 775 2375535

350 375 31 1622 092898 007102 182455 -132 620 2608194

375 400 32 1654 094731 005269 152606 -139 460 2916351

400 425 23 1677 096048 003952 123837 -145 345 3210883

425 450 11 1688 096678 003322 106471 -15 290 3387796

450 475 20 1708 097824 002176 064185 -156 190 3816515

475 500 9 1717 098339 001661 037156 -161 145 4089424

500 525 7 1724 098740 001260 009531 -166 110 4367707

525 550 9 1733 099255 000745 -043078 -17 065 4896399

550 575 8 1741 099714 000286 -138629 -175 025 5854211

575 600 5 1746 1 0 NUM -179 000 NUM

February 1 2012 30

Gumbel exceedance graph

Gumbel distribution

y = 07234x + 1882

R2 = 09871

0

2

4

6

8

10

0 2 4 6 8 10Gumbel Reduced variable

Sto

rm h

eig

ht

Hs

s

ssG AH B

= 1A = 0723

= B =1882

February 1 2012 31

calculation of a value

1ln ln

1ln ln

1

1ln ln

1

ln ln

ss

s

s

s

s s

HP

Q

QN

N

N Q

1500

873188 073ln ln 967

1873500

sH

= 1A = 073

= B =188

February 1 2012 32

transformation of the axis

Gumbel distribution

y = 07234x + 1882

R2 = 09871

0

2

4

6

8

10

0 2 4 6 8 10Gumbel Reduced variable

Sto

rm h

eig

ht

Hs

s

ln ln s

s s

NG

N Q

Ns = 873 storms per year

Qs G

110

1100

11000

110000

677

907

1138

1368

Figure Error No text of specified style in document-1 Storm exceedance on basis of Gumbel

10 100

February 1 2012 33

Weibull distribution

exp ssHQ

February 1 2012 34

determination of the reduced variable

1

1

ln

ln

1ln

ss

ss

ss

ss

WAH B

HQ

HQ

Q H

1

lnW Q

Three variables

and

So iteration is needed

February 1 2012 35

calculation for Weibull

alfa= 124

150 cumul P Q ln(Qs) -ln(H) Qs W

150 175 384 384 021993 078007 422098 -056 6810 032522

175 200 381 765 043814 056186 389284 -069 4905 064136

200 225 266 1031 059049 040951 357655 -081 3575 091261

225 250 157 1188 068041 031959 332863 -092 2790 111202

250 275 148 1336 076518 023482 302042 -101 2050 134858

275 300 111 1447 082875 017125 270471 -11 1495 158094

300 325 81 1528 087514 012486 238876 -118 1090 180552

325 350 63 1591 091123 008877 204769 -125 775 204065

350 375 31 1622 092898 007102 182455 -132 620 219099

375 400 32 1654 094731 005269 152606 -139 460 238832

400 425 23 1677 096048 003952 123837 -145 345 257486

425 450 11 1688 096678 003322 106471 -15 290 268590

450 475 20 1708 097824 002176 064185 -156 190 295184

475 500 9 1717 098339 001661 037156 -161 145 311883

500 525 7 1724 098740 001260 009531 -166 110 328731

525 550 9 1733 099255 000745 -043078 -17 065 360263

550 575 8 1741 099714 000286 -138629 -175 025 415922

575 600 5 1746 1 0 NUM -179 000 DIV0

1746

20 year 873 085586

-104906

099524

-07849

541 beta 116842

gamma 122575

Hs for condition 1 500 1028785 911838

1

lnssH Q

1

ln sss

s

QH

N

1124

1500

1500122 117 ln

873

122 117 675

912

sH

m

February 1 2012 36

Weibull exceedance graph

Weibull distribution

y = 11573x + 12497

R2 = 09905

0

2

4

6

8

10

0 2 4 6 8 10

Weibull Reduced variable

Str

om

heig

ht

Hss

10 100 1000 10000

February 1 2012 37

Summary

HT threshold value

Exponential

Gumbel

Weibull

150 m 163 m 136 m 122 m

HT 150 200 250 300 350 400

Ns 873 596 389 194 108 53

Hs 1500 Exponential Hs 1500 Gumbel Hs 1500 Weibull

1000 969 912

1009 950 990

948 917 963

939 893 948

908 886 917

876 818 890

February 1 2012 38

What to do if only random data are available

storm exceedance

0

200

400

600

800

01110100100010000

probability per year

Hs

s

February 1 2012 39

Example of long term data

This are

Hs-classes

February 1 2012 40

Long term (continuation)

So from this last column we can conclude

100 of time H gt 0 m s

23 of time H gt 1 m s

12 of time H gt 2 m s

001 of time H gt 9 m s

0

2

4

6

8

10

12

14

1E-071E-061E-051E-041E-031E-021E-011E+00

exceedance per year

wave

he

igh

t H

s (

m)

February 1 2012 41

From probability of waves to probability of storms

Suppose a ldquostormrdquo lasts for 12 hrs

===gt 730 stormsyear

once per year storm = 100730 = 013 =gt 67 m

once per 10 year storm = 0013 =gt 94 m

once per 100 year storm = 00013 =gt 119 m

0

5

10

15

20

1 10 100 1000 10000

return period in years

Hs o

f th

e g

ive

n s

torm

February 1 2012 42

Meteorological data

bull Not of direct importance for design

bull Can be important for hindcast of wave data and storm surge

bull Extremely important for the execution of the works (workability)

February 1 2012 43

Waves from Wind (Brettschneider)

February 1 2012 44

required soil data

February 1 2012 45

in situ test methods

February 1 2012 46

During construction

bull Quarry stone

bull Concrete

bull Local Equipment

bull Labour

bull skilled

bull cost

bull availability

bull expatriates

Page 15: Chapter 6: Data Collection

February 1 2012 15

comparison buoys and ship data

February 1 2012 16

Data from wwwhydrobasenet

February 1 2012 17

Sample output of Hydrobase

February 1 2012 18

Data from Hydrobase

February 1 2012 19

data from Meetpost Noordwijk

wwwgolfklimaatnl

0

50

100

150

200

250

300

350

400

450

0 200 400 600 800

time (hrs)

Hm

o (

cm

)

January 1979

February 1 2012 20

basic data

date time Hm0 accur H13 TTE3 Tm02 TH13 wave wind wind level setup

dir dir speed

cm cm cm 1 s 1 s 1 s degr degr 1 ms cm cm

19980101 0100 70 4 64 6 39 49 261 210 60 -27 27 222224000

19980101 0400 72 4 65 8 36 45 264 210 70 91 24 222224000

19980101 0700 62 4 56 8 36 46 258 200 80 58 11 222224000

19980101 1000 93 5 85 11 40 48 234 190 90 -31 6 222224000

19980101 1300 110 5 102 14 44 51 230 200 90 -83 -5 222224000

19980101 1600 162 7 148 17 42 52 230 200 120 43 -12 222224000

19980101 1900 132 6 121 11 40 48 224 190 130 40 -37 222224000

19980101 2200 205 8 190 18 51 61 220 190 170 -39 -33 222224000

19980102 0100 247 10 230 37 56 68 229 190 170 -114 -57 222224000

19980102 0400 275 11 255 40 55 68 236 210 160 -1 -1 222224000

19980102 0700 208 8 193 20 50 63 234 200 140 -2 -72 222224000

19980102 1000 142 6 132 14 47 59 227 190 120 -59 -13 222224000

19980102 1300 130 6 120 14 50 64 223 160 110 -97 -22 222224000

19980102 1600 117 5 108 13 43 53 213 170 100 73 87 222224000

19980102 1900 91 5 84 10 39 49 232 210 100 152 58 222224000

19980102 2200 243 10 226 22 52 62 267 280 150 119 118 222224000

19980103 0100 287 12 269 32 59 70 269 260 110 25 73 222224000

19980103 0400 240 10 224 21 55 66 265 230 90 28 60 222224000

19980103 0700 177 7 163 13 46 56 245 200 130 122 37 222224000

19980103 1000 179 7 165 16 47 56 223 180 170 -30 3 222224000

19980103 1300 285 12 266 35 58 70 230 210 190 -43 16 222224000

19980103 1600 341 15 318 56 61 73 242 250 130 -36 14 222224000

19980103 1900 342 15 319 53 60 73 246 260 170 133 20 222224000

19980103 2200 414 21 388 85 65 77 249 260 190 72 46 222224000

19980104 0100 465 21 435 228 72 88 254 260 190 40 68 222224000

19980104 0400 358 16 334 92 64 78 259 240 90 -22 18 222224000

19980104 0700 324 14 302 52 60 73 256 250 120 129 43 222224000

19980104 1000 247 10 229 33 55 69 252 220 100 34 33 222224000

February 1 2012 21

sort data in classes

Waveheight class Hs (cm)

Number of observations

P Q -ln(Q)

0 25 35 35 0000599 0999401 0000599

25 50 8260 8295 0141940 0858060 0153082 50 75 11424 19719 0337423 0662577 0411618

75 100 10004 29723 0508607 0491393 0710511

100 125 7649 37372 0639493 0360507 1020245

125 150 5563 42935 0734685 0265315 1326838

150 175 4389 47324 0809788 0190212 1659615

175 200 3167 50491 0863980 0136020 1994954

200 225 2360 52851 0904363 0095637 2347200

225 250 1671 54522 0932957 0067043 2702419

250 275 1234 55756 0954073 0045927 3080692

275 300 851 56607 0968634 0031366 3462047

300 325 556 57163 0978149 0021851 3823487

325 350 392 57555 0984856 0015144 4190168

350 375 276 57831 0989579 0010421 4563938

375 400 206 58037 0993104 0006896 4976819

400 425 136 58173 0995431 0004569 5388507

425 450 82 58255 0996834 0003166 5755400

450 475 66 58321 0997964 0002036 6196632

475 500 38 58359 0998614 0001386 6581307

500 525 30 58389 0999127 0000873 7043930

525 550 20 58409 0999470 0000530 7541769

550 575 22 58431 0999846 0000154 8778531

575 600 9 58440 1000000 0000000

58440

( )s sP P H H

( ) 1s sQ Q H H P

all data Noordwijk

y = 00151x - 05001

R2 = 09881

0

1

2

3

4

5

6

7

8

9

10

0 200 400 600Hs-l

nQ

February 1 2012 22

exceedance graph for Noordwijk

indivudual observations

0

200

400

600

800

1000

000001000001000001000001000001000001000000

exceedance

wave h

eig

ht

But what means that in a year during 01

of the time the Hs is larger than 5 m

February 1 2012 23

Peak over Threshold method

A storm is defined as a time that the wave is higher than a

certain value the height of the storm Hss is equal to the

highest observed Hs during that storm

Threshold = 15

In this period 9

storms observed

nr Hss

1 180 m

2 294 m

3 225 m

4 176 m

5 261 m

6 389 m

7 172 m

8 240 m

9 194 m

February 1 2012 24

Table with Hss classes

= 124 Wave height class

150 cumul P Q Qs W

150 175 384 384 021993 078007 6810 032522 175 200 381 765 043814 056186 4905 064136 200 225 266 1031 059049 040951 3575 091261 225 250 157 1188 068041 031959 2790 111202 250 275 148 1336 076518 023482 2050 134858 275 300 111 1447 082875 017125 1495 158094 300 325 81 1528 087514 012486 1090 180552 325 350 63 1591 091123 008877 775 204065 350 375 31 1622 092898 007102 620 219099 375 400 32 1654 094731 005269 460 238832 400 425 23 1677 096048 003952 345 257486 425 450 11 1688 096678 003322 290 268590 450 475 20 1708 097824 002176 190 295184 475 500 9 1717 098339 001661 145 311883 500 525 7 1724 098740 001260 110 328731 525 550 9 1733 099255 000745 065 360263 550 575 8 1741 099714 000286 025 415922 575 600 5 1746 1 0 000 DIV0 1746 20 year 873 Slope 085586 Intercept -104906 correlation 099524 beta 116842 gamma 122575

Hss for condition 1 10 668997

( )ss ssP P H H

1ss ssQ Q H H P

threshold 15 m

y = -07849Ln(x) + 16329

R2 = 09854

0

2

4

6

8

000010000100001000010000100000probability of exceedence

sto

rm h

eig

ht

Hss

February 1 2012 25

How to get storm exceedance

Q = probability of exceedance of a wave

Qs = probability of exceedance of a storm

s sQ N Qthreshold 15 m

y = -07849Ln(x) + 5141

R2 = 09854

0

2

4

6

8

10

001010100100010000

storm exceedence probability per year

sto

rm h

eig

ht

Hss

Statistically

nonsense

February 1 2012 26

The ldquoonce in 500 years stormrdquo

0785ln( )

10785ln 5141

500

100

ss sH Q

m

threshold 15 m

y = -07849Ln(x) + 5141

R2 = 09854

0

2

4

6

8

10

001010100100010000

storm exceedence probability per year

sto

rm h

eig

ht

Hss

February 1 2012 27

Using the Gumbel distribution

exp exp ssHP

February 1 2012 28

determination of and

ln exp

1ln ln

ss

ss

ssss

GAH B

HP

HP H

1ln lnG

P

Perform linear regression

for G = A Hss - B

February 1 2012 29

data for calculation of Gumbel 150 cumul P Q ln(Qs) -ln(H) Qs G

150 175 384 384 021993 078007 422098 -056 6810 -0415046

175 200 381 765 043814 056186 389284 -069 4905 0192121

200 225 266 1031 059049 040951 357655 -081 3575 0640938

225 250 157 1188 068041 031959 332863 -092 2790 0954366

250 275 148 1336 076518 023482 302042 -101 2050 1318085

275 300 111 1447 082875 017125 270471 -11 1495 1672191

300 325 81 1528 087514 012486 238876 -118 1090 2014645

325 350 63 1591 091123 008877 204769 -125 775 2375535

350 375 31 1622 092898 007102 182455 -132 620 2608194

375 400 32 1654 094731 005269 152606 -139 460 2916351

400 425 23 1677 096048 003952 123837 -145 345 3210883

425 450 11 1688 096678 003322 106471 -15 290 3387796

450 475 20 1708 097824 002176 064185 -156 190 3816515

475 500 9 1717 098339 001661 037156 -161 145 4089424

500 525 7 1724 098740 001260 009531 -166 110 4367707

525 550 9 1733 099255 000745 -043078 -17 065 4896399

550 575 8 1741 099714 000286 -138629 -175 025 5854211

575 600 5 1746 1 0 NUM -179 000 NUM

February 1 2012 30

Gumbel exceedance graph

Gumbel distribution

y = 07234x + 1882

R2 = 09871

0

2

4

6

8

10

0 2 4 6 8 10Gumbel Reduced variable

Sto

rm h

eig

ht

Hs

s

ssG AH B

= 1A = 0723

= B =1882

February 1 2012 31

calculation of a value

1ln ln

1ln ln

1

1ln ln

1

ln ln

ss

s

s

s

s s

HP

Q

QN

N

N Q

1500

873188 073ln ln 967

1873500

sH

= 1A = 073

= B =188

February 1 2012 32

transformation of the axis

Gumbel distribution

y = 07234x + 1882

R2 = 09871

0

2

4

6

8

10

0 2 4 6 8 10Gumbel Reduced variable

Sto

rm h

eig

ht

Hs

s

ln ln s

s s

NG

N Q

Ns = 873 storms per year

Qs G

110

1100

11000

110000

677

907

1138

1368

Figure Error No text of specified style in document-1 Storm exceedance on basis of Gumbel

10 100

February 1 2012 33

Weibull distribution

exp ssHQ

February 1 2012 34

determination of the reduced variable

1

1

ln

ln

1ln

ss

ss

ss

ss

WAH B

HQ

HQ

Q H

1

lnW Q

Three variables

and

So iteration is needed

February 1 2012 35

calculation for Weibull

alfa= 124

150 cumul P Q ln(Qs) -ln(H) Qs W

150 175 384 384 021993 078007 422098 -056 6810 032522

175 200 381 765 043814 056186 389284 -069 4905 064136

200 225 266 1031 059049 040951 357655 -081 3575 091261

225 250 157 1188 068041 031959 332863 -092 2790 111202

250 275 148 1336 076518 023482 302042 -101 2050 134858

275 300 111 1447 082875 017125 270471 -11 1495 158094

300 325 81 1528 087514 012486 238876 -118 1090 180552

325 350 63 1591 091123 008877 204769 -125 775 204065

350 375 31 1622 092898 007102 182455 -132 620 219099

375 400 32 1654 094731 005269 152606 -139 460 238832

400 425 23 1677 096048 003952 123837 -145 345 257486

425 450 11 1688 096678 003322 106471 -15 290 268590

450 475 20 1708 097824 002176 064185 -156 190 295184

475 500 9 1717 098339 001661 037156 -161 145 311883

500 525 7 1724 098740 001260 009531 -166 110 328731

525 550 9 1733 099255 000745 -043078 -17 065 360263

550 575 8 1741 099714 000286 -138629 -175 025 415922

575 600 5 1746 1 0 NUM -179 000 DIV0

1746

20 year 873 085586

-104906

099524

-07849

541 beta 116842

gamma 122575

Hs for condition 1 500 1028785 911838

1

lnssH Q

1

ln sss

s

QH

N

1124

1500

1500122 117 ln

873

122 117 675

912

sH

m

February 1 2012 36

Weibull exceedance graph

Weibull distribution

y = 11573x + 12497

R2 = 09905

0

2

4

6

8

10

0 2 4 6 8 10

Weibull Reduced variable

Str

om

heig

ht

Hss

10 100 1000 10000

February 1 2012 37

Summary

HT threshold value

Exponential

Gumbel

Weibull

150 m 163 m 136 m 122 m

HT 150 200 250 300 350 400

Ns 873 596 389 194 108 53

Hs 1500 Exponential Hs 1500 Gumbel Hs 1500 Weibull

1000 969 912

1009 950 990

948 917 963

939 893 948

908 886 917

876 818 890

February 1 2012 38

What to do if only random data are available

storm exceedance

0

200

400

600

800

01110100100010000

probability per year

Hs

s

February 1 2012 39

Example of long term data

This are

Hs-classes

February 1 2012 40

Long term (continuation)

So from this last column we can conclude

100 of time H gt 0 m s

23 of time H gt 1 m s

12 of time H gt 2 m s

001 of time H gt 9 m s

0

2

4

6

8

10

12

14

1E-071E-061E-051E-041E-031E-021E-011E+00

exceedance per year

wave

he

igh

t H

s (

m)

February 1 2012 41

From probability of waves to probability of storms

Suppose a ldquostormrdquo lasts for 12 hrs

===gt 730 stormsyear

once per year storm = 100730 = 013 =gt 67 m

once per 10 year storm = 0013 =gt 94 m

once per 100 year storm = 00013 =gt 119 m

0

5

10

15

20

1 10 100 1000 10000

return period in years

Hs o

f th

e g

ive

n s

torm

February 1 2012 42

Meteorological data

bull Not of direct importance for design

bull Can be important for hindcast of wave data and storm surge

bull Extremely important for the execution of the works (workability)

February 1 2012 43

Waves from Wind (Brettschneider)

February 1 2012 44

required soil data

February 1 2012 45

in situ test methods

February 1 2012 46

During construction

bull Quarry stone

bull Concrete

bull Local Equipment

bull Labour

bull skilled

bull cost

bull availability

bull expatriates

Page 16: Chapter 6: Data Collection

February 1 2012 16

Data from wwwhydrobasenet

February 1 2012 17

Sample output of Hydrobase

February 1 2012 18

Data from Hydrobase

February 1 2012 19

data from Meetpost Noordwijk

wwwgolfklimaatnl

0

50

100

150

200

250

300

350

400

450

0 200 400 600 800

time (hrs)

Hm

o (

cm

)

January 1979

February 1 2012 20

basic data

date time Hm0 accur H13 TTE3 Tm02 TH13 wave wind wind level setup

dir dir speed

cm cm cm 1 s 1 s 1 s degr degr 1 ms cm cm

19980101 0100 70 4 64 6 39 49 261 210 60 -27 27 222224000

19980101 0400 72 4 65 8 36 45 264 210 70 91 24 222224000

19980101 0700 62 4 56 8 36 46 258 200 80 58 11 222224000

19980101 1000 93 5 85 11 40 48 234 190 90 -31 6 222224000

19980101 1300 110 5 102 14 44 51 230 200 90 -83 -5 222224000

19980101 1600 162 7 148 17 42 52 230 200 120 43 -12 222224000

19980101 1900 132 6 121 11 40 48 224 190 130 40 -37 222224000

19980101 2200 205 8 190 18 51 61 220 190 170 -39 -33 222224000

19980102 0100 247 10 230 37 56 68 229 190 170 -114 -57 222224000

19980102 0400 275 11 255 40 55 68 236 210 160 -1 -1 222224000

19980102 0700 208 8 193 20 50 63 234 200 140 -2 -72 222224000

19980102 1000 142 6 132 14 47 59 227 190 120 -59 -13 222224000

19980102 1300 130 6 120 14 50 64 223 160 110 -97 -22 222224000

19980102 1600 117 5 108 13 43 53 213 170 100 73 87 222224000

19980102 1900 91 5 84 10 39 49 232 210 100 152 58 222224000

19980102 2200 243 10 226 22 52 62 267 280 150 119 118 222224000

19980103 0100 287 12 269 32 59 70 269 260 110 25 73 222224000

19980103 0400 240 10 224 21 55 66 265 230 90 28 60 222224000

19980103 0700 177 7 163 13 46 56 245 200 130 122 37 222224000

19980103 1000 179 7 165 16 47 56 223 180 170 -30 3 222224000

19980103 1300 285 12 266 35 58 70 230 210 190 -43 16 222224000

19980103 1600 341 15 318 56 61 73 242 250 130 -36 14 222224000

19980103 1900 342 15 319 53 60 73 246 260 170 133 20 222224000

19980103 2200 414 21 388 85 65 77 249 260 190 72 46 222224000

19980104 0100 465 21 435 228 72 88 254 260 190 40 68 222224000

19980104 0400 358 16 334 92 64 78 259 240 90 -22 18 222224000

19980104 0700 324 14 302 52 60 73 256 250 120 129 43 222224000

19980104 1000 247 10 229 33 55 69 252 220 100 34 33 222224000

February 1 2012 21

sort data in classes

Waveheight class Hs (cm)

Number of observations

P Q -ln(Q)

0 25 35 35 0000599 0999401 0000599

25 50 8260 8295 0141940 0858060 0153082 50 75 11424 19719 0337423 0662577 0411618

75 100 10004 29723 0508607 0491393 0710511

100 125 7649 37372 0639493 0360507 1020245

125 150 5563 42935 0734685 0265315 1326838

150 175 4389 47324 0809788 0190212 1659615

175 200 3167 50491 0863980 0136020 1994954

200 225 2360 52851 0904363 0095637 2347200

225 250 1671 54522 0932957 0067043 2702419

250 275 1234 55756 0954073 0045927 3080692

275 300 851 56607 0968634 0031366 3462047

300 325 556 57163 0978149 0021851 3823487

325 350 392 57555 0984856 0015144 4190168

350 375 276 57831 0989579 0010421 4563938

375 400 206 58037 0993104 0006896 4976819

400 425 136 58173 0995431 0004569 5388507

425 450 82 58255 0996834 0003166 5755400

450 475 66 58321 0997964 0002036 6196632

475 500 38 58359 0998614 0001386 6581307

500 525 30 58389 0999127 0000873 7043930

525 550 20 58409 0999470 0000530 7541769

550 575 22 58431 0999846 0000154 8778531

575 600 9 58440 1000000 0000000

58440

( )s sP P H H

( ) 1s sQ Q H H P

all data Noordwijk

y = 00151x - 05001

R2 = 09881

0

1

2

3

4

5

6

7

8

9

10

0 200 400 600Hs-l

nQ

February 1 2012 22

exceedance graph for Noordwijk

indivudual observations

0

200

400

600

800

1000

000001000001000001000001000001000001000000

exceedance

wave h

eig

ht

But what means that in a year during 01

of the time the Hs is larger than 5 m

February 1 2012 23

Peak over Threshold method

A storm is defined as a time that the wave is higher than a

certain value the height of the storm Hss is equal to the

highest observed Hs during that storm

Threshold = 15

In this period 9

storms observed

nr Hss

1 180 m

2 294 m

3 225 m

4 176 m

5 261 m

6 389 m

7 172 m

8 240 m

9 194 m

February 1 2012 24

Table with Hss classes

= 124 Wave height class

150 cumul P Q Qs W

150 175 384 384 021993 078007 6810 032522 175 200 381 765 043814 056186 4905 064136 200 225 266 1031 059049 040951 3575 091261 225 250 157 1188 068041 031959 2790 111202 250 275 148 1336 076518 023482 2050 134858 275 300 111 1447 082875 017125 1495 158094 300 325 81 1528 087514 012486 1090 180552 325 350 63 1591 091123 008877 775 204065 350 375 31 1622 092898 007102 620 219099 375 400 32 1654 094731 005269 460 238832 400 425 23 1677 096048 003952 345 257486 425 450 11 1688 096678 003322 290 268590 450 475 20 1708 097824 002176 190 295184 475 500 9 1717 098339 001661 145 311883 500 525 7 1724 098740 001260 110 328731 525 550 9 1733 099255 000745 065 360263 550 575 8 1741 099714 000286 025 415922 575 600 5 1746 1 0 000 DIV0 1746 20 year 873 Slope 085586 Intercept -104906 correlation 099524 beta 116842 gamma 122575

Hss for condition 1 10 668997

( )ss ssP P H H

1ss ssQ Q H H P

threshold 15 m

y = -07849Ln(x) + 16329

R2 = 09854

0

2

4

6

8

000010000100001000010000100000probability of exceedence

sto

rm h

eig

ht

Hss

February 1 2012 25

How to get storm exceedance

Q = probability of exceedance of a wave

Qs = probability of exceedance of a storm

s sQ N Qthreshold 15 m

y = -07849Ln(x) + 5141

R2 = 09854

0

2

4

6

8

10

001010100100010000

storm exceedence probability per year

sto

rm h

eig

ht

Hss

Statistically

nonsense

February 1 2012 26

The ldquoonce in 500 years stormrdquo

0785ln( )

10785ln 5141

500

100

ss sH Q

m

threshold 15 m

y = -07849Ln(x) + 5141

R2 = 09854

0

2

4

6

8

10

001010100100010000

storm exceedence probability per year

sto

rm h

eig

ht

Hss

February 1 2012 27

Using the Gumbel distribution

exp exp ssHP

February 1 2012 28

determination of and

ln exp

1ln ln

ss

ss

ssss

GAH B

HP

HP H

1ln lnG

P

Perform linear regression

for G = A Hss - B

February 1 2012 29

data for calculation of Gumbel 150 cumul P Q ln(Qs) -ln(H) Qs G

150 175 384 384 021993 078007 422098 -056 6810 -0415046

175 200 381 765 043814 056186 389284 -069 4905 0192121

200 225 266 1031 059049 040951 357655 -081 3575 0640938

225 250 157 1188 068041 031959 332863 -092 2790 0954366

250 275 148 1336 076518 023482 302042 -101 2050 1318085

275 300 111 1447 082875 017125 270471 -11 1495 1672191

300 325 81 1528 087514 012486 238876 -118 1090 2014645

325 350 63 1591 091123 008877 204769 -125 775 2375535

350 375 31 1622 092898 007102 182455 -132 620 2608194

375 400 32 1654 094731 005269 152606 -139 460 2916351

400 425 23 1677 096048 003952 123837 -145 345 3210883

425 450 11 1688 096678 003322 106471 -15 290 3387796

450 475 20 1708 097824 002176 064185 -156 190 3816515

475 500 9 1717 098339 001661 037156 -161 145 4089424

500 525 7 1724 098740 001260 009531 -166 110 4367707

525 550 9 1733 099255 000745 -043078 -17 065 4896399

550 575 8 1741 099714 000286 -138629 -175 025 5854211

575 600 5 1746 1 0 NUM -179 000 NUM

February 1 2012 30

Gumbel exceedance graph

Gumbel distribution

y = 07234x + 1882

R2 = 09871

0

2

4

6

8

10

0 2 4 6 8 10Gumbel Reduced variable

Sto

rm h

eig

ht

Hs

s

ssG AH B

= 1A = 0723

= B =1882

February 1 2012 31

calculation of a value

1ln ln

1ln ln

1

1ln ln

1

ln ln

ss

s

s

s

s s

HP

Q

QN

N

N Q

1500

873188 073ln ln 967

1873500

sH

= 1A = 073

= B =188

February 1 2012 32

transformation of the axis

Gumbel distribution

y = 07234x + 1882

R2 = 09871

0

2

4

6

8

10

0 2 4 6 8 10Gumbel Reduced variable

Sto

rm h

eig

ht

Hs

s

ln ln s

s s

NG

N Q

Ns = 873 storms per year

Qs G

110

1100

11000

110000

677

907

1138

1368

Figure Error No text of specified style in document-1 Storm exceedance on basis of Gumbel

10 100

February 1 2012 33

Weibull distribution

exp ssHQ

February 1 2012 34

determination of the reduced variable

1

1

ln

ln

1ln

ss

ss

ss

ss

WAH B

HQ

HQ

Q H

1

lnW Q

Three variables

and

So iteration is needed

February 1 2012 35

calculation for Weibull

alfa= 124

150 cumul P Q ln(Qs) -ln(H) Qs W

150 175 384 384 021993 078007 422098 -056 6810 032522

175 200 381 765 043814 056186 389284 -069 4905 064136

200 225 266 1031 059049 040951 357655 -081 3575 091261

225 250 157 1188 068041 031959 332863 -092 2790 111202

250 275 148 1336 076518 023482 302042 -101 2050 134858

275 300 111 1447 082875 017125 270471 -11 1495 158094

300 325 81 1528 087514 012486 238876 -118 1090 180552

325 350 63 1591 091123 008877 204769 -125 775 204065

350 375 31 1622 092898 007102 182455 -132 620 219099

375 400 32 1654 094731 005269 152606 -139 460 238832

400 425 23 1677 096048 003952 123837 -145 345 257486

425 450 11 1688 096678 003322 106471 -15 290 268590

450 475 20 1708 097824 002176 064185 -156 190 295184

475 500 9 1717 098339 001661 037156 -161 145 311883

500 525 7 1724 098740 001260 009531 -166 110 328731

525 550 9 1733 099255 000745 -043078 -17 065 360263

550 575 8 1741 099714 000286 -138629 -175 025 415922

575 600 5 1746 1 0 NUM -179 000 DIV0

1746

20 year 873 085586

-104906

099524

-07849

541 beta 116842

gamma 122575

Hs for condition 1 500 1028785 911838

1

lnssH Q

1

ln sss

s

QH

N

1124

1500

1500122 117 ln

873

122 117 675

912

sH

m

February 1 2012 36

Weibull exceedance graph

Weibull distribution

y = 11573x + 12497

R2 = 09905

0

2

4

6

8

10

0 2 4 6 8 10

Weibull Reduced variable

Str

om

heig

ht

Hss

10 100 1000 10000

February 1 2012 37

Summary

HT threshold value

Exponential

Gumbel

Weibull

150 m 163 m 136 m 122 m

HT 150 200 250 300 350 400

Ns 873 596 389 194 108 53

Hs 1500 Exponential Hs 1500 Gumbel Hs 1500 Weibull

1000 969 912

1009 950 990

948 917 963

939 893 948

908 886 917

876 818 890

February 1 2012 38

What to do if only random data are available

storm exceedance

0

200

400

600

800

01110100100010000

probability per year

Hs

s

February 1 2012 39

Example of long term data

This are

Hs-classes

February 1 2012 40

Long term (continuation)

So from this last column we can conclude

100 of time H gt 0 m s

23 of time H gt 1 m s

12 of time H gt 2 m s

001 of time H gt 9 m s

0

2

4

6

8

10

12

14

1E-071E-061E-051E-041E-031E-021E-011E+00

exceedance per year

wave

he

igh

t H

s (

m)

February 1 2012 41

From probability of waves to probability of storms

Suppose a ldquostormrdquo lasts for 12 hrs

===gt 730 stormsyear

once per year storm = 100730 = 013 =gt 67 m

once per 10 year storm = 0013 =gt 94 m

once per 100 year storm = 00013 =gt 119 m

0

5

10

15

20

1 10 100 1000 10000

return period in years

Hs o

f th

e g

ive

n s

torm

February 1 2012 42

Meteorological data

bull Not of direct importance for design

bull Can be important for hindcast of wave data and storm surge

bull Extremely important for the execution of the works (workability)

February 1 2012 43

Waves from Wind (Brettschneider)

February 1 2012 44

required soil data

February 1 2012 45

in situ test methods

February 1 2012 46

During construction

bull Quarry stone

bull Concrete

bull Local Equipment

bull Labour

bull skilled

bull cost

bull availability

bull expatriates

Page 17: Chapter 6: Data Collection

February 1 2012 17

Sample output of Hydrobase

February 1 2012 18

Data from Hydrobase

February 1 2012 19

data from Meetpost Noordwijk

wwwgolfklimaatnl

0

50

100

150

200

250

300

350

400

450

0 200 400 600 800

time (hrs)

Hm

o (

cm

)

January 1979

February 1 2012 20

basic data

date time Hm0 accur H13 TTE3 Tm02 TH13 wave wind wind level setup

dir dir speed

cm cm cm 1 s 1 s 1 s degr degr 1 ms cm cm

19980101 0100 70 4 64 6 39 49 261 210 60 -27 27 222224000

19980101 0400 72 4 65 8 36 45 264 210 70 91 24 222224000

19980101 0700 62 4 56 8 36 46 258 200 80 58 11 222224000

19980101 1000 93 5 85 11 40 48 234 190 90 -31 6 222224000

19980101 1300 110 5 102 14 44 51 230 200 90 -83 -5 222224000

19980101 1600 162 7 148 17 42 52 230 200 120 43 -12 222224000

19980101 1900 132 6 121 11 40 48 224 190 130 40 -37 222224000

19980101 2200 205 8 190 18 51 61 220 190 170 -39 -33 222224000

19980102 0100 247 10 230 37 56 68 229 190 170 -114 -57 222224000

19980102 0400 275 11 255 40 55 68 236 210 160 -1 -1 222224000

19980102 0700 208 8 193 20 50 63 234 200 140 -2 -72 222224000

19980102 1000 142 6 132 14 47 59 227 190 120 -59 -13 222224000

19980102 1300 130 6 120 14 50 64 223 160 110 -97 -22 222224000

19980102 1600 117 5 108 13 43 53 213 170 100 73 87 222224000

19980102 1900 91 5 84 10 39 49 232 210 100 152 58 222224000

19980102 2200 243 10 226 22 52 62 267 280 150 119 118 222224000

19980103 0100 287 12 269 32 59 70 269 260 110 25 73 222224000

19980103 0400 240 10 224 21 55 66 265 230 90 28 60 222224000

19980103 0700 177 7 163 13 46 56 245 200 130 122 37 222224000

19980103 1000 179 7 165 16 47 56 223 180 170 -30 3 222224000

19980103 1300 285 12 266 35 58 70 230 210 190 -43 16 222224000

19980103 1600 341 15 318 56 61 73 242 250 130 -36 14 222224000

19980103 1900 342 15 319 53 60 73 246 260 170 133 20 222224000

19980103 2200 414 21 388 85 65 77 249 260 190 72 46 222224000

19980104 0100 465 21 435 228 72 88 254 260 190 40 68 222224000

19980104 0400 358 16 334 92 64 78 259 240 90 -22 18 222224000

19980104 0700 324 14 302 52 60 73 256 250 120 129 43 222224000

19980104 1000 247 10 229 33 55 69 252 220 100 34 33 222224000

February 1 2012 21

sort data in classes

Waveheight class Hs (cm)

Number of observations

P Q -ln(Q)

0 25 35 35 0000599 0999401 0000599

25 50 8260 8295 0141940 0858060 0153082 50 75 11424 19719 0337423 0662577 0411618

75 100 10004 29723 0508607 0491393 0710511

100 125 7649 37372 0639493 0360507 1020245

125 150 5563 42935 0734685 0265315 1326838

150 175 4389 47324 0809788 0190212 1659615

175 200 3167 50491 0863980 0136020 1994954

200 225 2360 52851 0904363 0095637 2347200

225 250 1671 54522 0932957 0067043 2702419

250 275 1234 55756 0954073 0045927 3080692

275 300 851 56607 0968634 0031366 3462047

300 325 556 57163 0978149 0021851 3823487

325 350 392 57555 0984856 0015144 4190168

350 375 276 57831 0989579 0010421 4563938

375 400 206 58037 0993104 0006896 4976819

400 425 136 58173 0995431 0004569 5388507

425 450 82 58255 0996834 0003166 5755400

450 475 66 58321 0997964 0002036 6196632

475 500 38 58359 0998614 0001386 6581307

500 525 30 58389 0999127 0000873 7043930

525 550 20 58409 0999470 0000530 7541769

550 575 22 58431 0999846 0000154 8778531

575 600 9 58440 1000000 0000000

58440

( )s sP P H H

( ) 1s sQ Q H H P

all data Noordwijk

y = 00151x - 05001

R2 = 09881

0

1

2

3

4

5

6

7

8

9

10

0 200 400 600Hs-l

nQ

February 1 2012 22

exceedance graph for Noordwijk

indivudual observations

0

200

400

600

800

1000

000001000001000001000001000001000001000000

exceedance

wave h

eig

ht

But what means that in a year during 01

of the time the Hs is larger than 5 m

February 1 2012 23

Peak over Threshold method

A storm is defined as a time that the wave is higher than a

certain value the height of the storm Hss is equal to the

highest observed Hs during that storm

Threshold = 15

In this period 9

storms observed

nr Hss

1 180 m

2 294 m

3 225 m

4 176 m

5 261 m

6 389 m

7 172 m

8 240 m

9 194 m

February 1 2012 24

Table with Hss classes

= 124 Wave height class

150 cumul P Q Qs W

150 175 384 384 021993 078007 6810 032522 175 200 381 765 043814 056186 4905 064136 200 225 266 1031 059049 040951 3575 091261 225 250 157 1188 068041 031959 2790 111202 250 275 148 1336 076518 023482 2050 134858 275 300 111 1447 082875 017125 1495 158094 300 325 81 1528 087514 012486 1090 180552 325 350 63 1591 091123 008877 775 204065 350 375 31 1622 092898 007102 620 219099 375 400 32 1654 094731 005269 460 238832 400 425 23 1677 096048 003952 345 257486 425 450 11 1688 096678 003322 290 268590 450 475 20 1708 097824 002176 190 295184 475 500 9 1717 098339 001661 145 311883 500 525 7 1724 098740 001260 110 328731 525 550 9 1733 099255 000745 065 360263 550 575 8 1741 099714 000286 025 415922 575 600 5 1746 1 0 000 DIV0 1746 20 year 873 Slope 085586 Intercept -104906 correlation 099524 beta 116842 gamma 122575

Hss for condition 1 10 668997

( )ss ssP P H H

1ss ssQ Q H H P

threshold 15 m

y = -07849Ln(x) + 16329

R2 = 09854

0

2

4

6

8

000010000100001000010000100000probability of exceedence

sto

rm h

eig

ht

Hss

February 1 2012 25

How to get storm exceedance

Q = probability of exceedance of a wave

Qs = probability of exceedance of a storm

s sQ N Qthreshold 15 m

y = -07849Ln(x) + 5141

R2 = 09854

0

2

4

6

8

10

001010100100010000

storm exceedence probability per year

sto

rm h

eig

ht

Hss

Statistically

nonsense

February 1 2012 26

The ldquoonce in 500 years stormrdquo

0785ln( )

10785ln 5141

500

100

ss sH Q

m

threshold 15 m

y = -07849Ln(x) + 5141

R2 = 09854

0

2

4

6

8

10

001010100100010000

storm exceedence probability per year

sto

rm h

eig

ht

Hss

February 1 2012 27

Using the Gumbel distribution

exp exp ssHP

February 1 2012 28

determination of and

ln exp

1ln ln

ss

ss

ssss

GAH B

HP

HP H

1ln lnG

P

Perform linear regression

for G = A Hss - B

February 1 2012 29

data for calculation of Gumbel 150 cumul P Q ln(Qs) -ln(H) Qs G

150 175 384 384 021993 078007 422098 -056 6810 -0415046

175 200 381 765 043814 056186 389284 -069 4905 0192121

200 225 266 1031 059049 040951 357655 -081 3575 0640938

225 250 157 1188 068041 031959 332863 -092 2790 0954366

250 275 148 1336 076518 023482 302042 -101 2050 1318085

275 300 111 1447 082875 017125 270471 -11 1495 1672191

300 325 81 1528 087514 012486 238876 -118 1090 2014645

325 350 63 1591 091123 008877 204769 -125 775 2375535

350 375 31 1622 092898 007102 182455 -132 620 2608194

375 400 32 1654 094731 005269 152606 -139 460 2916351

400 425 23 1677 096048 003952 123837 -145 345 3210883

425 450 11 1688 096678 003322 106471 -15 290 3387796

450 475 20 1708 097824 002176 064185 -156 190 3816515

475 500 9 1717 098339 001661 037156 -161 145 4089424

500 525 7 1724 098740 001260 009531 -166 110 4367707

525 550 9 1733 099255 000745 -043078 -17 065 4896399

550 575 8 1741 099714 000286 -138629 -175 025 5854211

575 600 5 1746 1 0 NUM -179 000 NUM

February 1 2012 30

Gumbel exceedance graph

Gumbel distribution

y = 07234x + 1882

R2 = 09871

0

2

4

6

8

10

0 2 4 6 8 10Gumbel Reduced variable

Sto

rm h

eig

ht

Hs

s

ssG AH B

= 1A = 0723

= B =1882

February 1 2012 31

calculation of a value

1ln ln

1ln ln

1

1ln ln

1

ln ln

ss

s

s

s

s s

HP

Q

QN

N

N Q

1500

873188 073ln ln 967

1873500

sH

= 1A = 073

= B =188

February 1 2012 32

transformation of the axis

Gumbel distribution

y = 07234x + 1882

R2 = 09871

0

2

4

6

8

10

0 2 4 6 8 10Gumbel Reduced variable

Sto

rm h

eig

ht

Hs

s

ln ln s

s s

NG

N Q

Ns = 873 storms per year

Qs G

110

1100

11000

110000

677

907

1138

1368

Figure Error No text of specified style in document-1 Storm exceedance on basis of Gumbel

10 100

February 1 2012 33

Weibull distribution

exp ssHQ

February 1 2012 34

determination of the reduced variable

1

1

ln

ln

1ln

ss

ss

ss

ss

WAH B

HQ

HQ

Q H

1

lnW Q

Three variables

and

So iteration is needed

February 1 2012 35

calculation for Weibull

alfa= 124

150 cumul P Q ln(Qs) -ln(H) Qs W

150 175 384 384 021993 078007 422098 -056 6810 032522

175 200 381 765 043814 056186 389284 -069 4905 064136

200 225 266 1031 059049 040951 357655 -081 3575 091261

225 250 157 1188 068041 031959 332863 -092 2790 111202

250 275 148 1336 076518 023482 302042 -101 2050 134858

275 300 111 1447 082875 017125 270471 -11 1495 158094

300 325 81 1528 087514 012486 238876 -118 1090 180552

325 350 63 1591 091123 008877 204769 -125 775 204065

350 375 31 1622 092898 007102 182455 -132 620 219099

375 400 32 1654 094731 005269 152606 -139 460 238832

400 425 23 1677 096048 003952 123837 -145 345 257486

425 450 11 1688 096678 003322 106471 -15 290 268590

450 475 20 1708 097824 002176 064185 -156 190 295184

475 500 9 1717 098339 001661 037156 -161 145 311883

500 525 7 1724 098740 001260 009531 -166 110 328731

525 550 9 1733 099255 000745 -043078 -17 065 360263

550 575 8 1741 099714 000286 -138629 -175 025 415922

575 600 5 1746 1 0 NUM -179 000 DIV0

1746

20 year 873 085586

-104906

099524

-07849

541 beta 116842

gamma 122575

Hs for condition 1 500 1028785 911838

1

lnssH Q

1

ln sss

s

QH

N

1124

1500

1500122 117 ln

873

122 117 675

912

sH

m

February 1 2012 36

Weibull exceedance graph

Weibull distribution

y = 11573x + 12497

R2 = 09905

0

2

4

6

8

10

0 2 4 6 8 10

Weibull Reduced variable

Str

om

heig

ht

Hss

10 100 1000 10000

February 1 2012 37

Summary

HT threshold value

Exponential

Gumbel

Weibull

150 m 163 m 136 m 122 m

HT 150 200 250 300 350 400

Ns 873 596 389 194 108 53

Hs 1500 Exponential Hs 1500 Gumbel Hs 1500 Weibull

1000 969 912

1009 950 990

948 917 963

939 893 948

908 886 917

876 818 890

February 1 2012 38

What to do if only random data are available

storm exceedance

0

200

400

600

800

01110100100010000

probability per year

Hs

s

February 1 2012 39

Example of long term data

This are

Hs-classes

February 1 2012 40

Long term (continuation)

So from this last column we can conclude

100 of time H gt 0 m s

23 of time H gt 1 m s

12 of time H gt 2 m s

001 of time H gt 9 m s

0

2

4

6

8

10

12

14

1E-071E-061E-051E-041E-031E-021E-011E+00

exceedance per year

wave

he

igh

t H

s (

m)

February 1 2012 41

From probability of waves to probability of storms

Suppose a ldquostormrdquo lasts for 12 hrs

===gt 730 stormsyear

once per year storm = 100730 = 013 =gt 67 m

once per 10 year storm = 0013 =gt 94 m

once per 100 year storm = 00013 =gt 119 m

0

5

10

15

20

1 10 100 1000 10000

return period in years

Hs o

f th

e g

ive

n s

torm

February 1 2012 42

Meteorological data

bull Not of direct importance for design

bull Can be important for hindcast of wave data and storm surge

bull Extremely important for the execution of the works (workability)

February 1 2012 43

Waves from Wind (Brettschneider)

February 1 2012 44

required soil data

February 1 2012 45

in situ test methods

February 1 2012 46

During construction

bull Quarry stone

bull Concrete

bull Local Equipment

bull Labour

bull skilled

bull cost

bull availability

bull expatriates

Page 18: Chapter 6: Data Collection

February 1 2012 18

Data from Hydrobase

February 1 2012 19

data from Meetpost Noordwijk

wwwgolfklimaatnl

0

50

100

150

200

250

300

350

400

450

0 200 400 600 800

time (hrs)

Hm

o (

cm

)

January 1979

February 1 2012 20

basic data

date time Hm0 accur H13 TTE3 Tm02 TH13 wave wind wind level setup

dir dir speed

cm cm cm 1 s 1 s 1 s degr degr 1 ms cm cm

19980101 0100 70 4 64 6 39 49 261 210 60 -27 27 222224000

19980101 0400 72 4 65 8 36 45 264 210 70 91 24 222224000

19980101 0700 62 4 56 8 36 46 258 200 80 58 11 222224000

19980101 1000 93 5 85 11 40 48 234 190 90 -31 6 222224000

19980101 1300 110 5 102 14 44 51 230 200 90 -83 -5 222224000

19980101 1600 162 7 148 17 42 52 230 200 120 43 -12 222224000

19980101 1900 132 6 121 11 40 48 224 190 130 40 -37 222224000

19980101 2200 205 8 190 18 51 61 220 190 170 -39 -33 222224000

19980102 0100 247 10 230 37 56 68 229 190 170 -114 -57 222224000

19980102 0400 275 11 255 40 55 68 236 210 160 -1 -1 222224000

19980102 0700 208 8 193 20 50 63 234 200 140 -2 -72 222224000

19980102 1000 142 6 132 14 47 59 227 190 120 -59 -13 222224000

19980102 1300 130 6 120 14 50 64 223 160 110 -97 -22 222224000

19980102 1600 117 5 108 13 43 53 213 170 100 73 87 222224000

19980102 1900 91 5 84 10 39 49 232 210 100 152 58 222224000

19980102 2200 243 10 226 22 52 62 267 280 150 119 118 222224000

19980103 0100 287 12 269 32 59 70 269 260 110 25 73 222224000

19980103 0400 240 10 224 21 55 66 265 230 90 28 60 222224000

19980103 0700 177 7 163 13 46 56 245 200 130 122 37 222224000

19980103 1000 179 7 165 16 47 56 223 180 170 -30 3 222224000

19980103 1300 285 12 266 35 58 70 230 210 190 -43 16 222224000

19980103 1600 341 15 318 56 61 73 242 250 130 -36 14 222224000

19980103 1900 342 15 319 53 60 73 246 260 170 133 20 222224000

19980103 2200 414 21 388 85 65 77 249 260 190 72 46 222224000

19980104 0100 465 21 435 228 72 88 254 260 190 40 68 222224000

19980104 0400 358 16 334 92 64 78 259 240 90 -22 18 222224000

19980104 0700 324 14 302 52 60 73 256 250 120 129 43 222224000

19980104 1000 247 10 229 33 55 69 252 220 100 34 33 222224000

February 1 2012 21

sort data in classes

Waveheight class Hs (cm)

Number of observations

P Q -ln(Q)

0 25 35 35 0000599 0999401 0000599

25 50 8260 8295 0141940 0858060 0153082 50 75 11424 19719 0337423 0662577 0411618

75 100 10004 29723 0508607 0491393 0710511

100 125 7649 37372 0639493 0360507 1020245

125 150 5563 42935 0734685 0265315 1326838

150 175 4389 47324 0809788 0190212 1659615

175 200 3167 50491 0863980 0136020 1994954

200 225 2360 52851 0904363 0095637 2347200

225 250 1671 54522 0932957 0067043 2702419

250 275 1234 55756 0954073 0045927 3080692

275 300 851 56607 0968634 0031366 3462047

300 325 556 57163 0978149 0021851 3823487

325 350 392 57555 0984856 0015144 4190168

350 375 276 57831 0989579 0010421 4563938

375 400 206 58037 0993104 0006896 4976819

400 425 136 58173 0995431 0004569 5388507

425 450 82 58255 0996834 0003166 5755400

450 475 66 58321 0997964 0002036 6196632

475 500 38 58359 0998614 0001386 6581307

500 525 30 58389 0999127 0000873 7043930

525 550 20 58409 0999470 0000530 7541769

550 575 22 58431 0999846 0000154 8778531

575 600 9 58440 1000000 0000000

58440

( )s sP P H H

( ) 1s sQ Q H H P

all data Noordwijk

y = 00151x - 05001

R2 = 09881

0

1

2

3

4

5

6

7

8

9

10

0 200 400 600Hs-l

nQ

February 1 2012 22

exceedance graph for Noordwijk

indivudual observations

0

200

400

600

800

1000

000001000001000001000001000001000001000000

exceedance

wave h

eig

ht

But what means that in a year during 01

of the time the Hs is larger than 5 m

February 1 2012 23

Peak over Threshold method

A storm is defined as a time that the wave is higher than a

certain value the height of the storm Hss is equal to the

highest observed Hs during that storm

Threshold = 15

In this period 9

storms observed

nr Hss

1 180 m

2 294 m

3 225 m

4 176 m

5 261 m

6 389 m

7 172 m

8 240 m

9 194 m

February 1 2012 24

Table with Hss classes

= 124 Wave height class

150 cumul P Q Qs W

150 175 384 384 021993 078007 6810 032522 175 200 381 765 043814 056186 4905 064136 200 225 266 1031 059049 040951 3575 091261 225 250 157 1188 068041 031959 2790 111202 250 275 148 1336 076518 023482 2050 134858 275 300 111 1447 082875 017125 1495 158094 300 325 81 1528 087514 012486 1090 180552 325 350 63 1591 091123 008877 775 204065 350 375 31 1622 092898 007102 620 219099 375 400 32 1654 094731 005269 460 238832 400 425 23 1677 096048 003952 345 257486 425 450 11 1688 096678 003322 290 268590 450 475 20 1708 097824 002176 190 295184 475 500 9 1717 098339 001661 145 311883 500 525 7 1724 098740 001260 110 328731 525 550 9 1733 099255 000745 065 360263 550 575 8 1741 099714 000286 025 415922 575 600 5 1746 1 0 000 DIV0 1746 20 year 873 Slope 085586 Intercept -104906 correlation 099524 beta 116842 gamma 122575

Hss for condition 1 10 668997

( )ss ssP P H H

1ss ssQ Q H H P

threshold 15 m

y = -07849Ln(x) + 16329

R2 = 09854

0

2

4

6

8

000010000100001000010000100000probability of exceedence

sto

rm h

eig

ht

Hss

February 1 2012 25

How to get storm exceedance

Q = probability of exceedance of a wave

Qs = probability of exceedance of a storm

s sQ N Qthreshold 15 m

y = -07849Ln(x) + 5141

R2 = 09854

0

2

4

6

8

10

001010100100010000

storm exceedence probability per year

sto

rm h

eig

ht

Hss

Statistically

nonsense

February 1 2012 26

The ldquoonce in 500 years stormrdquo

0785ln( )

10785ln 5141

500

100

ss sH Q

m

threshold 15 m

y = -07849Ln(x) + 5141

R2 = 09854

0

2

4

6

8

10

001010100100010000

storm exceedence probability per year

sto

rm h

eig

ht

Hss

February 1 2012 27

Using the Gumbel distribution

exp exp ssHP

February 1 2012 28

determination of and

ln exp

1ln ln

ss

ss

ssss

GAH B

HP

HP H

1ln lnG

P

Perform linear regression

for G = A Hss - B

February 1 2012 29

data for calculation of Gumbel 150 cumul P Q ln(Qs) -ln(H) Qs G

150 175 384 384 021993 078007 422098 -056 6810 -0415046

175 200 381 765 043814 056186 389284 -069 4905 0192121

200 225 266 1031 059049 040951 357655 -081 3575 0640938

225 250 157 1188 068041 031959 332863 -092 2790 0954366

250 275 148 1336 076518 023482 302042 -101 2050 1318085

275 300 111 1447 082875 017125 270471 -11 1495 1672191

300 325 81 1528 087514 012486 238876 -118 1090 2014645

325 350 63 1591 091123 008877 204769 -125 775 2375535

350 375 31 1622 092898 007102 182455 -132 620 2608194

375 400 32 1654 094731 005269 152606 -139 460 2916351

400 425 23 1677 096048 003952 123837 -145 345 3210883

425 450 11 1688 096678 003322 106471 -15 290 3387796

450 475 20 1708 097824 002176 064185 -156 190 3816515

475 500 9 1717 098339 001661 037156 -161 145 4089424

500 525 7 1724 098740 001260 009531 -166 110 4367707

525 550 9 1733 099255 000745 -043078 -17 065 4896399

550 575 8 1741 099714 000286 -138629 -175 025 5854211

575 600 5 1746 1 0 NUM -179 000 NUM

February 1 2012 30

Gumbel exceedance graph

Gumbel distribution

y = 07234x + 1882

R2 = 09871

0

2

4

6

8

10

0 2 4 6 8 10Gumbel Reduced variable

Sto

rm h

eig

ht

Hs

s

ssG AH B

= 1A = 0723

= B =1882

February 1 2012 31

calculation of a value

1ln ln

1ln ln

1

1ln ln

1

ln ln

ss

s

s

s

s s

HP

Q

QN

N

N Q

1500

873188 073ln ln 967

1873500

sH

= 1A = 073

= B =188

February 1 2012 32

transformation of the axis

Gumbel distribution

y = 07234x + 1882

R2 = 09871

0

2

4

6

8

10

0 2 4 6 8 10Gumbel Reduced variable

Sto

rm h

eig

ht

Hs

s

ln ln s

s s

NG

N Q

Ns = 873 storms per year

Qs G

110

1100

11000

110000

677

907

1138

1368

Figure Error No text of specified style in document-1 Storm exceedance on basis of Gumbel

10 100

February 1 2012 33

Weibull distribution

exp ssHQ

February 1 2012 34

determination of the reduced variable

1

1

ln

ln

1ln

ss

ss

ss

ss

WAH B

HQ

HQ

Q H

1

lnW Q

Three variables

and

So iteration is needed

February 1 2012 35

calculation for Weibull

alfa= 124

150 cumul P Q ln(Qs) -ln(H) Qs W

150 175 384 384 021993 078007 422098 -056 6810 032522

175 200 381 765 043814 056186 389284 -069 4905 064136

200 225 266 1031 059049 040951 357655 -081 3575 091261

225 250 157 1188 068041 031959 332863 -092 2790 111202

250 275 148 1336 076518 023482 302042 -101 2050 134858

275 300 111 1447 082875 017125 270471 -11 1495 158094

300 325 81 1528 087514 012486 238876 -118 1090 180552

325 350 63 1591 091123 008877 204769 -125 775 204065

350 375 31 1622 092898 007102 182455 -132 620 219099

375 400 32 1654 094731 005269 152606 -139 460 238832

400 425 23 1677 096048 003952 123837 -145 345 257486

425 450 11 1688 096678 003322 106471 -15 290 268590

450 475 20 1708 097824 002176 064185 -156 190 295184

475 500 9 1717 098339 001661 037156 -161 145 311883

500 525 7 1724 098740 001260 009531 -166 110 328731

525 550 9 1733 099255 000745 -043078 -17 065 360263

550 575 8 1741 099714 000286 -138629 -175 025 415922

575 600 5 1746 1 0 NUM -179 000 DIV0

1746

20 year 873 085586

-104906

099524

-07849

541 beta 116842

gamma 122575

Hs for condition 1 500 1028785 911838

1

lnssH Q

1

ln sss

s

QH

N

1124

1500

1500122 117 ln

873

122 117 675

912

sH

m

February 1 2012 36

Weibull exceedance graph

Weibull distribution

y = 11573x + 12497

R2 = 09905

0

2

4

6

8

10

0 2 4 6 8 10

Weibull Reduced variable

Str

om

heig

ht

Hss

10 100 1000 10000

February 1 2012 37

Summary

HT threshold value

Exponential

Gumbel

Weibull

150 m 163 m 136 m 122 m

HT 150 200 250 300 350 400

Ns 873 596 389 194 108 53

Hs 1500 Exponential Hs 1500 Gumbel Hs 1500 Weibull

1000 969 912

1009 950 990

948 917 963

939 893 948

908 886 917

876 818 890

February 1 2012 38

What to do if only random data are available

storm exceedance

0

200

400

600

800

01110100100010000

probability per year

Hs

s

February 1 2012 39

Example of long term data

This are

Hs-classes

February 1 2012 40

Long term (continuation)

So from this last column we can conclude

100 of time H gt 0 m s

23 of time H gt 1 m s

12 of time H gt 2 m s

001 of time H gt 9 m s

0

2

4

6

8

10

12

14

1E-071E-061E-051E-041E-031E-021E-011E+00

exceedance per year

wave

he

igh

t H

s (

m)

February 1 2012 41

From probability of waves to probability of storms

Suppose a ldquostormrdquo lasts for 12 hrs

===gt 730 stormsyear

once per year storm = 100730 = 013 =gt 67 m

once per 10 year storm = 0013 =gt 94 m

once per 100 year storm = 00013 =gt 119 m

0

5

10

15

20

1 10 100 1000 10000

return period in years

Hs o

f th

e g

ive

n s

torm

February 1 2012 42

Meteorological data

bull Not of direct importance for design

bull Can be important for hindcast of wave data and storm surge

bull Extremely important for the execution of the works (workability)

February 1 2012 43

Waves from Wind (Brettschneider)

February 1 2012 44

required soil data

February 1 2012 45

in situ test methods

February 1 2012 46

During construction

bull Quarry stone

bull Concrete

bull Local Equipment

bull Labour

bull skilled

bull cost

bull availability

bull expatriates

Page 19: Chapter 6: Data Collection

February 1 2012 19

data from Meetpost Noordwijk

wwwgolfklimaatnl

0

50

100

150

200

250

300

350

400

450

0 200 400 600 800

time (hrs)

Hm

o (

cm

)

January 1979

February 1 2012 20

basic data

date time Hm0 accur H13 TTE3 Tm02 TH13 wave wind wind level setup

dir dir speed

cm cm cm 1 s 1 s 1 s degr degr 1 ms cm cm

19980101 0100 70 4 64 6 39 49 261 210 60 -27 27 222224000

19980101 0400 72 4 65 8 36 45 264 210 70 91 24 222224000

19980101 0700 62 4 56 8 36 46 258 200 80 58 11 222224000

19980101 1000 93 5 85 11 40 48 234 190 90 -31 6 222224000

19980101 1300 110 5 102 14 44 51 230 200 90 -83 -5 222224000

19980101 1600 162 7 148 17 42 52 230 200 120 43 -12 222224000

19980101 1900 132 6 121 11 40 48 224 190 130 40 -37 222224000

19980101 2200 205 8 190 18 51 61 220 190 170 -39 -33 222224000

19980102 0100 247 10 230 37 56 68 229 190 170 -114 -57 222224000

19980102 0400 275 11 255 40 55 68 236 210 160 -1 -1 222224000

19980102 0700 208 8 193 20 50 63 234 200 140 -2 -72 222224000

19980102 1000 142 6 132 14 47 59 227 190 120 -59 -13 222224000

19980102 1300 130 6 120 14 50 64 223 160 110 -97 -22 222224000

19980102 1600 117 5 108 13 43 53 213 170 100 73 87 222224000

19980102 1900 91 5 84 10 39 49 232 210 100 152 58 222224000

19980102 2200 243 10 226 22 52 62 267 280 150 119 118 222224000

19980103 0100 287 12 269 32 59 70 269 260 110 25 73 222224000

19980103 0400 240 10 224 21 55 66 265 230 90 28 60 222224000

19980103 0700 177 7 163 13 46 56 245 200 130 122 37 222224000

19980103 1000 179 7 165 16 47 56 223 180 170 -30 3 222224000

19980103 1300 285 12 266 35 58 70 230 210 190 -43 16 222224000

19980103 1600 341 15 318 56 61 73 242 250 130 -36 14 222224000

19980103 1900 342 15 319 53 60 73 246 260 170 133 20 222224000

19980103 2200 414 21 388 85 65 77 249 260 190 72 46 222224000

19980104 0100 465 21 435 228 72 88 254 260 190 40 68 222224000

19980104 0400 358 16 334 92 64 78 259 240 90 -22 18 222224000

19980104 0700 324 14 302 52 60 73 256 250 120 129 43 222224000

19980104 1000 247 10 229 33 55 69 252 220 100 34 33 222224000

February 1 2012 21

sort data in classes

Waveheight class Hs (cm)

Number of observations

P Q -ln(Q)

0 25 35 35 0000599 0999401 0000599

25 50 8260 8295 0141940 0858060 0153082 50 75 11424 19719 0337423 0662577 0411618

75 100 10004 29723 0508607 0491393 0710511

100 125 7649 37372 0639493 0360507 1020245

125 150 5563 42935 0734685 0265315 1326838

150 175 4389 47324 0809788 0190212 1659615

175 200 3167 50491 0863980 0136020 1994954

200 225 2360 52851 0904363 0095637 2347200

225 250 1671 54522 0932957 0067043 2702419

250 275 1234 55756 0954073 0045927 3080692

275 300 851 56607 0968634 0031366 3462047

300 325 556 57163 0978149 0021851 3823487

325 350 392 57555 0984856 0015144 4190168

350 375 276 57831 0989579 0010421 4563938

375 400 206 58037 0993104 0006896 4976819

400 425 136 58173 0995431 0004569 5388507

425 450 82 58255 0996834 0003166 5755400

450 475 66 58321 0997964 0002036 6196632

475 500 38 58359 0998614 0001386 6581307

500 525 30 58389 0999127 0000873 7043930

525 550 20 58409 0999470 0000530 7541769

550 575 22 58431 0999846 0000154 8778531

575 600 9 58440 1000000 0000000

58440

( )s sP P H H

( ) 1s sQ Q H H P

all data Noordwijk

y = 00151x - 05001

R2 = 09881

0

1

2

3

4

5

6

7

8

9

10

0 200 400 600Hs-l

nQ

February 1 2012 22

exceedance graph for Noordwijk

indivudual observations

0

200

400

600

800

1000

000001000001000001000001000001000001000000

exceedance

wave h

eig

ht

But what means that in a year during 01

of the time the Hs is larger than 5 m

February 1 2012 23

Peak over Threshold method

A storm is defined as a time that the wave is higher than a

certain value the height of the storm Hss is equal to the

highest observed Hs during that storm

Threshold = 15

In this period 9

storms observed

nr Hss

1 180 m

2 294 m

3 225 m

4 176 m

5 261 m

6 389 m

7 172 m

8 240 m

9 194 m

February 1 2012 24

Table with Hss classes

= 124 Wave height class

150 cumul P Q Qs W

150 175 384 384 021993 078007 6810 032522 175 200 381 765 043814 056186 4905 064136 200 225 266 1031 059049 040951 3575 091261 225 250 157 1188 068041 031959 2790 111202 250 275 148 1336 076518 023482 2050 134858 275 300 111 1447 082875 017125 1495 158094 300 325 81 1528 087514 012486 1090 180552 325 350 63 1591 091123 008877 775 204065 350 375 31 1622 092898 007102 620 219099 375 400 32 1654 094731 005269 460 238832 400 425 23 1677 096048 003952 345 257486 425 450 11 1688 096678 003322 290 268590 450 475 20 1708 097824 002176 190 295184 475 500 9 1717 098339 001661 145 311883 500 525 7 1724 098740 001260 110 328731 525 550 9 1733 099255 000745 065 360263 550 575 8 1741 099714 000286 025 415922 575 600 5 1746 1 0 000 DIV0 1746 20 year 873 Slope 085586 Intercept -104906 correlation 099524 beta 116842 gamma 122575

Hss for condition 1 10 668997

( )ss ssP P H H

1ss ssQ Q H H P

threshold 15 m

y = -07849Ln(x) + 16329

R2 = 09854

0

2

4

6

8

000010000100001000010000100000probability of exceedence

sto

rm h

eig

ht

Hss

February 1 2012 25

How to get storm exceedance

Q = probability of exceedance of a wave

Qs = probability of exceedance of a storm

s sQ N Qthreshold 15 m

y = -07849Ln(x) + 5141

R2 = 09854

0

2

4

6

8

10

001010100100010000

storm exceedence probability per year

sto

rm h

eig

ht

Hss

Statistically

nonsense

February 1 2012 26

The ldquoonce in 500 years stormrdquo

0785ln( )

10785ln 5141

500

100

ss sH Q

m

threshold 15 m

y = -07849Ln(x) + 5141

R2 = 09854

0

2

4

6

8

10

001010100100010000

storm exceedence probability per year

sto

rm h

eig

ht

Hss

February 1 2012 27

Using the Gumbel distribution

exp exp ssHP

February 1 2012 28

determination of and

ln exp

1ln ln

ss

ss

ssss

GAH B

HP

HP H

1ln lnG

P

Perform linear regression

for G = A Hss - B

February 1 2012 29

data for calculation of Gumbel 150 cumul P Q ln(Qs) -ln(H) Qs G

150 175 384 384 021993 078007 422098 -056 6810 -0415046

175 200 381 765 043814 056186 389284 -069 4905 0192121

200 225 266 1031 059049 040951 357655 -081 3575 0640938

225 250 157 1188 068041 031959 332863 -092 2790 0954366

250 275 148 1336 076518 023482 302042 -101 2050 1318085

275 300 111 1447 082875 017125 270471 -11 1495 1672191

300 325 81 1528 087514 012486 238876 -118 1090 2014645

325 350 63 1591 091123 008877 204769 -125 775 2375535

350 375 31 1622 092898 007102 182455 -132 620 2608194

375 400 32 1654 094731 005269 152606 -139 460 2916351

400 425 23 1677 096048 003952 123837 -145 345 3210883

425 450 11 1688 096678 003322 106471 -15 290 3387796

450 475 20 1708 097824 002176 064185 -156 190 3816515

475 500 9 1717 098339 001661 037156 -161 145 4089424

500 525 7 1724 098740 001260 009531 -166 110 4367707

525 550 9 1733 099255 000745 -043078 -17 065 4896399

550 575 8 1741 099714 000286 -138629 -175 025 5854211

575 600 5 1746 1 0 NUM -179 000 NUM

February 1 2012 30

Gumbel exceedance graph

Gumbel distribution

y = 07234x + 1882

R2 = 09871

0

2

4

6

8

10

0 2 4 6 8 10Gumbel Reduced variable

Sto

rm h

eig

ht

Hs

s

ssG AH B

= 1A = 0723

= B =1882

February 1 2012 31

calculation of a value

1ln ln

1ln ln

1

1ln ln

1

ln ln

ss

s

s

s

s s

HP

Q

QN

N

N Q

1500

873188 073ln ln 967

1873500

sH

= 1A = 073

= B =188

February 1 2012 32

transformation of the axis

Gumbel distribution

y = 07234x + 1882

R2 = 09871

0

2

4

6

8

10

0 2 4 6 8 10Gumbel Reduced variable

Sto

rm h

eig

ht

Hs

s

ln ln s

s s

NG

N Q

Ns = 873 storms per year

Qs G

110

1100

11000

110000

677

907

1138

1368

Figure Error No text of specified style in document-1 Storm exceedance on basis of Gumbel

10 100

February 1 2012 33

Weibull distribution

exp ssHQ

February 1 2012 34

determination of the reduced variable

1

1

ln

ln

1ln

ss

ss

ss

ss

WAH B

HQ

HQ

Q H

1

lnW Q

Three variables

and

So iteration is needed

February 1 2012 35

calculation for Weibull

alfa= 124

150 cumul P Q ln(Qs) -ln(H) Qs W

150 175 384 384 021993 078007 422098 -056 6810 032522

175 200 381 765 043814 056186 389284 -069 4905 064136

200 225 266 1031 059049 040951 357655 -081 3575 091261

225 250 157 1188 068041 031959 332863 -092 2790 111202

250 275 148 1336 076518 023482 302042 -101 2050 134858

275 300 111 1447 082875 017125 270471 -11 1495 158094

300 325 81 1528 087514 012486 238876 -118 1090 180552

325 350 63 1591 091123 008877 204769 -125 775 204065

350 375 31 1622 092898 007102 182455 -132 620 219099

375 400 32 1654 094731 005269 152606 -139 460 238832

400 425 23 1677 096048 003952 123837 -145 345 257486

425 450 11 1688 096678 003322 106471 -15 290 268590

450 475 20 1708 097824 002176 064185 -156 190 295184

475 500 9 1717 098339 001661 037156 -161 145 311883

500 525 7 1724 098740 001260 009531 -166 110 328731

525 550 9 1733 099255 000745 -043078 -17 065 360263

550 575 8 1741 099714 000286 -138629 -175 025 415922

575 600 5 1746 1 0 NUM -179 000 DIV0

1746

20 year 873 085586

-104906

099524

-07849

541 beta 116842

gamma 122575

Hs for condition 1 500 1028785 911838

1

lnssH Q

1

ln sss

s

QH

N

1124

1500

1500122 117 ln

873

122 117 675

912

sH

m

February 1 2012 36

Weibull exceedance graph

Weibull distribution

y = 11573x + 12497

R2 = 09905

0

2

4

6

8

10

0 2 4 6 8 10

Weibull Reduced variable

Str

om

heig

ht

Hss

10 100 1000 10000

February 1 2012 37

Summary

HT threshold value

Exponential

Gumbel

Weibull

150 m 163 m 136 m 122 m

HT 150 200 250 300 350 400

Ns 873 596 389 194 108 53

Hs 1500 Exponential Hs 1500 Gumbel Hs 1500 Weibull

1000 969 912

1009 950 990

948 917 963

939 893 948

908 886 917

876 818 890

February 1 2012 38

What to do if only random data are available

storm exceedance

0

200

400

600

800

01110100100010000

probability per year

Hs

s

February 1 2012 39

Example of long term data

This are

Hs-classes

February 1 2012 40

Long term (continuation)

So from this last column we can conclude

100 of time H gt 0 m s

23 of time H gt 1 m s

12 of time H gt 2 m s

001 of time H gt 9 m s

0

2

4

6

8

10

12

14

1E-071E-061E-051E-041E-031E-021E-011E+00

exceedance per year

wave

he

igh

t H

s (

m)

February 1 2012 41

From probability of waves to probability of storms

Suppose a ldquostormrdquo lasts for 12 hrs

===gt 730 stormsyear

once per year storm = 100730 = 013 =gt 67 m

once per 10 year storm = 0013 =gt 94 m

once per 100 year storm = 00013 =gt 119 m

0

5

10

15

20

1 10 100 1000 10000

return period in years

Hs o

f th

e g

ive

n s

torm

February 1 2012 42

Meteorological data

bull Not of direct importance for design

bull Can be important for hindcast of wave data and storm surge

bull Extremely important for the execution of the works (workability)

February 1 2012 43

Waves from Wind (Brettschneider)

February 1 2012 44

required soil data

February 1 2012 45

in situ test methods

February 1 2012 46

During construction

bull Quarry stone

bull Concrete

bull Local Equipment

bull Labour

bull skilled

bull cost

bull availability

bull expatriates

Page 20: Chapter 6: Data Collection

February 1 2012 20

basic data

date time Hm0 accur H13 TTE3 Tm02 TH13 wave wind wind level setup

dir dir speed

cm cm cm 1 s 1 s 1 s degr degr 1 ms cm cm

19980101 0100 70 4 64 6 39 49 261 210 60 -27 27 222224000

19980101 0400 72 4 65 8 36 45 264 210 70 91 24 222224000

19980101 0700 62 4 56 8 36 46 258 200 80 58 11 222224000

19980101 1000 93 5 85 11 40 48 234 190 90 -31 6 222224000

19980101 1300 110 5 102 14 44 51 230 200 90 -83 -5 222224000

19980101 1600 162 7 148 17 42 52 230 200 120 43 -12 222224000

19980101 1900 132 6 121 11 40 48 224 190 130 40 -37 222224000

19980101 2200 205 8 190 18 51 61 220 190 170 -39 -33 222224000

19980102 0100 247 10 230 37 56 68 229 190 170 -114 -57 222224000

19980102 0400 275 11 255 40 55 68 236 210 160 -1 -1 222224000

19980102 0700 208 8 193 20 50 63 234 200 140 -2 -72 222224000

19980102 1000 142 6 132 14 47 59 227 190 120 -59 -13 222224000

19980102 1300 130 6 120 14 50 64 223 160 110 -97 -22 222224000

19980102 1600 117 5 108 13 43 53 213 170 100 73 87 222224000

19980102 1900 91 5 84 10 39 49 232 210 100 152 58 222224000

19980102 2200 243 10 226 22 52 62 267 280 150 119 118 222224000

19980103 0100 287 12 269 32 59 70 269 260 110 25 73 222224000

19980103 0400 240 10 224 21 55 66 265 230 90 28 60 222224000

19980103 0700 177 7 163 13 46 56 245 200 130 122 37 222224000

19980103 1000 179 7 165 16 47 56 223 180 170 -30 3 222224000

19980103 1300 285 12 266 35 58 70 230 210 190 -43 16 222224000

19980103 1600 341 15 318 56 61 73 242 250 130 -36 14 222224000

19980103 1900 342 15 319 53 60 73 246 260 170 133 20 222224000

19980103 2200 414 21 388 85 65 77 249 260 190 72 46 222224000

19980104 0100 465 21 435 228 72 88 254 260 190 40 68 222224000

19980104 0400 358 16 334 92 64 78 259 240 90 -22 18 222224000

19980104 0700 324 14 302 52 60 73 256 250 120 129 43 222224000

19980104 1000 247 10 229 33 55 69 252 220 100 34 33 222224000

February 1 2012 21

sort data in classes

Waveheight class Hs (cm)

Number of observations

P Q -ln(Q)

0 25 35 35 0000599 0999401 0000599

25 50 8260 8295 0141940 0858060 0153082 50 75 11424 19719 0337423 0662577 0411618

75 100 10004 29723 0508607 0491393 0710511

100 125 7649 37372 0639493 0360507 1020245

125 150 5563 42935 0734685 0265315 1326838

150 175 4389 47324 0809788 0190212 1659615

175 200 3167 50491 0863980 0136020 1994954

200 225 2360 52851 0904363 0095637 2347200

225 250 1671 54522 0932957 0067043 2702419

250 275 1234 55756 0954073 0045927 3080692

275 300 851 56607 0968634 0031366 3462047

300 325 556 57163 0978149 0021851 3823487

325 350 392 57555 0984856 0015144 4190168

350 375 276 57831 0989579 0010421 4563938

375 400 206 58037 0993104 0006896 4976819

400 425 136 58173 0995431 0004569 5388507

425 450 82 58255 0996834 0003166 5755400

450 475 66 58321 0997964 0002036 6196632

475 500 38 58359 0998614 0001386 6581307

500 525 30 58389 0999127 0000873 7043930

525 550 20 58409 0999470 0000530 7541769

550 575 22 58431 0999846 0000154 8778531

575 600 9 58440 1000000 0000000

58440

( )s sP P H H

( ) 1s sQ Q H H P

all data Noordwijk

y = 00151x - 05001

R2 = 09881

0

1

2

3

4

5

6

7

8

9

10

0 200 400 600Hs-l

nQ

February 1 2012 22

exceedance graph for Noordwijk

indivudual observations

0

200

400

600

800

1000

000001000001000001000001000001000001000000

exceedance

wave h

eig

ht

But what means that in a year during 01

of the time the Hs is larger than 5 m

February 1 2012 23

Peak over Threshold method

A storm is defined as a time that the wave is higher than a

certain value the height of the storm Hss is equal to the

highest observed Hs during that storm

Threshold = 15

In this period 9

storms observed

nr Hss

1 180 m

2 294 m

3 225 m

4 176 m

5 261 m

6 389 m

7 172 m

8 240 m

9 194 m

February 1 2012 24

Table with Hss classes

= 124 Wave height class

150 cumul P Q Qs W

150 175 384 384 021993 078007 6810 032522 175 200 381 765 043814 056186 4905 064136 200 225 266 1031 059049 040951 3575 091261 225 250 157 1188 068041 031959 2790 111202 250 275 148 1336 076518 023482 2050 134858 275 300 111 1447 082875 017125 1495 158094 300 325 81 1528 087514 012486 1090 180552 325 350 63 1591 091123 008877 775 204065 350 375 31 1622 092898 007102 620 219099 375 400 32 1654 094731 005269 460 238832 400 425 23 1677 096048 003952 345 257486 425 450 11 1688 096678 003322 290 268590 450 475 20 1708 097824 002176 190 295184 475 500 9 1717 098339 001661 145 311883 500 525 7 1724 098740 001260 110 328731 525 550 9 1733 099255 000745 065 360263 550 575 8 1741 099714 000286 025 415922 575 600 5 1746 1 0 000 DIV0 1746 20 year 873 Slope 085586 Intercept -104906 correlation 099524 beta 116842 gamma 122575

Hss for condition 1 10 668997

( )ss ssP P H H

1ss ssQ Q H H P

threshold 15 m

y = -07849Ln(x) + 16329

R2 = 09854

0

2

4

6

8

000010000100001000010000100000probability of exceedence

sto

rm h

eig

ht

Hss

February 1 2012 25

How to get storm exceedance

Q = probability of exceedance of a wave

Qs = probability of exceedance of a storm

s sQ N Qthreshold 15 m

y = -07849Ln(x) + 5141

R2 = 09854

0

2

4

6

8

10

001010100100010000

storm exceedence probability per year

sto

rm h

eig

ht

Hss

Statistically

nonsense

February 1 2012 26

The ldquoonce in 500 years stormrdquo

0785ln( )

10785ln 5141

500

100

ss sH Q

m

threshold 15 m

y = -07849Ln(x) + 5141

R2 = 09854

0

2

4

6

8

10

001010100100010000

storm exceedence probability per year

sto

rm h

eig

ht

Hss

February 1 2012 27

Using the Gumbel distribution

exp exp ssHP

February 1 2012 28

determination of and

ln exp

1ln ln

ss

ss

ssss

GAH B

HP

HP H

1ln lnG

P

Perform linear regression

for G = A Hss - B

February 1 2012 29

data for calculation of Gumbel 150 cumul P Q ln(Qs) -ln(H) Qs G

150 175 384 384 021993 078007 422098 -056 6810 -0415046

175 200 381 765 043814 056186 389284 -069 4905 0192121

200 225 266 1031 059049 040951 357655 -081 3575 0640938

225 250 157 1188 068041 031959 332863 -092 2790 0954366

250 275 148 1336 076518 023482 302042 -101 2050 1318085

275 300 111 1447 082875 017125 270471 -11 1495 1672191

300 325 81 1528 087514 012486 238876 -118 1090 2014645

325 350 63 1591 091123 008877 204769 -125 775 2375535

350 375 31 1622 092898 007102 182455 -132 620 2608194

375 400 32 1654 094731 005269 152606 -139 460 2916351

400 425 23 1677 096048 003952 123837 -145 345 3210883

425 450 11 1688 096678 003322 106471 -15 290 3387796

450 475 20 1708 097824 002176 064185 -156 190 3816515

475 500 9 1717 098339 001661 037156 -161 145 4089424

500 525 7 1724 098740 001260 009531 -166 110 4367707

525 550 9 1733 099255 000745 -043078 -17 065 4896399

550 575 8 1741 099714 000286 -138629 -175 025 5854211

575 600 5 1746 1 0 NUM -179 000 NUM

February 1 2012 30

Gumbel exceedance graph

Gumbel distribution

y = 07234x + 1882

R2 = 09871

0

2

4

6

8

10

0 2 4 6 8 10Gumbel Reduced variable

Sto

rm h

eig

ht

Hs

s

ssG AH B

= 1A = 0723

= B =1882

February 1 2012 31

calculation of a value

1ln ln

1ln ln

1

1ln ln

1

ln ln

ss

s

s

s

s s

HP

Q

QN

N

N Q

1500

873188 073ln ln 967

1873500

sH

= 1A = 073

= B =188

February 1 2012 32

transformation of the axis

Gumbel distribution

y = 07234x + 1882

R2 = 09871

0

2

4

6

8

10

0 2 4 6 8 10Gumbel Reduced variable

Sto

rm h

eig

ht

Hs

s

ln ln s

s s

NG

N Q

Ns = 873 storms per year

Qs G

110

1100

11000

110000

677

907

1138

1368

Figure Error No text of specified style in document-1 Storm exceedance on basis of Gumbel

10 100

February 1 2012 33

Weibull distribution

exp ssHQ

February 1 2012 34

determination of the reduced variable

1

1

ln

ln

1ln

ss

ss

ss

ss

WAH B

HQ

HQ

Q H

1

lnW Q

Three variables

and

So iteration is needed

February 1 2012 35

calculation for Weibull

alfa= 124

150 cumul P Q ln(Qs) -ln(H) Qs W

150 175 384 384 021993 078007 422098 -056 6810 032522

175 200 381 765 043814 056186 389284 -069 4905 064136

200 225 266 1031 059049 040951 357655 -081 3575 091261

225 250 157 1188 068041 031959 332863 -092 2790 111202

250 275 148 1336 076518 023482 302042 -101 2050 134858

275 300 111 1447 082875 017125 270471 -11 1495 158094

300 325 81 1528 087514 012486 238876 -118 1090 180552

325 350 63 1591 091123 008877 204769 -125 775 204065

350 375 31 1622 092898 007102 182455 -132 620 219099

375 400 32 1654 094731 005269 152606 -139 460 238832

400 425 23 1677 096048 003952 123837 -145 345 257486

425 450 11 1688 096678 003322 106471 -15 290 268590

450 475 20 1708 097824 002176 064185 -156 190 295184

475 500 9 1717 098339 001661 037156 -161 145 311883

500 525 7 1724 098740 001260 009531 -166 110 328731

525 550 9 1733 099255 000745 -043078 -17 065 360263

550 575 8 1741 099714 000286 -138629 -175 025 415922

575 600 5 1746 1 0 NUM -179 000 DIV0

1746

20 year 873 085586

-104906

099524

-07849

541 beta 116842

gamma 122575

Hs for condition 1 500 1028785 911838

1

lnssH Q

1

ln sss

s

QH

N

1124

1500

1500122 117 ln

873

122 117 675

912

sH

m

February 1 2012 36

Weibull exceedance graph

Weibull distribution

y = 11573x + 12497

R2 = 09905

0

2

4

6

8

10

0 2 4 6 8 10

Weibull Reduced variable

Str

om

heig

ht

Hss

10 100 1000 10000

February 1 2012 37

Summary

HT threshold value

Exponential

Gumbel

Weibull

150 m 163 m 136 m 122 m

HT 150 200 250 300 350 400

Ns 873 596 389 194 108 53

Hs 1500 Exponential Hs 1500 Gumbel Hs 1500 Weibull

1000 969 912

1009 950 990

948 917 963

939 893 948

908 886 917

876 818 890

February 1 2012 38

What to do if only random data are available

storm exceedance

0

200

400

600

800

01110100100010000

probability per year

Hs

s

February 1 2012 39

Example of long term data

This are

Hs-classes

February 1 2012 40

Long term (continuation)

So from this last column we can conclude

100 of time H gt 0 m s

23 of time H gt 1 m s

12 of time H gt 2 m s

001 of time H gt 9 m s

0

2

4

6

8

10

12

14

1E-071E-061E-051E-041E-031E-021E-011E+00

exceedance per year

wave

he

igh

t H

s (

m)

February 1 2012 41

From probability of waves to probability of storms

Suppose a ldquostormrdquo lasts for 12 hrs

===gt 730 stormsyear

once per year storm = 100730 = 013 =gt 67 m

once per 10 year storm = 0013 =gt 94 m

once per 100 year storm = 00013 =gt 119 m

0

5

10

15

20

1 10 100 1000 10000

return period in years

Hs o

f th

e g

ive

n s

torm

February 1 2012 42

Meteorological data

bull Not of direct importance for design

bull Can be important for hindcast of wave data and storm surge

bull Extremely important for the execution of the works (workability)

February 1 2012 43

Waves from Wind (Brettschneider)

February 1 2012 44

required soil data

February 1 2012 45

in situ test methods

February 1 2012 46

During construction

bull Quarry stone

bull Concrete

bull Local Equipment

bull Labour

bull skilled

bull cost

bull availability

bull expatriates

Page 21: Chapter 6: Data Collection

February 1 2012 21

sort data in classes

Waveheight class Hs (cm)

Number of observations

P Q -ln(Q)

0 25 35 35 0000599 0999401 0000599

25 50 8260 8295 0141940 0858060 0153082 50 75 11424 19719 0337423 0662577 0411618

75 100 10004 29723 0508607 0491393 0710511

100 125 7649 37372 0639493 0360507 1020245

125 150 5563 42935 0734685 0265315 1326838

150 175 4389 47324 0809788 0190212 1659615

175 200 3167 50491 0863980 0136020 1994954

200 225 2360 52851 0904363 0095637 2347200

225 250 1671 54522 0932957 0067043 2702419

250 275 1234 55756 0954073 0045927 3080692

275 300 851 56607 0968634 0031366 3462047

300 325 556 57163 0978149 0021851 3823487

325 350 392 57555 0984856 0015144 4190168

350 375 276 57831 0989579 0010421 4563938

375 400 206 58037 0993104 0006896 4976819

400 425 136 58173 0995431 0004569 5388507

425 450 82 58255 0996834 0003166 5755400

450 475 66 58321 0997964 0002036 6196632

475 500 38 58359 0998614 0001386 6581307

500 525 30 58389 0999127 0000873 7043930

525 550 20 58409 0999470 0000530 7541769

550 575 22 58431 0999846 0000154 8778531

575 600 9 58440 1000000 0000000

58440

( )s sP P H H

( ) 1s sQ Q H H P

all data Noordwijk

y = 00151x - 05001

R2 = 09881

0

1

2

3

4

5

6

7

8

9

10

0 200 400 600Hs-l

nQ

February 1 2012 22

exceedance graph for Noordwijk

indivudual observations

0

200

400

600

800

1000

000001000001000001000001000001000001000000

exceedance

wave h

eig

ht

But what means that in a year during 01

of the time the Hs is larger than 5 m

February 1 2012 23

Peak over Threshold method

A storm is defined as a time that the wave is higher than a

certain value the height of the storm Hss is equal to the

highest observed Hs during that storm

Threshold = 15

In this period 9

storms observed

nr Hss

1 180 m

2 294 m

3 225 m

4 176 m

5 261 m

6 389 m

7 172 m

8 240 m

9 194 m

February 1 2012 24

Table with Hss classes

= 124 Wave height class

150 cumul P Q Qs W

150 175 384 384 021993 078007 6810 032522 175 200 381 765 043814 056186 4905 064136 200 225 266 1031 059049 040951 3575 091261 225 250 157 1188 068041 031959 2790 111202 250 275 148 1336 076518 023482 2050 134858 275 300 111 1447 082875 017125 1495 158094 300 325 81 1528 087514 012486 1090 180552 325 350 63 1591 091123 008877 775 204065 350 375 31 1622 092898 007102 620 219099 375 400 32 1654 094731 005269 460 238832 400 425 23 1677 096048 003952 345 257486 425 450 11 1688 096678 003322 290 268590 450 475 20 1708 097824 002176 190 295184 475 500 9 1717 098339 001661 145 311883 500 525 7 1724 098740 001260 110 328731 525 550 9 1733 099255 000745 065 360263 550 575 8 1741 099714 000286 025 415922 575 600 5 1746 1 0 000 DIV0 1746 20 year 873 Slope 085586 Intercept -104906 correlation 099524 beta 116842 gamma 122575

Hss for condition 1 10 668997

( )ss ssP P H H

1ss ssQ Q H H P

threshold 15 m

y = -07849Ln(x) + 16329

R2 = 09854

0

2

4

6

8

000010000100001000010000100000probability of exceedence

sto

rm h

eig

ht

Hss

February 1 2012 25

How to get storm exceedance

Q = probability of exceedance of a wave

Qs = probability of exceedance of a storm

s sQ N Qthreshold 15 m

y = -07849Ln(x) + 5141

R2 = 09854

0

2

4

6

8

10

001010100100010000

storm exceedence probability per year

sto

rm h

eig

ht

Hss

Statistically

nonsense

February 1 2012 26

The ldquoonce in 500 years stormrdquo

0785ln( )

10785ln 5141

500

100

ss sH Q

m

threshold 15 m

y = -07849Ln(x) + 5141

R2 = 09854

0

2

4

6

8

10

001010100100010000

storm exceedence probability per year

sto

rm h

eig

ht

Hss

February 1 2012 27

Using the Gumbel distribution

exp exp ssHP

February 1 2012 28

determination of and

ln exp

1ln ln

ss

ss

ssss

GAH B

HP

HP H

1ln lnG

P

Perform linear regression

for G = A Hss - B

February 1 2012 29

data for calculation of Gumbel 150 cumul P Q ln(Qs) -ln(H) Qs G

150 175 384 384 021993 078007 422098 -056 6810 -0415046

175 200 381 765 043814 056186 389284 -069 4905 0192121

200 225 266 1031 059049 040951 357655 -081 3575 0640938

225 250 157 1188 068041 031959 332863 -092 2790 0954366

250 275 148 1336 076518 023482 302042 -101 2050 1318085

275 300 111 1447 082875 017125 270471 -11 1495 1672191

300 325 81 1528 087514 012486 238876 -118 1090 2014645

325 350 63 1591 091123 008877 204769 -125 775 2375535

350 375 31 1622 092898 007102 182455 -132 620 2608194

375 400 32 1654 094731 005269 152606 -139 460 2916351

400 425 23 1677 096048 003952 123837 -145 345 3210883

425 450 11 1688 096678 003322 106471 -15 290 3387796

450 475 20 1708 097824 002176 064185 -156 190 3816515

475 500 9 1717 098339 001661 037156 -161 145 4089424

500 525 7 1724 098740 001260 009531 -166 110 4367707

525 550 9 1733 099255 000745 -043078 -17 065 4896399

550 575 8 1741 099714 000286 -138629 -175 025 5854211

575 600 5 1746 1 0 NUM -179 000 NUM

February 1 2012 30

Gumbel exceedance graph

Gumbel distribution

y = 07234x + 1882

R2 = 09871

0

2

4

6

8

10

0 2 4 6 8 10Gumbel Reduced variable

Sto

rm h

eig

ht

Hs

s

ssG AH B

= 1A = 0723

= B =1882

February 1 2012 31

calculation of a value

1ln ln

1ln ln

1

1ln ln

1

ln ln

ss

s

s

s

s s

HP

Q

QN

N

N Q

1500

873188 073ln ln 967

1873500

sH

= 1A = 073

= B =188

February 1 2012 32

transformation of the axis

Gumbel distribution

y = 07234x + 1882

R2 = 09871

0

2

4

6

8

10

0 2 4 6 8 10Gumbel Reduced variable

Sto

rm h

eig

ht

Hs

s

ln ln s

s s

NG

N Q

Ns = 873 storms per year

Qs G

110

1100

11000

110000

677

907

1138

1368

Figure Error No text of specified style in document-1 Storm exceedance on basis of Gumbel

10 100

February 1 2012 33

Weibull distribution

exp ssHQ

February 1 2012 34

determination of the reduced variable

1

1

ln

ln

1ln

ss

ss

ss

ss

WAH B

HQ

HQ

Q H

1

lnW Q

Three variables

and

So iteration is needed

February 1 2012 35

calculation for Weibull

alfa= 124

150 cumul P Q ln(Qs) -ln(H) Qs W

150 175 384 384 021993 078007 422098 -056 6810 032522

175 200 381 765 043814 056186 389284 -069 4905 064136

200 225 266 1031 059049 040951 357655 -081 3575 091261

225 250 157 1188 068041 031959 332863 -092 2790 111202

250 275 148 1336 076518 023482 302042 -101 2050 134858

275 300 111 1447 082875 017125 270471 -11 1495 158094

300 325 81 1528 087514 012486 238876 -118 1090 180552

325 350 63 1591 091123 008877 204769 -125 775 204065

350 375 31 1622 092898 007102 182455 -132 620 219099

375 400 32 1654 094731 005269 152606 -139 460 238832

400 425 23 1677 096048 003952 123837 -145 345 257486

425 450 11 1688 096678 003322 106471 -15 290 268590

450 475 20 1708 097824 002176 064185 -156 190 295184

475 500 9 1717 098339 001661 037156 -161 145 311883

500 525 7 1724 098740 001260 009531 -166 110 328731

525 550 9 1733 099255 000745 -043078 -17 065 360263

550 575 8 1741 099714 000286 -138629 -175 025 415922

575 600 5 1746 1 0 NUM -179 000 DIV0

1746

20 year 873 085586

-104906

099524

-07849

541 beta 116842

gamma 122575

Hs for condition 1 500 1028785 911838

1

lnssH Q

1

ln sss

s

QH

N

1124

1500

1500122 117 ln

873

122 117 675

912

sH

m

February 1 2012 36

Weibull exceedance graph

Weibull distribution

y = 11573x + 12497

R2 = 09905

0

2

4

6

8

10

0 2 4 6 8 10

Weibull Reduced variable

Str

om

heig

ht

Hss

10 100 1000 10000

February 1 2012 37

Summary

HT threshold value

Exponential

Gumbel

Weibull

150 m 163 m 136 m 122 m

HT 150 200 250 300 350 400

Ns 873 596 389 194 108 53

Hs 1500 Exponential Hs 1500 Gumbel Hs 1500 Weibull

1000 969 912

1009 950 990

948 917 963

939 893 948

908 886 917

876 818 890

February 1 2012 38

What to do if only random data are available

storm exceedance

0

200

400

600

800

01110100100010000

probability per year

Hs

s

February 1 2012 39

Example of long term data

This are

Hs-classes

February 1 2012 40

Long term (continuation)

So from this last column we can conclude

100 of time H gt 0 m s

23 of time H gt 1 m s

12 of time H gt 2 m s

001 of time H gt 9 m s

0

2

4

6

8

10

12

14

1E-071E-061E-051E-041E-031E-021E-011E+00

exceedance per year

wave

he

igh

t H

s (

m)

February 1 2012 41

From probability of waves to probability of storms

Suppose a ldquostormrdquo lasts for 12 hrs

===gt 730 stormsyear

once per year storm = 100730 = 013 =gt 67 m

once per 10 year storm = 0013 =gt 94 m

once per 100 year storm = 00013 =gt 119 m

0

5

10

15

20

1 10 100 1000 10000

return period in years

Hs o

f th

e g

ive

n s

torm

February 1 2012 42

Meteorological data

bull Not of direct importance for design

bull Can be important for hindcast of wave data and storm surge

bull Extremely important for the execution of the works (workability)

February 1 2012 43

Waves from Wind (Brettschneider)

February 1 2012 44

required soil data

February 1 2012 45

in situ test methods

February 1 2012 46

During construction

bull Quarry stone

bull Concrete

bull Local Equipment

bull Labour

bull skilled

bull cost

bull availability

bull expatriates

Page 22: Chapter 6: Data Collection

February 1 2012 22

exceedance graph for Noordwijk

indivudual observations

0

200

400

600

800

1000

000001000001000001000001000001000001000000

exceedance

wave h

eig

ht

But what means that in a year during 01

of the time the Hs is larger than 5 m

February 1 2012 23

Peak over Threshold method

A storm is defined as a time that the wave is higher than a

certain value the height of the storm Hss is equal to the

highest observed Hs during that storm

Threshold = 15

In this period 9

storms observed

nr Hss

1 180 m

2 294 m

3 225 m

4 176 m

5 261 m

6 389 m

7 172 m

8 240 m

9 194 m

February 1 2012 24

Table with Hss classes

= 124 Wave height class

150 cumul P Q Qs W

150 175 384 384 021993 078007 6810 032522 175 200 381 765 043814 056186 4905 064136 200 225 266 1031 059049 040951 3575 091261 225 250 157 1188 068041 031959 2790 111202 250 275 148 1336 076518 023482 2050 134858 275 300 111 1447 082875 017125 1495 158094 300 325 81 1528 087514 012486 1090 180552 325 350 63 1591 091123 008877 775 204065 350 375 31 1622 092898 007102 620 219099 375 400 32 1654 094731 005269 460 238832 400 425 23 1677 096048 003952 345 257486 425 450 11 1688 096678 003322 290 268590 450 475 20 1708 097824 002176 190 295184 475 500 9 1717 098339 001661 145 311883 500 525 7 1724 098740 001260 110 328731 525 550 9 1733 099255 000745 065 360263 550 575 8 1741 099714 000286 025 415922 575 600 5 1746 1 0 000 DIV0 1746 20 year 873 Slope 085586 Intercept -104906 correlation 099524 beta 116842 gamma 122575

Hss for condition 1 10 668997

( )ss ssP P H H

1ss ssQ Q H H P

threshold 15 m

y = -07849Ln(x) + 16329

R2 = 09854

0

2

4

6

8

000010000100001000010000100000probability of exceedence

sto

rm h

eig

ht

Hss

February 1 2012 25

How to get storm exceedance

Q = probability of exceedance of a wave

Qs = probability of exceedance of a storm

s sQ N Qthreshold 15 m

y = -07849Ln(x) + 5141

R2 = 09854

0

2

4

6

8

10

001010100100010000

storm exceedence probability per year

sto

rm h

eig

ht

Hss

Statistically

nonsense

February 1 2012 26

The ldquoonce in 500 years stormrdquo

0785ln( )

10785ln 5141

500

100

ss sH Q

m

threshold 15 m

y = -07849Ln(x) + 5141

R2 = 09854

0

2

4

6

8

10

001010100100010000

storm exceedence probability per year

sto

rm h

eig

ht

Hss

February 1 2012 27

Using the Gumbel distribution

exp exp ssHP

February 1 2012 28

determination of and

ln exp

1ln ln

ss

ss

ssss

GAH B

HP

HP H

1ln lnG

P

Perform linear regression

for G = A Hss - B

February 1 2012 29

data for calculation of Gumbel 150 cumul P Q ln(Qs) -ln(H) Qs G

150 175 384 384 021993 078007 422098 -056 6810 -0415046

175 200 381 765 043814 056186 389284 -069 4905 0192121

200 225 266 1031 059049 040951 357655 -081 3575 0640938

225 250 157 1188 068041 031959 332863 -092 2790 0954366

250 275 148 1336 076518 023482 302042 -101 2050 1318085

275 300 111 1447 082875 017125 270471 -11 1495 1672191

300 325 81 1528 087514 012486 238876 -118 1090 2014645

325 350 63 1591 091123 008877 204769 -125 775 2375535

350 375 31 1622 092898 007102 182455 -132 620 2608194

375 400 32 1654 094731 005269 152606 -139 460 2916351

400 425 23 1677 096048 003952 123837 -145 345 3210883

425 450 11 1688 096678 003322 106471 -15 290 3387796

450 475 20 1708 097824 002176 064185 -156 190 3816515

475 500 9 1717 098339 001661 037156 -161 145 4089424

500 525 7 1724 098740 001260 009531 -166 110 4367707

525 550 9 1733 099255 000745 -043078 -17 065 4896399

550 575 8 1741 099714 000286 -138629 -175 025 5854211

575 600 5 1746 1 0 NUM -179 000 NUM

February 1 2012 30

Gumbel exceedance graph

Gumbel distribution

y = 07234x + 1882

R2 = 09871

0

2

4

6

8

10

0 2 4 6 8 10Gumbel Reduced variable

Sto

rm h

eig

ht

Hs

s

ssG AH B

= 1A = 0723

= B =1882

February 1 2012 31

calculation of a value

1ln ln

1ln ln

1

1ln ln

1

ln ln

ss

s

s

s

s s

HP

Q

QN

N

N Q

1500

873188 073ln ln 967

1873500

sH

= 1A = 073

= B =188

February 1 2012 32

transformation of the axis

Gumbel distribution

y = 07234x + 1882

R2 = 09871

0

2

4

6

8

10

0 2 4 6 8 10Gumbel Reduced variable

Sto

rm h

eig

ht

Hs

s

ln ln s

s s

NG

N Q

Ns = 873 storms per year

Qs G

110

1100

11000

110000

677

907

1138

1368

Figure Error No text of specified style in document-1 Storm exceedance on basis of Gumbel

10 100

February 1 2012 33

Weibull distribution

exp ssHQ

February 1 2012 34

determination of the reduced variable

1

1

ln

ln

1ln

ss

ss

ss

ss

WAH B

HQ

HQ

Q H

1

lnW Q

Three variables

and

So iteration is needed

February 1 2012 35

calculation for Weibull

alfa= 124

150 cumul P Q ln(Qs) -ln(H) Qs W

150 175 384 384 021993 078007 422098 -056 6810 032522

175 200 381 765 043814 056186 389284 -069 4905 064136

200 225 266 1031 059049 040951 357655 -081 3575 091261

225 250 157 1188 068041 031959 332863 -092 2790 111202

250 275 148 1336 076518 023482 302042 -101 2050 134858

275 300 111 1447 082875 017125 270471 -11 1495 158094

300 325 81 1528 087514 012486 238876 -118 1090 180552

325 350 63 1591 091123 008877 204769 -125 775 204065

350 375 31 1622 092898 007102 182455 -132 620 219099

375 400 32 1654 094731 005269 152606 -139 460 238832

400 425 23 1677 096048 003952 123837 -145 345 257486

425 450 11 1688 096678 003322 106471 -15 290 268590

450 475 20 1708 097824 002176 064185 -156 190 295184

475 500 9 1717 098339 001661 037156 -161 145 311883

500 525 7 1724 098740 001260 009531 -166 110 328731

525 550 9 1733 099255 000745 -043078 -17 065 360263

550 575 8 1741 099714 000286 -138629 -175 025 415922

575 600 5 1746 1 0 NUM -179 000 DIV0

1746

20 year 873 085586

-104906

099524

-07849

541 beta 116842

gamma 122575

Hs for condition 1 500 1028785 911838

1

lnssH Q

1

ln sss

s

QH

N

1124

1500

1500122 117 ln

873

122 117 675

912

sH

m

February 1 2012 36

Weibull exceedance graph

Weibull distribution

y = 11573x + 12497

R2 = 09905

0

2

4

6

8

10

0 2 4 6 8 10

Weibull Reduced variable

Str

om

heig

ht

Hss

10 100 1000 10000

February 1 2012 37

Summary

HT threshold value

Exponential

Gumbel

Weibull

150 m 163 m 136 m 122 m

HT 150 200 250 300 350 400

Ns 873 596 389 194 108 53

Hs 1500 Exponential Hs 1500 Gumbel Hs 1500 Weibull

1000 969 912

1009 950 990

948 917 963

939 893 948

908 886 917

876 818 890

February 1 2012 38

What to do if only random data are available

storm exceedance

0

200

400

600

800

01110100100010000

probability per year

Hs

s

February 1 2012 39

Example of long term data

This are

Hs-classes

February 1 2012 40

Long term (continuation)

So from this last column we can conclude

100 of time H gt 0 m s

23 of time H gt 1 m s

12 of time H gt 2 m s

001 of time H gt 9 m s

0

2

4

6

8

10

12

14

1E-071E-061E-051E-041E-031E-021E-011E+00

exceedance per year

wave

he

igh

t H

s (

m)

February 1 2012 41

From probability of waves to probability of storms

Suppose a ldquostormrdquo lasts for 12 hrs

===gt 730 stormsyear

once per year storm = 100730 = 013 =gt 67 m

once per 10 year storm = 0013 =gt 94 m

once per 100 year storm = 00013 =gt 119 m

0

5

10

15

20

1 10 100 1000 10000

return period in years

Hs o

f th

e g

ive

n s

torm

February 1 2012 42

Meteorological data

bull Not of direct importance for design

bull Can be important for hindcast of wave data and storm surge

bull Extremely important for the execution of the works (workability)

February 1 2012 43

Waves from Wind (Brettschneider)

February 1 2012 44

required soil data

February 1 2012 45

in situ test methods

February 1 2012 46

During construction

bull Quarry stone

bull Concrete

bull Local Equipment

bull Labour

bull skilled

bull cost

bull availability

bull expatriates

Page 23: Chapter 6: Data Collection

February 1 2012 23

Peak over Threshold method

A storm is defined as a time that the wave is higher than a

certain value the height of the storm Hss is equal to the

highest observed Hs during that storm

Threshold = 15

In this period 9

storms observed

nr Hss

1 180 m

2 294 m

3 225 m

4 176 m

5 261 m

6 389 m

7 172 m

8 240 m

9 194 m

February 1 2012 24

Table with Hss classes

= 124 Wave height class

150 cumul P Q Qs W

150 175 384 384 021993 078007 6810 032522 175 200 381 765 043814 056186 4905 064136 200 225 266 1031 059049 040951 3575 091261 225 250 157 1188 068041 031959 2790 111202 250 275 148 1336 076518 023482 2050 134858 275 300 111 1447 082875 017125 1495 158094 300 325 81 1528 087514 012486 1090 180552 325 350 63 1591 091123 008877 775 204065 350 375 31 1622 092898 007102 620 219099 375 400 32 1654 094731 005269 460 238832 400 425 23 1677 096048 003952 345 257486 425 450 11 1688 096678 003322 290 268590 450 475 20 1708 097824 002176 190 295184 475 500 9 1717 098339 001661 145 311883 500 525 7 1724 098740 001260 110 328731 525 550 9 1733 099255 000745 065 360263 550 575 8 1741 099714 000286 025 415922 575 600 5 1746 1 0 000 DIV0 1746 20 year 873 Slope 085586 Intercept -104906 correlation 099524 beta 116842 gamma 122575

Hss for condition 1 10 668997

( )ss ssP P H H

1ss ssQ Q H H P

threshold 15 m

y = -07849Ln(x) + 16329

R2 = 09854

0

2

4

6

8

000010000100001000010000100000probability of exceedence

sto

rm h

eig

ht

Hss

February 1 2012 25

How to get storm exceedance

Q = probability of exceedance of a wave

Qs = probability of exceedance of a storm

s sQ N Qthreshold 15 m

y = -07849Ln(x) + 5141

R2 = 09854

0

2

4

6

8

10

001010100100010000

storm exceedence probability per year

sto

rm h

eig

ht

Hss

Statistically

nonsense

February 1 2012 26

The ldquoonce in 500 years stormrdquo

0785ln( )

10785ln 5141

500

100

ss sH Q

m

threshold 15 m

y = -07849Ln(x) + 5141

R2 = 09854

0

2

4

6

8

10

001010100100010000

storm exceedence probability per year

sto

rm h

eig

ht

Hss

February 1 2012 27

Using the Gumbel distribution

exp exp ssHP

February 1 2012 28

determination of and

ln exp

1ln ln

ss

ss

ssss

GAH B

HP

HP H

1ln lnG

P

Perform linear regression

for G = A Hss - B

February 1 2012 29

data for calculation of Gumbel 150 cumul P Q ln(Qs) -ln(H) Qs G

150 175 384 384 021993 078007 422098 -056 6810 -0415046

175 200 381 765 043814 056186 389284 -069 4905 0192121

200 225 266 1031 059049 040951 357655 -081 3575 0640938

225 250 157 1188 068041 031959 332863 -092 2790 0954366

250 275 148 1336 076518 023482 302042 -101 2050 1318085

275 300 111 1447 082875 017125 270471 -11 1495 1672191

300 325 81 1528 087514 012486 238876 -118 1090 2014645

325 350 63 1591 091123 008877 204769 -125 775 2375535

350 375 31 1622 092898 007102 182455 -132 620 2608194

375 400 32 1654 094731 005269 152606 -139 460 2916351

400 425 23 1677 096048 003952 123837 -145 345 3210883

425 450 11 1688 096678 003322 106471 -15 290 3387796

450 475 20 1708 097824 002176 064185 -156 190 3816515

475 500 9 1717 098339 001661 037156 -161 145 4089424

500 525 7 1724 098740 001260 009531 -166 110 4367707

525 550 9 1733 099255 000745 -043078 -17 065 4896399

550 575 8 1741 099714 000286 -138629 -175 025 5854211

575 600 5 1746 1 0 NUM -179 000 NUM

February 1 2012 30

Gumbel exceedance graph

Gumbel distribution

y = 07234x + 1882

R2 = 09871

0

2

4

6

8

10

0 2 4 6 8 10Gumbel Reduced variable

Sto

rm h

eig

ht

Hs

s

ssG AH B

= 1A = 0723

= B =1882

February 1 2012 31

calculation of a value

1ln ln

1ln ln

1

1ln ln

1

ln ln

ss

s

s

s

s s

HP

Q

QN

N

N Q

1500

873188 073ln ln 967

1873500

sH

= 1A = 073

= B =188

February 1 2012 32

transformation of the axis

Gumbel distribution

y = 07234x + 1882

R2 = 09871

0

2

4

6

8

10

0 2 4 6 8 10Gumbel Reduced variable

Sto

rm h

eig

ht

Hs

s

ln ln s

s s

NG

N Q

Ns = 873 storms per year

Qs G

110

1100

11000

110000

677

907

1138

1368

Figure Error No text of specified style in document-1 Storm exceedance on basis of Gumbel

10 100

February 1 2012 33

Weibull distribution

exp ssHQ

February 1 2012 34

determination of the reduced variable

1

1

ln

ln

1ln

ss

ss

ss

ss

WAH B

HQ

HQ

Q H

1

lnW Q

Three variables

and

So iteration is needed

February 1 2012 35

calculation for Weibull

alfa= 124

150 cumul P Q ln(Qs) -ln(H) Qs W

150 175 384 384 021993 078007 422098 -056 6810 032522

175 200 381 765 043814 056186 389284 -069 4905 064136

200 225 266 1031 059049 040951 357655 -081 3575 091261

225 250 157 1188 068041 031959 332863 -092 2790 111202

250 275 148 1336 076518 023482 302042 -101 2050 134858

275 300 111 1447 082875 017125 270471 -11 1495 158094

300 325 81 1528 087514 012486 238876 -118 1090 180552

325 350 63 1591 091123 008877 204769 -125 775 204065

350 375 31 1622 092898 007102 182455 -132 620 219099

375 400 32 1654 094731 005269 152606 -139 460 238832

400 425 23 1677 096048 003952 123837 -145 345 257486

425 450 11 1688 096678 003322 106471 -15 290 268590

450 475 20 1708 097824 002176 064185 -156 190 295184

475 500 9 1717 098339 001661 037156 -161 145 311883

500 525 7 1724 098740 001260 009531 -166 110 328731

525 550 9 1733 099255 000745 -043078 -17 065 360263

550 575 8 1741 099714 000286 -138629 -175 025 415922

575 600 5 1746 1 0 NUM -179 000 DIV0

1746

20 year 873 085586

-104906

099524

-07849

541 beta 116842

gamma 122575

Hs for condition 1 500 1028785 911838

1

lnssH Q

1

ln sss

s

QH

N

1124

1500

1500122 117 ln

873

122 117 675

912

sH

m

February 1 2012 36

Weibull exceedance graph

Weibull distribution

y = 11573x + 12497

R2 = 09905

0

2

4

6

8

10

0 2 4 6 8 10

Weibull Reduced variable

Str

om

heig

ht

Hss

10 100 1000 10000

February 1 2012 37

Summary

HT threshold value

Exponential

Gumbel

Weibull

150 m 163 m 136 m 122 m

HT 150 200 250 300 350 400

Ns 873 596 389 194 108 53

Hs 1500 Exponential Hs 1500 Gumbel Hs 1500 Weibull

1000 969 912

1009 950 990

948 917 963

939 893 948

908 886 917

876 818 890

February 1 2012 38

What to do if only random data are available

storm exceedance

0

200

400

600

800

01110100100010000

probability per year

Hs

s

February 1 2012 39

Example of long term data

This are

Hs-classes

February 1 2012 40

Long term (continuation)

So from this last column we can conclude

100 of time H gt 0 m s

23 of time H gt 1 m s

12 of time H gt 2 m s

001 of time H gt 9 m s

0

2

4

6

8

10

12

14

1E-071E-061E-051E-041E-031E-021E-011E+00

exceedance per year

wave

he

igh

t H

s (

m)

February 1 2012 41

From probability of waves to probability of storms

Suppose a ldquostormrdquo lasts for 12 hrs

===gt 730 stormsyear

once per year storm = 100730 = 013 =gt 67 m

once per 10 year storm = 0013 =gt 94 m

once per 100 year storm = 00013 =gt 119 m

0

5

10

15

20

1 10 100 1000 10000

return period in years

Hs o

f th

e g

ive

n s

torm

February 1 2012 42

Meteorological data

bull Not of direct importance for design

bull Can be important for hindcast of wave data and storm surge

bull Extremely important for the execution of the works (workability)

February 1 2012 43

Waves from Wind (Brettschneider)

February 1 2012 44

required soil data

February 1 2012 45

in situ test methods

February 1 2012 46

During construction

bull Quarry stone

bull Concrete

bull Local Equipment

bull Labour

bull skilled

bull cost

bull availability

bull expatriates

Page 24: Chapter 6: Data Collection

February 1 2012 24

Table with Hss classes

= 124 Wave height class

150 cumul P Q Qs W

150 175 384 384 021993 078007 6810 032522 175 200 381 765 043814 056186 4905 064136 200 225 266 1031 059049 040951 3575 091261 225 250 157 1188 068041 031959 2790 111202 250 275 148 1336 076518 023482 2050 134858 275 300 111 1447 082875 017125 1495 158094 300 325 81 1528 087514 012486 1090 180552 325 350 63 1591 091123 008877 775 204065 350 375 31 1622 092898 007102 620 219099 375 400 32 1654 094731 005269 460 238832 400 425 23 1677 096048 003952 345 257486 425 450 11 1688 096678 003322 290 268590 450 475 20 1708 097824 002176 190 295184 475 500 9 1717 098339 001661 145 311883 500 525 7 1724 098740 001260 110 328731 525 550 9 1733 099255 000745 065 360263 550 575 8 1741 099714 000286 025 415922 575 600 5 1746 1 0 000 DIV0 1746 20 year 873 Slope 085586 Intercept -104906 correlation 099524 beta 116842 gamma 122575

Hss for condition 1 10 668997

( )ss ssP P H H

1ss ssQ Q H H P

threshold 15 m

y = -07849Ln(x) + 16329

R2 = 09854

0

2

4

6

8

000010000100001000010000100000probability of exceedence

sto

rm h

eig

ht

Hss

February 1 2012 25

How to get storm exceedance

Q = probability of exceedance of a wave

Qs = probability of exceedance of a storm

s sQ N Qthreshold 15 m

y = -07849Ln(x) + 5141

R2 = 09854

0

2

4

6

8

10

001010100100010000

storm exceedence probability per year

sto

rm h

eig

ht

Hss

Statistically

nonsense

February 1 2012 26

The ldquoonce in 500 years stormrdquo

0785ln( )

10785ln 5141

500

100

ss sH Q

m

threshold 15 m

y = -07849Ln(x) + 5141

R2 = 09854

0

2

4

6

8

10

001010100100010000

storm exceedence probability per year

sto

rm h

eig

ht

Hss

February 1 2012 27

Using the Gumbel distribution

exp exp ssHP

February 1 2012 28

determination of and

ln exp

1ln ln

ss

ss

ssss

GAH B

HP

HP H

1ln lnG

P

Perform linear regression

for G = A Hss - B

February 1 2012 29

data for calculation of Gumbel 150 cumul P Q ln(Qs) -ln(H) Qs G

150 175 384 384 021993 078007 422098 -056 6810 -0415046

175 200 381 765 043814 056186 389284 -069 4905 0192121

200 225 266 1031 059049 040951 357655 -081 3575 0640938

225 250 157 1188 068041 031959 332863 -092 2790 0954366

250 275 148 1336 076518 023482 302042 -101 2050 1318085

275 300 111 1447 082875 017125 270471 -11 1495 1672191

300 325 81 1528 087514 012486 238876 -118 1090 2014645

325 350 63 1591 091123 008877 204769 -125 775 2375535

350 375 31 1622 092898 007102 182455 -132 620 2608194

375 400 32 1654 094731 005269 152606 -139 460 2916351

400 425 23 1677 096048 003952 123837 -145 345 3210883

425 450 11 1688 096678 003322 106471 -15 290 3387796

450 475 20 1708 097824 002176 064185 -156 190 3816515

475 500 9 1717 098339 001661 037156 -161 145 4089424

500 525 7 1724 098740 001260 009531 -166 110 4367707

525 550 9 1733 099255 000745 -043078 -17 065 4896399

550 575 8 1741 099714 000286 -138629 -175 025 5854211

575 600 5 1746 1 0 NUM -179 000 NUM

February 1 2012 30

Gumbel exceedance graph

Gumbel distribution

y = 07234x + 1882

R2 = 09871

0

2

4

6

8

10

0 2 4 6 8 10Gumbel Reduced variable

Sto

rm h

eig

ht

Hs

s

ssG AH B

= 1A = 0723

= B =1882

February 1 2012 31

calculation of a value

1ln ln

1ln ln

1

1ln ln

1

ln ln

ss

s

s

s

s s

HP

Q

QN

N

N Q

1500

873188 073ln ln 967

1873500

sH

= 1A = 073

= B =188

February 1 2012 32

transformation of the axis

Gumbel distribution

y = 07234x + 1882

R2 = 09871

0

2

4

6

8

10

0 2 4 6 8 10Gumbel Reduced variable

Sto

rm h

eig

ht

Hs

s

ln ln s

s s

NG

N Q

Ns = 873 storms per year

Qs G

110

1100

11000

110000

677

907

1138

1368

Figure Error No text of specified style in document-1 Storm exceedance on basis of Gumbel

10 100

February 1 2012 33

Weibull distribution

exp ssHQ

February 1 2012 34

determination of the reduced variable

1

1

ln

ln

1ln

ss

ss

ss

ss

WAH B

HQ

HQ

Q H

1

lnW Q

Three variables

and

So iteration is needed

February 1 2012 35

calculation for Weibull

alfa= 124

150 cumul P Q ln(Qs) -ln(H) Qs W

150 175 384 384 021993 078007 422098 -056 6810 032522

175 200 381 765 043814 056186 389284 -069 4905 064136

200 225 266 1031 059049 040951 357655 -081 3575 091261

225 250 157 1188 068041 031959 332863 -092 2790 111202

250 275 148 1336 076518 023482 302042 -101 2050 134858

275 300 111 1447 082875 017125 270471 -11 1495 158094

300 325 81 1528 087514 012486 238876 -118 1090 180552

325 350 63 1591 091123 008877 204769 -125 775 204065

350 375 31 1622 092898 007102 182455 -132 620 219099

375 400 32 1654 094731 005269 152606 -139 460 238832

400 425 23 1677 096048 003952 123837 -145 345 257486

425 450 11 1688 096678 003322 106471 -15 290 268590

450 475 20 1708 097824 002176 064185 -156 190 295184

475 500 9 1717 098339 001661 037156 -161 145 311883

500 525 7 1724 098740 001260 009531 -166 110 328731

525 550 9 1733 099255 000745 -043078 -17 065 360263

550 575 8 1741 099714 000286 -138629 -175 025 415922

575 600 5 1746 1 0 NUM -179 000 DIV0

1746

20 year 873 085586

-104906

099524

-07849

541 beta 116842

gamma 122575

Hs for condition 1 500 1028785 911838

1

lnssH Q

1

ln sss

s

QH

N

1124

1500

1500122 117 ln

873

122 117 675

912

sH

m

February 1 2012 36

Weibull exceedance graph

Weibull distribution

y = 11573x + 12497

R2 = 09905

0

2

4

6

8

10

0 2 4 6 8 10

Weibull Reduced variable

Str

om

heig

ht

Hss

10 100 1000 10000

February 1 2012 37

Summary

HT threshold value

Exponential

Gumbel

Weibull

150 m 163 m 136 m 122 m

HT 150 200 250 300 350 400

Ns 873 596 389 194 108 53

Hs 1500 Exponential Hs 1500 Gumbel Hs 1500 Weibull

1000 969 912

1009 950 990

948 917 963

939 893 948

908 886 917

876 818 890

February 1 2012 38

What to do if only random data are available

storm exceedance

0

200

400

600

800

01110100100010000

probability per year

Hs

s

February 1 2012 39

Example of long term data

This are

Hs-classes

February 1 2012 40

Long term (continuation)

So from this last column we can conclude

100 of time H gt 0 m s

23 of time H gt 1 m s

12 of time H gt 2 m s

001 of time H gt 9 m s

0

2

4

6

8

10

12

14

1E-071E-061E-051E-041E-031E-021E-011E+00

exceedance per year

wave

he

igh

t H

s (

m)

February 1 2012 41

From probability of waves to probability of storms

Suppose a ldquostormrdquo lasts for 12 hrs

===gt 730 stormsyear

once per year storm = 100730 = 013 =gt 67 m

once per 10 year storm = 0013 =gt 94 m

once per 100 year storm = 00013 =gt 119 m

0

5

10

15

20

1 10 100 1000 10000

return period in years

Hs o

f th

e g

ive

n s

torm

February 1 2012 42

Meteorological data

bull Not of direct importance for design

bull Can be important for hindcast of wave data and storm surge

bull Extremely important for the execution of the works (workability)

February 1 2012 43

Waves from Wind (Brettschneider)

February 1 2012 44

required soil data

February 1 2012 45

in situ test methods

February 1 2012 46

During construction

bull Quarry stone

bull Concrete

bull Local Equipment

bull Labour

bull skilled

bull cost

bull availability

bull expatriates

Page 25: Chapter 6: Data Collection

February 1 2012 25

How to get storm exceedance

Q = probability of exceedance of a wave

Qs = probability of exceedance of a storm

s sQ N Qthreshold 15 m

y = -07849Ln(x) + 5141

R2 = 09854

0

2

4

6

8

10

001010100100010000

storm exceedence probability per year

sto

rm h

eig

ht

Hss

Statistically

nonsense

February 1 2012 26

The ldquoonce in 500 years stormrdquo

0785ln( )

10785ln 5141

500

100

ss sH Q

m

threshold 15 m

y = -07849Ln(x) + 5141

R2 = 09854

0

2

4

6

8

10

001010100100010000

storm exceedence probability per year

sto

rm h

eig

ht

Hss

February 1 2012 27

Using the Gumbel distribution

exp exp ssHP

February 1 2012 28

determination of and

ln exp

1ln ln

ss

ss

ssss

GAH B

HP

HP H

1ln lnG

P

Perform linear regression

for G = A Hss - B

February 1 2012 29

data for calculation of Gumbel 150 cumul P Q ln(Qs) -ln(H) Qs G

150 175 384 384 021993 078007 422098 -056 6810 -0415046

175 200 381 765 043814 056186 389284 -069 4905 0192121

200 225 266 1031 059049 040951 357655 -081 3575 0640938

225 250 157 1188 068041 031959 332863 -092 2790 0954366

250 275 148 1336 076518 023482 302042 -101 2050 1318085

275 300 111 1447 082875 017125 270471 -11 1495 1672191

300 325 81 1528 087514 012486 238876 -118 1090 2014645

325 350 63 1591 091123 008877 204769 -125 775 2375535

350 375 31 1622 092898 007102 182455 -132 620 2608194

375 400 32 1654 094731 005269 152606 -139 460 2916351

400 425 23 1677 096048 003952 123837 -145 345 3210883

425 450 11 1688 096678 003322 106471 -15 290 3387796

450 475 20 1708 097824 002176 064185 -156 190 3816515

475 500 9 1717 098339 001661 037156 -161 145 4089424

500 525 7 1724 098740 001260 009531 -166 110 4367707

525 550 9 1733 099255 000745 -043078 -17 065 4896399

550 575 8 1741 099714 000286 -138629 -175 025 5854211

575 600 5 1746 1 0 NUM -179 000 NUM

February 1 2012 30

Gumbel exceedance graph

Gumbel distribution

y = 07234x + 1882

R2 = 09871

0

2

4

6

8

10

0 2 4 6 8 10Gumbel Reduced variable

Sto

rm h

eig

ht

Hs

s

ssG AH B

= 1A = 0723

= B =1882

February 1 2012 31

calculation of a value

1ln ln

1ln ln

1

1ln ln

1

ln ln

ss

s

s

s

s s

HP

Q

QN

N

N Q

1500

873188 073ln ln 967

1873500

sH

= 1A = 073

= B =188

February 1 2012 32

transformation of the axis

Gumbel distribution

y = 07234x + 1882

R2 = 09871

0

2

4

6

8

10

0 2 4 6 8 10Gumbel Reduced variable

Sto

rm h

eig

ht

Hs

s

ln ln s

s s

NG

N Q

Ns = 873 storms per year

Qs G

110

1100

11000

110000

677

907

1138

1368

Figure Error No text of specified style in document-1 Storm exceedance on basis of Gumbel

10 100

February 1 2012 33

Weibull distribution

exp ssHQ

February 1 2012 34

determination of the reduced variable

1

1

ln

ln

1ln

ss

ss

ss

ss

WAH B

HQ

HQ

Q H

1

lnW Q

Three variables

and

So iteration is needed

February 1 2012 35

calculation for Weibull

alfa= 124

150 cumul P Q ln(Qs) -ln(H) Qs W

150 175 384 384 021993 078007 422098 -056 6810 032522

175 200 381 765 043814 056186 389284 -069 4905 064136

200 225 266 1031 059049 040951 357655 -081 3575 091261

225 250 157 1188 068041 031959 332863 -092 2790 111202

250 275 148 1336 076518 023482 302042 -101 2050 134858

275 300 111 1447 082875 017125 270471 -11 1495 158094

300 325 81 1528 087514 012486 238876 -118 1090 180552

325 350 63 1591 091123 008877 204769 -125 775 204065

350 375 31 1622 092898 007102 182455 -132 620 219099

375 400 32 1654 094731 005269 152606 -139 460 238832

400 425 23 1677 096048 003952 123837 -145 345 257486

425 450 11 1688 096678 003322 106471 -15 290 268590

450 475 20 1708 097824 002176 064185 -156 190 295184

475 500 9 1717 098339 001661 037156 -161 145 311883

500 525 7 1724 098740 001260 009531 -166 110 328731

525 550 9 1733 099255 000745 -043078 -17 065 360263

550 575 8 1741 099714 000286 -138629 -175 025 415922

575 600 5 1746 1 0 NUM -179 000 DIV0

1746

20 year 873 085586

-104906

099524

-07849

541 beta 116842

gamma 122575

Hs for condition 1 500 1028785 911838

1

lnssH Q

1

ln sss

s

QH

N

1124

1500

1500122 117 ln

873

122 117 675

912

sH

m

February 1 2012 36

Weibull exceedance graph

Weibull distribution

y = 11573x + 12497

R2 = 09905

0

2

4

6

8

10

0 2 4 6 8 10

Weibull Reduced variable

Str

om

heig

ht

Hss

10 100 1000 10000

February 1 2012 37

Summary

HT threshold value

Exponential

Gumbel

Weibull

150 m 163 m 136 m 122 m

HT 150 200 250 300 350 400

Ns 873 596 389 194 108 53

Hs 1500 Exponential Hs 1500 Gumbel Hs 1500 Weibull

1000 969 912

1009 950 990

948 917 963

939 893 948

908 886 917

876 818 890

February 1 2012 38

What to do if only random data are available

storm exceedance

0

200

400

600

800

01110100100010000

probability per year

Hs

s

February 1 2012 39

Example of long term data

This are

Hs-classes

February 1 2012 40

Long term (continuation)

So from this last column we can conclude

100 of time H gt 0 m s

23 of time H gt 1 m s

12 of time H gt 2 m s

001 of time H gt 9 m s

0

2

4

6

8

10

12

14

1E-071E-061E-051E-041E-031E-021E-011E+00

exceedance per year

wave

he

igh

t H

s (

m)

February 1 2012 41

From probability of waves to probability of storms

Suppose a ldquostormrdquo lasts for 12 hrs

===gt 730 stormsyear

once per year storm = 100730 = 013 =gt 67 m

once per 10 year storm = 0013 =gt 94 m

once per 100 year storm = 00013 =gt 119 m

0

5

10

15

20

1 10 100 1000 10000

return period in years

Hs o

f th

e g

ive

n s

torm

February 1 2012 42

Meteorological data

bull Not of direct importance for design

bull Can be important for hindcast of wave data and storm surge

bull Extremely important for the execution of the works (workability)

February 1 2012 43

Waves from Wind (Brettschneider)

February 1 2012 44

required soil data

February 1 2012 45

in situ test methods

February 1 2012 46

During construction

bull Quarry stone

bull Concrete

bull Local Equipment

bull Labour

bull skilled

bull cost

bull availability

bull expatriates

Page 26: Chapter 6: Data Collection

February 1 2012 26

The ldquoonce in 500 years stormrdquo

0785ln( )

10785ln 5141

500

100

ss sH Q

m

threshold 15 m

y = -07849Ln(x) + 5141

R2 = 09854

0

2

4

6

8

10

001010100100010000

storm exceedence probability per year

sto

rm h

eig

ht

Hss

February 1 2012 27

Using the Gumbel distribution

exp exp ssHP

February 1 2012 28

determination of and

ln exp

1ln ln

ss

ss

ssss

GAH B

HP

HP H

1ln lnG

P

Perform linear regression

for G = A Hss - B

February 1 2012 29

data for calculation of Gumbel 150 cumul P Q ln(Qs) -ln(H) Qs G

150 175 384 384 021993 078007 422098 -056 6810 -0415046

175 200 381 765 043814 056186 389284 -069 4905 0192121

200 225 266 1031 059049 040951 357655 -081 3575 0640938

225 250 157 1188 068041 031959 332863 -092 2790 0954366

250 275 148 1336 076518 023482 302042 -101 2050 1318085

275 300 111 1447 082875 017125 270471 -11 1495 1672191

300 325 81 1528 087514 012486 238876 -118 1090 2014645

325 350 63 1591 091123 008877 204769 -125 775 2375535

350 375 31 1622 092898 007102 182455 -132 620 2608194

375 400 32 1654 094731 005269 152606 -139 460 2916351

400 425 23 1677 096048 003952 123837 -145 345 3210883

425 450 11 1688 096678 003322 106471 -15 290 3387796

450 475 20 1708 097824 002176 064185 -156 190 3816515

475 500 9 1717 098339 001661 037156 -161 145 4089424

500 525 7 1724 098740 001260 009531 -166 110 4367707

525 550 9 1733 099255 000745 -043078 -17 065 4896399

550 575 8 1741 099714 000286 -138629 -175 025 5854211

575 600 5 1746 1 0 NUM -179 000 NUM

February 1 2012 30

Gumbel exceedance graph

Gumbel distribution

y = 07234x + 1882

R2 = 09871

0

2

4

6

8

10

0 2 4 6 8 10Gumbel Reduced variable

Sto

rm h

eig

ht

Hs

s

ssG AH B

= 1A = 0723

= B =1882

February 1 2012 31

calculation of a value

1ln ln

1ln ln

1

1ln ln

1

ln ln

ss

s

s

s

s s

HP

Q

QN

N

N Q

1500

873188 073ln ln 967

1873500

sH

= 1A = 073

= B =188

February 1 2012 32

transformation of the axis

Gumbel distribution

y = 07234x + 1882

R2 = 09871

0

2

4

6

8

10

0 2 4 6 8 10Gumbel Reduced variable

Sto

rm h

eig

ht

Hs

s

ln ln s

s s

NG

N Q

Ns = 873 storms per year

Qs G

110

1100

11000

110000

677

907

1138

1368

Figure Error No text of specified style in document-1 Storm exceedance on basis of Gumbel

10 100

February 1 2012 33

Weibull distribution

exp ssHQ

February 1 2012 34

determination of the reduced variable

1

1

ln

ln

1ln

ss

ss

ss

ss

WAH B

HQ

HQ

Q H

1

lnW Q

Three variables

and

So iteration is needed

February 1 2012 35

calculation for Weibull

alfa= 124

150 cumul P Q ln(Qs) -ln(H) Qs W

150 175 384 384 021993 078007 422098 -056 6810 032522

175 200 381 765 043814 056186 389284 -069 4905 064136

200 225 266 1031 059049 040951 357655 -081 3575 091261

225 250 157 1188 068041 031959 332863 -092 2790 111202

250 275 148 1336 076518 023482 302042 -101 2050 134858

275 300 111 1447 082875 017125 270471 -11 1495 158094

300 325 81 1528 087514 012486 238876 -118 1090 180552

325 350 63 1591 091123 008877 204769 -125 775 204065

350 375 31 1622 092898 007102 182455 -132 620 219099

375 400 32 1654 094731 005269 152606 -139 460 238832

400 425 23 1677 096048 003952 123837 -145 345 257486

425 450 11 1688 096678 003322 106471 -15 290 268590

450 475 20 1708 097824 002176 064185 -156 190 295184

475 500 9 1717 098339 001661 037156 -161 145 311883

500 525 7 1724 098740 001260 009531 -166 110 328731

525 550 9 1733 099255 000745 -043078 -17 065 360263

550 575 8 1741 099714 000286 -138629 -175 025 415922

575 600 5 1746 1 0 NUM -179 000 DIV0

1746

20 year 873 085586

-104906

099524

-07849

541 beta 116842

gamma 122575

Hs for condition 1 500 1028785 911838

1

lnssH Q

1

ln sss

s

QH

N

1124

1500

1500122 117 ln

873

122 117 675

912

sH

m

February 1 2012 36

Weibull exceedance graph

Weibull distribution

y = 11573x + 12497

R2 = 09905

0

2

4

6

8

10

0 2 4 6 8 10

Weibull Reduced variable

Str

om

heig

ht

Hss

10 100 1000 10000

February 1 2012 37

Summary

HT threshold value

Exponential

Gumbel

Weibull

150 m 163 m 136 m 122 m

HT 150 200 250 300 350 400

Ns 873 596 389 194 108 53

Hs 1500 Exponential Hs 1500 Gumbel Hs 1500 Weibull

1000 969 912

1009 950 990

948 917 963

939 893 948

908 886 917

876 818 890

February 1 2012 38

What to do if only random data are available

storm exceedance

0

200

400

600

800

01110100100010000

probability per year

Hs

s

February 1 2012 39

Example of long term data

This are

Hs-classes

February 1 2012 40

Long term (continuation)

So from this last column we can conclude

100 of time H gt 0 m s

23 of time H gt 1 m s

12 of time H gt 2 m s

001 of time H gt 9 m s

0

2

4

6

8

10

12

14

1E-071E-061E-051E-041E-031E-021E-011E+00

exceedance per year

wave

he

igh

t H

s (

m)

February 1 2012 41

From probability of waves to probability of storms

Suppose a ldquostormrdquo lasts for 12 hrs

===gt 730 stormsyear

once per year storm = 100730 = 013 =gt 67 m

once per 10 year storm = 0013 =gt 94 m

once per 100 year storm = 00013 =gt 119 m

0

5

10

15

20

1 10 100 1000 10000

return period in years

Hs o

f th

e g

ive

n s

torm

February 1 2012 42

Meteorological data

bull Not of direct importance for design

bull Can be important for hindcast of wave data and storm surge

bull Extremely important for the execution of the works (workability)

February 1 2012 43

Waves from Wind (Brettschneider)

February 1 2012 44

required soil data

February 1 2012 45

in situ test methods

February 1 2012 46

During construction

bull Quarry stone

bull Concrete

bull Local Equipment

bull Labour

bull skilled

bull cost

bull availability

bull expatriates

Page 27: Chapter 6: Data Collection

February 1 2012 27

Using the Gumbel distribution

exp exp ssHP

February 1 2012 28

determination of and

ln exp

1ln ln

ss

ss

ssss

GAH B

HP

HP H

1ln lnG

P

Perform linear regression

for G = A Hss - B

February 1 2012 29

data for calculation of Gumbel 150 cumul P Q ln(Qs) -ln(H) Qs G

150 175 384 384 021993 078007 422098 -056 6810 -0415046

175 200 381 765 043814 056186 389284 -069 4905 0192121

200 225 266 1031 059049 040951 357655 -081 3575 0640938

225 250 157 1188 068041 031959 332863 -092 2790 0954366

250 275 148 1336 076518 023482 302042 -101 2050 1318085

275 300 111 1447 082875 017125 270471 -11 1495 1672191

300 325 81 1528 087514 012486 238876 -118 1090 2014645

325 350 63 1591 091123 008877 204769 -125 775 2375535

350 375 31 1622 092898 007102 182455 -132 620 2608194

375 400 32 1654 094731 005269 152606 -139 460 2916351

400 425 23 1677 096048 003952 123837 -145 345 3210883

425 450 11 1688 096678 003322 106471 -15 290 3387796

450 475 20 1708 097824 002176 064185 -156 190 3816515

475 500 9 1717 098339 001661 037156 -161 145 4089424

500 525 7 1724 098740 001260 009531 -166 110 4367707

525 550 9 1733 099255 000745 -043078 -17 065 4896399

550 575 8 1741 099714 000286 -138629 -175 025 5854211

575 600 5 1746 1 0 NUM -179 000 NUM

February 1 2012 30

Gumbel exceedance graph

Gumbel distribution

y = 07234x + 1882

R2 = 09871

0

2

4

6

8

10

0 2 4 6 8 10Gumbel Reduced variable

Sto

rm h

eig

ht

Hs

s

ssG AH B

= 1A = 0723

= B =1882

February 1 2012 31

calculation of a value

1ln ln

1ln ln

1

1ln ln

1

ln ln

ss

s

s

s

s s

HP

Q

QN

N

N Q

1500

873188 073ln ln 967

1873500

sH

= 1A = 073

= B =188

February 1 2012 32

transformation of the axis

Gumbel distribution

y = 07234x + 1882

R2 = 09871

0

2

4

6

8

10

0 2 4 6 8 10Gumbel Reduced variable

Sto

rm h

eig

ht

Hs

s

ln ln s

s s

NG

N Q

Ns = 873 storms per year

Qs G

110

1100

11000

110000

677

907

1138

1368

Figure Error No text of specified style in document-1 Storm exceedance on basis of Gumbel

10 100

February 1 2012 33

Weibull distribution

exp ssHQ

February 1 2012 34

determination of the reduced variable

1

1

ln

ln

1ln

ss

ss

ss

ss

WAH B

HQ

HQ

Q H

1

lnW Q

Three variables

and

So iteration is needed

February 1 2012 35

calculation for Weibull

alfa= 124

150 cumul P Q ln(Qs) -ln(H) Qs W

150 175 384 384 021993 078007 422098 -056 6810 032522

175 200 381 765 043814 056186 389284 -069 4905 064136

200 225 266 1031 059049 040951 357655 -081 3575 091261

225 250 157 1188 068041 031959 332863 -092 2790 111202

250 275 148 1336 076518 023482 302042 -101 2050 134858

275 300 111 1447 082875 017125 270471 -11 1495 158094

300 325 81 1528 087514 012486 238876 -118 1090 180552

325 350 63 1591 091123 008877 204769 -125 775 204065

350 375 31 1622 092898 007102 182455 -132 620 219099

375 400 32 1654 094731 005269 152606 -139 460 238832

400 425 23 1677 096048 003952 123837 -145 345 257486

425 450 11 1688 096678 003322 106471 -15 290 268590

450 475 20 1708 097824 002176 064185 -156 190 295184

475 500 9 1717 098339 001661 037156 -161 145 311883

500 525 7 1724 098740 001260 009531 -166 110 328731

525 550 9 1733 099255 000745 -043078 -17 065 360263

550 575 8 1741 099714 000286 -138629 -175 025 415922

575 600 5 1746 1 0 NUM -179 000 DIV0

1746

20 year 873 085586

-104906

099524

-07849

541 beta 116842

gamma 122575

Hs for condition 1 500 1028785 911838

1

lnssH Q

1

ln sss

s

QH

N

1124

1500

1500122 117 ln

873

122 117 675

912

sH

m

February 1 2012 36

Weibull exceedance graph

Weibull distribution

y = 11573x + 12497

R2 = 09905

0

2

4

6

8

10

0 2 4 6 8 10

Weibull Reduced variable

Str

om

heig

ht

Hss

10 100 1000 10000

February 1 2012 37

Summary

HT threshold value

Exponential

Gumbel

Weibull

150 m 163 m 136 m 122 m

HT 150 200 250 300 350 400

Ns 873 596 389 194 108 53

Hs 1500 Exponential Hs 1500 Gumbel Hs 1500 Weibull

1000 969 912

1009 950 990

948 917 963

939 893 948

908 886 917

876 818 890

February 1 2012 38

What to do if only random data are available

storm exceedance

0

200

400

600

800

01110100100010000

probability per year

Hs

s

February 1 2012 39

Example of long term data

This are

Hs-classes

February 1 2012 40

Long term (continuation)

So from this last column we can conclude

100 of time H gt 0 m s

23 of time H gt 1 m s

12 of time H gt 2 m s

001 of time H gt 9 m s

0

2

4

6

8

10

12

14

1E-071E-061E-051E-041E-031E-021E-011E+00

exceedance per year

wave

he

igh

t H

s (

m)

February 1 2012 41

From probability of waves to probability of storms

Suppose a ldquostormrdquo lasts for 12 hrs

===gt 730 stormsyear

once per year storm = 100730 = 013 =gt 67 m

once per 10 year storm = 0013 =gt 94 m

once per 100 year storm = 00013 =gt 119 m

0

5

10

15

20

1 10 100 1000 10000

return period in years

Hs o

f th

e g

ive

n s

torm

February 1 2012 42

Meteorological data

bull Not of direct importance for design

bull Can be important for hindcast of wave data and storm surge

bull Extremely important for the execution of the works (workability)

February 1 2012 43

Waves from Wind (Brettschneider)

February 1 2012 44

required soil data

February 1 2012 45

in situ test methods

February 1 2012 46

During construction

bull Quarry stone

bull Concrete

bull Local Equipment

bull Labour

bull skilled

bull cost

bull availability

bull expatriates

Page 28: Chapter 6: Data Collection

February 1 2012 28

determination of and

ln exp

1ln ln

ss

ss

ssss

GAH B

HP

HP H

1ln lnG

P

Perform linear regression

for G = A Hss - B

February 1 2012 29

data for calculation of Gumbel 150 cumul P Q ln(Qs) -ln(H) Qs G

150 175 384 384 021993 078007 422098 -056 6810 -0415046

175 200 381 765 043814 056186 389284 -069 4905 0192121

200 225 266 1031 059049 040951 357655 -081 3575 0640938

225 250 157 1188 068041 031959 332863 -092 2790 0954366

250 275 148 1336 076518 023482 302042 -101 2050 1318085

275 300 111 1447 082875 017125 270471 -11 1495 1672191

300 325 81 1528 087514 012486 238876 -118 1090 2014645

325 350 63 1591 091123 008877 204769 -125 775 2375535

350 375 31 1622 092898 007102 182455 -132 620 2608194

375 400 32 1654 094731 005269 152606 -139 460 2916351

400 425 23 1677 096048 003952 123837 -145 345 3210883

425 450 11 1688 096678 003322 106471 -15 290 3387796

450 475 20 1708 097824 002176 064185 -156 190 3816515

475 500 9 1717 098339 001661 037156 -161 145 4089424

500 525 7 1724 098740 001260 009531 -166 110 4367707

525 550 9 1733 099255 000745 -043078 -17 065 4896399

550 575 8 1741 099714 000286 -138629 -175 025 5854211

575 600 5 1746 1 0 NUM -179 000 NUM

February 1 2012 30

Gumbel exceedance graph

Gumbel distribution

y = 07234x + 1882

R2 = 09871

0

2

4

6

8

10

0 2 4 6 8 10Gumbel Reduced variable

Sto

rm h

eig

ht

Hs

s

ssG AH B

= 1A = 0723

= B =1882

February 1 2012 31

calculation of a value

1ln ln

1ln ln

1

1ln ln

1

ln ln

ss

s

s

s

s s

HP

Q

QN

N

N Q

1500

873188 073ln ln 967

1873500

sH

= 1A = 073

= B =188

February 1 2012 32

transformation of the axis

Gumbel distribution

y = 07234x + 1882

R2 = 09871

0

2

4

6

8

10

0 2 4 6 8 10Gumbel Reduced variable

Sto

rm h

eig

ht

Hs

s

ln ln s

s s

NG

N Q

Ns = 873 storms per year

Qs G

110

1100

11000

110000

677

907

1138

1368

Figure Error No text of specified style in document-1 Storm exceedance on basis of Gumbel

10 100

February 1 2012 33

Weibull distribution

exp ssHQ

February 1 2012 34

determination of the reduced variable

1

1

ln

ln

1ln

ss

ss

ss

ss

WAH B

HQ

HQ

Q H

1

lnW Q

Three variables

and

So iteration is needed

February 1 2012 35

calculation for Weibull

alfa= 124

150 cumul P Q ln(Qs) -ln(H) Qs W

150 175 384 384 021993 078007 422098 -056 6810 032522

175 200 381 765 043814 056186 389284 -069 4905 064136

200 225 266 1031 059049 040951 357655 -081 3575 091261

225 250 157 1188 068041 031959 332863 -092 2790 111202

250 275 148 1336 076518 023482 302042 -101 2050 134858

275 300 111 1447 082875 017125 270471 -11 1495 158094

300 325 81 1528 087514 012486 238876 -118 1090 180552

325 350 63 1591 091123 008877 204769 -125 775 204065

350 375 31 1622 092898 007102 182455 -132 620 219099

375 400 32 1654 094731 005269 152606 -139 460 238832

400 425 23 1677 096048 003952 123837 -145 345 257486

425 450 11 1688 096678 003322 106471 -15 290 268590

450 475 20 1708 097824 002176 064185 -156 190 295184

475 500 9 1717 098339 001661 037156 -161 145 311883

500 525 7 1724 098740 001260 009531 -166 110 328731

525 550 9 1733 099255 000745 -043078 -17 065 360263

550 575 8 1741 099714 000286 -138629 -175 025 415922

575 600 5 1746 1 0 NUM -179 000 DIV0

1746

20 year 873 085586

-104906

099524

-07849

541 beta 116842

gamma 122575

Hs for condition 1 500 1028785 911838

1

lnssH Q

1

ln sss

s

QH

N

1124

1500

1500122 117 ln

873

122 117 675

912

sH

m

February 1 2012 36

Weibull exceedance graph

Weibull distribution

y = 11573x + 12497

R2 = 09905

0

2

4

6

8

10

0 2 4 6 8 10

Weibull Reduced variable

Str

om

heig

ht

Hss

10 100 1000 10000

February 1 2012 37

Summary

HT threshold value

Exponential

Gumbel

Weibull

150 m 163 m 136 m 122 m

HT 150 200 250 300 350 400

Ns 873 596 389 194 108 53

Hs 1500 Exponential Hs 1500 Gumbel Hs 1500 Weibull

1000 969 912

1009 950 990

948 917 963

939 893 948

908 886 917

876 818 890

February 1 2012 38

What to do if only random data are available

storm exceedance

0

200

400

600

800

01110100100010000

probability per year

Hs

s

February 1 2012 39

Example of long term data

This are

Hs-classes

February 1 2012 40

Long term (continuation)

So from this last column we can conclude

100 of time H gt 0 m s

23 of time H gt 1 m s

12 of time H gt 2 m s

001 of time H gt 9 m s

0

2

4

6

8

10

12

14

1E-071E-061E-051E-041E-031E-021E-011E+00

exceedance per year

wave

he

igh

t H

s (

m)

February 1 2012 41

From probability of waves to probability of storms

Suppose a ldquostormrdquo lasts for 12 hrs

===gt 730 stormsyear

once per year storm = 100730 = 013 =gt 67 m

once per 10 year storm = 0013 =gt 94 m

once per 100 year storm = 00013 =gt 119 m

0

5

10

15

20

1 10 100 1000 10000

return period in years

Hs o

f th

e g

ive

n s

torm

February 1 2012 42

Meteorological data

bull Not of direct importance for design

bull Can be important for hindcast of wave data and storm surge

bull Extremely important for the execution of the works (workability)

February 1 2012 43

Waves from Wind (Brettschneider)

February 1 2012 44

required soil data

February 1 2012 45

in situ test methods

February 1 2012 46

During construction

bull Quarry stone

bull Concrete

bull Local Equipment

bull Labour

bull skilled

bull cost

bull availability

bull expatriates

Page 29: Chapter 6: Data Collection

February 1 2012 29

data for calculation of Gumbel 150 cumul P Q ln(Qs) -ln(H) Qs G

150 175 384 384 021993 078007 422098 -056 6810 -0415046

175 200 381 765 043814 056186 389284 -069 4905 0192121

200 225 266 1031 059049 040951 357655 -081 3575 0640938

225 250 157 1188 068041 031959 332863 -092 2790 0954366

250 275 148 1336 076518 023482 302042 -101 2050 1318085

275 300 111 1447 082875 017125 270471 -11 1495 1672191

300 325 81 1528 087514 012486 238876 -118 1090 2014645

325 350 63 1591 091123 008877 204769 -125 775 2375535

350 375 31 1622 092898 007102 182455 -132 620 2608194

375 400 32 1654 094731 005269 152606 -139 460 2916351

400 425 23 1677 096048 003952 123837 -145 345 3210883

425 450 11 1688 096678 003322 106471 -15 290 3387796

450 475 20 1708 097824 002176 064185 -156 190 3816515

475 500 9 1717 098339 001661 037156 -161 145 4089424

500 525 7 1724 098740 001260 009531 -166 110 4367707

525 550 9 1733 099255 000745 -043078 -17 065 4896399

550 575 8 1741 099714 000286 -138629 -175 025 5854211

575 600 5 1746 1 0 NUM -179 000 NUM

February 1 2012 30

Gumbel exceedance graph

Gumbel distribution

y = 07234x + 1882

R2 = 09871

0

2

4

6

8

10

0 2 4 6 8 10Gumbel Reduced variable

Sto

rm h

eig

ht

Hs

s

ssG AH B

= 1A = 0723

= B =1882

February 1 2012 31

calculation of a value

1ln ln

1ln ln

1

1ln ln

1

ln ln

ss

s

s

s

s s

HP

Q

QN

N

N Q

1500

873188 073ln ln 967

1873500

sH

= 1A = 073

= B =188

February 1 2012 32

transformation of the axis

Gumbel distribution

y = 07234x + 1882

R2 = 09871

0

2

4

6

8

10

0 2 4 6 8 10Gumbel Reduced variable

Sto

rm h

eig

ht

Hs

s

ln ln s

s s

NG

N Q

Ns = 873 storms per year

Qs G

110

1100

11000

110000

677

907

1138

1368

Figure Error No text of specified style in document-1 Storm exceedance on basis of Gumbel

10 100

February 1 2012 33

Weibull distribution

exp ssHQ

February 1 2012 34

determination of the reduced variable

1

1

ln

ln

1ln

ss

ss

ss

ss

WAH B

HQ

HQ

Q H

1

lnW Q

Three variables

and

So iteration is needed

February 1 2012 35

calculation for Weibull

alfa= 124

150 cumul P Q ln(Qs) -ln(H) Qs W

150 175 384 384 021993 078007 422098 -056 6810 032522

175 200 381 765 043814 056186 389284 -069 4905 064136

200 225 266 1031 059049 040951 357655 -081 3575 091261

225 250 157 1188 068041 031959 332863 -092 2790 111202

250 275 148 1336 076518 023482 302042 -101 2050 134858

275 300 111 1447 082875 017125 270471 -11 1495 158094

300 325 81 1528 087514 012486 238876 -118 1090 180552

325 350 63 1591 091123 008877 204769 -125 775 204065

350 375 31 1622 092898 007102 182455 -132 620 219099

375 400 32 1654 094731 005269 152606 -139 460 238832

400 425 23 1677 096048 003952 123837 -145 345 257486

425 450 11 1688 096678 003322 106471 -15 290 268590

450 475 20 1708 097824 002176 064185 -156 190 295184

475 500 9 1717 098339 001661 037156 -161 145 311883

500 525 7 1724 098740 001260 009531 -166 110 328731

525 550 9 1733 099255 000745 -043078 -17 065 360263

550 575 8 1741 099714 000286 -138629 -175 025 415922

575 600 5 1746 1 0 NUM -179 000 DIV0

1746

20 year 873 085586

-104906

099524

-07849

541 beta 116842

gamma 122575

Hs for condition 1 500 1028785 911838

1

lnssH Q

1

ln sss

s

QH

N

1124

1500

1500122 117 ln

873

122 117 675

912

sH

m

February 1 2012 36

Weibull exceedance graph

Weibull distribution

y = 11573x + 12497

R2 = 09905

0

2

4

6

8

10

0 2 4 6 8 10

Weibull Reduced variable

Str

om

heig

ht

Hss

10 100 1000 10000

February 1 2012 37

Summary

HT threshold value

Exponential

Gumbel

Weibull

150 m 163 m 136 m 122 m

HT 150 200 250 300 350 400

Ns 873 596 389 194 108 53

Hs 1500 Exponential Hs 1500 Gumbel Hs 1500 Weibull

1000 969 912

1009 950 990

948 917 963

939 893 948

908 886 917

876 818 890

February 1 2012 38

What to do if only random data are available

storm exceedance

0

200

400

600

800

01110100100010000

probability per year

Hs

s

February 1 2012 39

Example of long term data

This are

Hs-classes

February 1 2012 40

Long term (continuation)

So from this last column we can conclude

100 of time H gt 0 m s

23 of time H gt 1 m s

12 of time H gt 2 m s

001 of time H gt 9 m s

0

2

4

6

8

10

12

14

1E-071E-061E-051E-041E-031E-021E-011E+00

exceedance per year

wave

he

igh

t H

s (

m)

February 1 2012 41

From probability of waves to probability of storms

Suppose a ldquostormrdquo lasts for 12 hrs

===gt 730 stormsyear

once per year storm = 100730 = 013 =gt 67 m

once per 10 year storm = 0013 =gt 94 m

once per 100 year storm = 00013 =gt 119 m

0

5

10

15

20

1 10 100 1000 10000

return period in years

Hs o

f th

e g

ive

n s

torm

February 1 2012 42

Meteorological data

bull Not of direct importance for design

bull Can be important for hindcast of wave data and storm surge

bull Extremely important for the execution of the works (workability)

February 1 2012 43

Waves from Wind (Brettschneider)

February 1 2012 44

required soil data

February 1 2012 45

in situ test methods

February 1 2012 46

During construction

bull Quarry stone

bull Concrete

bull Local Equipment

bull Labour

bull skilled

bull cost

bull availability

bull expatriates

Page 30: Chapter 6: Data Collection

February 1 2012 30

Gumbel exceedance graph

Gumbel distribution

y = 07234x + 1882

R2 = 09871

0

2

4

6

8

10

0 2 4 6 8 10Gumbel Reduced variable

Sto

rm h

eig

ht

Hs

s

ssG AH B

= 1A = 0723

= B =1882

February 1 2012 31

calculation of a value

1ln ln

1ln ln

1

1ln ln

1

ln ln

ss

s

s

s

s s

HP

Q

QN

N

N Q

1500

873188 073ln ln 967

1873500

sH

= 1A = 073

= B =188

February 1 2012 32

transformation of the axis

Gumbel distribution

y = 07234x + 1882

R2 = 09871

0

2

4

6

8

10

0 2 4 6 8 10Gumbel Reduced variable

Sto

rm h

eig

ht

Hs

s

ln ln s

s s

NG

N Q

Ns = 873 storms per year

Qs G

110

1100

11000

110000

677

907

1138

1368

Figure Error No text of specified style in document-1 Storm exceedance on basis of Gumbel

10 100

February 1 2012 33

Weibull distribution

exp ssHQ

February 1 2012 34

determination of the reduced variable

1

1

ln

ln

1ln

ss

ss

ss

ss

WAH B

HQ

HQ

Q H

1

lnW Q

Three variables

and

So iteration is needed

February 1 2012 35

calculation for Weibull

alfa= 124

150 cumul P Q ln(Qs) -ln(H) Qs W

150 175 384 384 021993 078007 422098 -056 6810 032522

175 200 381 765 043814 056186 389284 -069 4905 064136

200 225 266 1031 059049 040951 357655 -081 3575 091261

225 250 157 1188 068041 031959 332863 -092 2790 111202

250 275 148 1336 076518 023482 302042 -101 2050 134858

275 300 111 1447 082875 017125 270471 -11 1495 158094

300 325 81 1528 087514 012486 238876 -118 1090 180552

325 350 63 1591 091123 008877 204769 -125 775 204065

350 375 31 1622 092898 007102 182455 -132 620 219099

375 400 32 1654 094731 005269 152606 -139 460 238832

400 425 23 1677 096048 003952 123837 -145 345 257486

425 450 11 1688 096678 003322 106471 -15 290 268590

450 475 20 1708 097824 002176 064185 -156 190 295184

475 500 9 1717 098339 001661 037156 -161 145 311883

500 525 7 1724 098740 001260 009531 -166 110 328731

525 550 9 1733 099255 000745 -043078 -17 065 360263

550 575 8 1741 099714 000286 -138629 -175 025 415922

575 600 5 1746 1 0 NUM -179 000 DIV0

1746

20 year 873 085586

-104906

099524

-07849

541 beta 116842

gamma 122575

Hs for condition 1 500 1028785 911838

1

lnssH Q

1

ln sss

s

QH

N

1124

1500

1500122 117 ln

873

122 117 675

912

sH

m

February 1 2012 36

Weibull exceedance graph

Weibull distribution

y = 11573x + 12497

R2 = 09905

0

2

4

6

8

10

0 2 4 6 8 10

Weibull Reduced variable

Str

om

heig

ht

Hss

10 100 1000 10000

February 1 2012 37

Summary

HT threshold value

Exponential

Gumbel

Weibull

150 m 163 m 136 m 122 m

HT 150 200 250 300 350 400

Ns 873 596 389 194 108 53

Hs 1500 Exponential Hs 1500 Gumbel Hs 1500 Weibull

1000 969 912

1009 950 990

948 917 963

939 893 948

908 886 917

876 818 890

February 1 2012 38

What to do if only random data are available

storm exceedance

0

200

400

600

800

01110100100010000

probability per year

Hs

s

February 1 2012 39

Example of long term data

This are

Hs-classes

February 1 2012 40

Long term (continuation)

So from this last column we can conclude

100 of time H gt 0 m s

23 of time H gt 1 m s

12 of time H gt 2 m s

001 of time H gt 9 m s

0

2

4

6

8

10

12

14

1E-071E-061E-051E-041E-031E-021E-011E+00

exceedance per year

wave

he

igh

t H

s (

m)

February 1 2012 41

From probability of waves to probability of storms

Suppose a ldquostormrdquo lasts for 12 hrs

===gt 730 stormsyear

once per year storm = 100730 = 013 =gt 67 m

once per 10 year storm = 0013 =gt 94 m

once per 100 year storm = 00013 =gt 119 m

0

5

10

15

20

1 10 100 1000 10000

return period in years

Hs o

f th

e g

ive

n s

torm

February 1 2012 42

Meteorological data

bull Not of direct importance for design

bull Can be important for hindcast of wave data and storm surge

bull Extremely important for the execution of the works (workability)

February 1 2012 43

Waves from Wind (Brettschneider)

February 1 2012 44

required soil data

February 1 2012 45

in situ test methods

February 1 2012 46

During construction

bull Quarry stone

bull Concrete

bull Local Equipment

bull Labour

bull skilled

bull cost

bull availability

bull expatriates

Page 31: Chapter 6: Data Collection

February 1 2012 31

calculation of a value

1ln ln

1ln ln

1

1ln ln

1

ln ln

ss

s

s

s

s s

HP

Q

QN

N

N Q

1500

873188 073ln ln 967

1873500

sH

= 1A = 073

= B =188

February 1 2012 32

transformation of the axis

Gumbel distribution

y = 07234x + 1882

R2 = 09871

0

2

4

6

8

10

0 2 4 6 8 10Gumbel Reduced variable

Sto

rm h

eig

ht

Hs

s

ln ln s

s s

NG

N Q

Ns = 873 storms per year

Qs G

110

1100

11000

110000

677

907

1138

1368

Figure Error No text of specified style in document-1 Storm exceedance on basis of Gumbel

10 100

February 1 2012 33

Weibull distribution

exp ssHQ

February 1 2012 34

determination of the reduced variable

1

1

ln

ln

1ln

ss

ss

ss

ss

WAH B

HQ

HQ

Q H

1

lnW Q

Three variables

and

So iteration is needed

February 1 2012 35

calculation for Weibull

alfa= 124

150 cumul P Q ln(Qs) -ln(H) Qs W

150 175 384 384 021993 078007 422098 -056 6810 032522

175 200 381 765 043814 056186 389284 -069 4905 064136

200 225 266 1031 059049 040951 357655 -081 3575 091261

225 250 157 1188 068041 031959 332863 -092 2790 111202

250 275 148 1336 076518 023482 302042 -101 2050 134858

275 300 111 1447 082875 017125 270471 -11 1495 158094

300 325 81 1528 087514 012486 238876 -118 1090 180552

325 350 63 1591 091123 008877 204769 -125 775 204065

350 375 31 1622 092898 007102 182455 -132 620 219099

375 400 32 1654 094731 005269 152606 -139 460 238832

400 425 23 1677 096048 003952 123837 -145 345 257486

425 450 11 1688 096678 003322 106471 -15 290 268590

450 475 20 1708 097824 002176 064185 -156 190 295184

475 500 9 1717 098339 001661 037156 -161 145 311883

500 525 7 1724 098740 001260 009531 -166 110 328731

525 550 9 1733 099255 000745 -043078 -17 065 360263

550 575 8 1741 099714 000286 -138629 -175 025 415922

575 600 5 1746 1 0 NUM -179 000 DIV0

1746

20 year 873 085586

-104906

099524

-07849

541 beta 116842

gamma 122575

Hs for condition 1 500 1028785 911838

1

lnssH Q

1

ln sss

s

QH

N

1124

1500

1500122 117 ln

873

122 117 675

912

sH

m

February 1 2012 36

Weibull exceedance graph

Weibull distribution

y = 11573x + 12497

R2 = 09905

0

2

4

6

8

10

0 2 4 6 8 10

Weibull Reduced variable

Str

om

heig

ht

Hss

10 100 1000 10000

February 1 2012 37

Summary

HT threshold value

Exponential

Gumbel

Weibull

150 m 163 m 136 m 122 m

HT 150 200 250 300 350 400

Ns 873 596 389 194 108 53

Hs 1500 Exponential Hs 1500 Gumbel Hs 1500 Weibull

1000 969 912

1009 950 990

948 917 963

939 893 948

908 886 917

876 818 890

February 1 2012 38

What to do if only random data are available

storm exceedance

0

200

400

600

800

01110100100010000

probability per year

Hs

s

February 1 2012 39

Example of long term data

This are

Hs-classes

February 1 2012 40

Long term (continuation)

So from this last column we can conclude

100 of time H gt 0 m s

23 of time H gt 1 m s

12 of time H gt 2 m s

001 of time H gt 9 m s

0

2

4

6

8

10

12

14

1E-071E-061E-051E-041E-031E-021E-011E+00

exceedance per year

wave

he

igh

t H

s (

m)

February 1 2012 41

From probability of waves to probability of storms

Suppose a ldquostormrdquo lasts for 12 hrs

===gt 730 stormsyear

once per year storm = 100730 = 013 =gt 67 m

once per 10 year storm = 0013 =gt 94 m

once per 100 year storm = 00013 =gt 119 m

0

5

10

15

20

1 10 100 1000 10000

return period in years

Hs o

f th

e g

ive

n s

torm

February 1 2012 42

Meteorological data

bull Not of direct importance for design

bull Can be important for hindcast of wave data and storm surge

bull Extremely important for the execution of the works (workability)

February 1 2012 43

Waves from Wind (Brettschneider)

February 1 2012 44

required soil data

February 1 2012 45

in situ test methods

February 1 2012 46

During construction

bull Quarry stone

bull Concrete

bull Local Equipment

bull Labour

bull skilled

bull cost

bull availability

bull expatriates

Page 32: Chapter 6: Data Collection

February 1 2012 32

transformation of the axis

Gumbel distribution

y = 07234x + 1882

R2 = 09871

0

2

4

6

8

10

0 2 4 6 8 10Gumbel Reduced variable

Sto

rm h

eig

ht

Hs

s

ln ln s

s s

NG

N Q

Ns = 873 storms per year

Qs G

110

1100

11000

110000

677

907

1138

1368

Figure Error No text of specified style in document-1 Storm exceedance on basis of Gumbel

10 100

February 1 2012 33

Weibull distribution

exp ssHQ

February 1 2012 34

determination of the reduced variable

1

1

ln

ln

1ln

ss

ss

ss

ss

WAH B

HQ

HQ

Q H

1

lnW Q

Three variables

and

So iteration is needed

February 1 2012 35

calculation for Weibull

alfa= 124

150 cumul P Q ln(Qs) -ln(H) Qs W

150 175 384 384 021993 078007 422098 -056 6810 032522

175 200 381 765 043814 056186 389284 -069 4905 064136

200 225 266 1031 059049 040951 357655 -081 3575 091261

225 250 157 1188 068041 031959 332863 -092 2790 111202

250 275 148 1336 076518 023482 302042 -101 2050 134858

275 300 111 1447 082875 017125 270471 -11 1495 158094

300 325 81 1528 087514 012486 238876 -118 1090 180552

325 350 63 1591 091123 008877 204769 -125 775 204065

350 375 31 1622 092898 007102 182455 -132 620 219099

375 400 32 1654 094731 005269 152606 -139 460 238832

400 425 23 1677 096048 003952 123837 -145 345 257486

425 450 11 1688 096678 003322 106471 -15 290 268590

450 475 20 1708 097824 002176 064185 -156 190 295184

475 500 9 1717 098339 001661 037156 -161 145 311883

500 525 7 1724 098740 001260 009531 -166 110 328731

525 550 9 1733 099255 000745 -043078 -17 065 360263

550 575 8 1741 099714 000286 -138629 -175 025 415922

575 600 5 1746 1 0 NUM -179 000 DIV0

1746

20 year 873 085586

-104906

099524

-07849

541 beta 116842

gamma 122575

Hs for condition 1 500 1028785 911838

1

lnssH Q

1

ln sss

s

QH

N

1124

1500

1500122 117 ln

873

122 117 675

912

sH

m

February 1 2012 36

Weibull exceedance graph

Weibull distribution

y = 11573x + 12497

R2 = 09905

0

2

4

6

8

10

0 2 4 6 8 10

Weibull Reduced variable

Str

om

heig

ht

Hss

10 100 1000 10000

February 1 2012 37

Summary

HT threshold value

Exponential

Gumbel

Weibull

150 m 163 m 136 m 122 m

HT 150 200 250 300 350 400

Ns 873 596 389 194 108 53

Hs 1500 Exponential Hs 1500 Gumbel Hs 1500 Weibull

1000 969 912

1009 950 990

948 917 963

939 893 948

908 886 917

876 818 890

February 1 2012 38

What to do if only random data are available

storm exceedance

0

200

400

600

800

01110100100010000

probability per year

Hs

s

February 1 2012 39

Example of long term data

This are

Hs-classes

February 1 2012 40

Long term (continuation)

So from this last column we can conclude

100 of time H gt 0 m s

23 of time H gt 1 m s

12 of time H gt 2 m s

001 of time H gt 9 m s

0

2

4

6

8

10

12

14

1E-071E-061E-051E-041E-031E-021E-011E+00

exceedance per year

wave

he

igh

t H

s (

m)

February 1 2012 41

From probability of waves to probability of storms

Suppose a ldquostormrdquo lasts for 12 hrs

===gt 730 stormsyear

once per year storm = 100730 = 013 =gt 67 m

once per 10 year storm = 0013 =gt 94 m

once per 100 year storm = 00013 =gt 119 m

0

5

10

15

20

1 10 100 1000 10000

return period in years

Hs o

f th

e g

ive

n s

torm

February 1 2012 42

Meteorological data

bull Not of direct importance for design

bull Can be important for hindcast of wave data and storm surge

bull Extremely important for the execution of the works (workability)

February 1 2012 43

Waves from Wind (Brettschneider)

February 1 2012 44

required soil data

February 1 2012 45

in situ test methods

February 1 2012 46

During construction

bull Quarry stone

bull Concrete

bull Local Equipment

bull Labour

bull skilled

bull cost

bull availability

bull expatriates

Page 33: Chapter 6: Data Collection

February 1 2012 33

Weibull distribution

exp ssHQ

February 1 2012 34

determination of the reduced variable

1

1

ln

ln

1ln

ss

ss

ss

ss

WAH B

HQ

HQ

Q H

1

lnW Q

Three variables

and

So iteration is needed

February 1 2012 35

calculation for Weibull

alfa= 124

150 cumul P Q ln(Qs) -ln(H) Qs W

150 175 384 384 021993 078007 422098 -056 6810 032522

175 200 381 765 043814 056186 389284 -069 4905 064136

200 225 266 1031 059049 040951 357655 -081 3575 091261

225 250 157 1188 068041 031959 332863 -092 2790 111202

250 275 148 1336 076518 023482 302042 -101 2050 134858

275 300 111 1447 082875 017125 270471 -11 1495 158094

300 325 81 1528 087514 012486 238876 -118 1090 180552

325 350 63 1591 091123 008877 204769 -125 775 204065

350 375 31 1622 092898 007102 182455 -132 620 219099

375 400 32 1654 094731 005269 152606 -139 460 238832

400 425 23 1677 096048 003952 123837 -145 345 257486

425 450 11 1688 096678 003322 106471 -15 290 268590

450 475 20 1708 097824 002176 064185 -156 190 295184

475 500 9 1717 098339 001661 037156 -161 145 311883

500 525 7 1724 098740 001260 009531 -166 110 328731

525 550 9 1733 099255 000745 -043078 -17 065 360263

550 575 8 1741 099714 000286 -138629 -175 025 415922

575 600 5 1746 1 0 NUM -179 000 DIV0

1746

20 year 873 085586

-104906

099524

-07849

541 beta 116842

gamma 122575

Hs for condition 1 500 1028785 911838

1

lnssH Q

1

ln sss

s

QH

N

1124

1500

1500122 117 ln

873

122 117 675

912

sH

m

February 1 2012 36

Weibull exceedance graph

Weibull distribution

y = 11573x + 12497

R2 = 09905

0

2

4

6

8

10

0 2 4 6 8 10

Weibull Reduced variable

Str

om

heig

ht

Hss

10 100 1000 10000

February 1 2012 37

Summary

HT threshold value

Exponential

Gumbel

Weibull

150 m 163 m 136 m 122 m

HT 150 200 250 300 350 400

Ns 873 596 389 194 108 53

Hs 1500 Exponential Hs 1500 Gumbel Hs 1500 Weibull

1000 969 912

1009 950 990

948 917 963

939 893 948

908 886 917

876 818 890

February 1 2012 38

What to do if only random data are available

storm exceedance

0

200

400

600

800

01110100100010000

probability per year

Hs

s

February 1 2012 39

Example of long term data

This are

Hs-classes

February 1 2012 40

Long term (continuation)

So from this last column we can conclude

100 of time H gt 0 m s

23 of time H gt 1 m s

12 of time H gt 2 m s

001 of time H gt 9 m s

0

2

4

6

8

10

12

14

1E-071E-061E-051E-041E-031E-021E-011E+00

exceedance per year

wave

he

igh

t H

s (

m)

February 1 2012 41

From probability of waves to probability of storms

Suppose a ldquostormrdquo lasts for 12 hrs

===gt 730 stormsyear

once per year storm = 100730 = 013 =gt 67 m

once per 10 year storm = 0013 =gt 94 m

once per 100 year storm = 00013 =gt 119 m

0

5

10

15

20

1 10 100 1000 10000

return period in years

Hs o

f th

e g

ive

n s

torm

February 1 2012 42

Meteorological data

bull Not of direct importance for design

bull Can be important for hindcast of wave data and storm surge

bull Extremely important for the execution of the works (workability)

February 1 2012 43

Waves from Wind (Brettschneider)

February 1 2012 44

required soil data

February 1 2012 45

in situ test methods

February 1 2012 46

During construction

bull Quarry stone

bull Concrete

bull Local Equipment

bull Labour

bull skilled

bull cost

bull availability

bull expatriates

Page 34: Chapter 6: Data Collection

February 1 2012 34

determination of the reduced variable

1

1

ln

ln

1ln

ss

ss

ss

ss

WAH B

HQ

HQ

Q H

1

lnW Q

Three variables

and

So iteration is needed

February 1 2012 35

calculation for Weibull

alfa= 124

150 cumul P Q ln(Qs) -ln(H) Qs W

150 175 384 384 021993 078007 422098 -056 6810 032522

175 200 381 765 043814 056186 389284 -069 4905 064136

200 225 266 1031 059049 040951 357655 -081 3575 091261

225 250 157 1188 068041 031959 332863 -092 2790 111202

250 275 148 1336 076518 023482 302042 -101 2050 134858

275 300 111 1447 082875 017125 270471 -11 1495 158094

300 325 81 1528 087514 012486 238876 -118 1090 180552

325 350 63 1591 091123 008877 204769 -125 775 204065

350 375 31 1622 092898 007102 182455 -132 620 219099

375 400 32 1654 094731 005269 152606 -139 460 238832

400 425 23 1677 096048 003952 123837 -145 345 257486

425 450 11 1688 096678 003322 106471 -15 290 268590

450 475 20 1708 097824 002176 064185 -156 190 295184

475 500 9 1717 098339 001661 037156 -161 145 311883

500 525 7 1724 098740 001260 009531 -166 110 328731

525 550 9 1733 099255 000745 -043078 -17 065 360263

550 575 8 1741 099714 000286 -138629 -175 025 415922

575 600 5 1746 1 0 NUM -179 000 DIV0

1746

20 year 873 085586

-104906

099524

-07849

541 beta 116842

gamma 122575

Hs for condition 1 500 1028785 911838

1

lnssH Q

1

ln sss

s

QH

N

1124

1500

1500122 117 ln

873

122 117 675

912

sH

m

February 1 2012 36

Weibull exceedance graph

Weibull distribution

y = 11573x + 12497

R2 = 09905

0

2

4

6

8

10

0 2 4 6 8 10

Weibull Reduced variable

Str

om

heig

ht

Hss

10 100 1000 10000

February 1 2012 37

Summary

HT threshold value

Exponential

Gumbel

Weibull

150 m 163 m 136 m 122 m

HT 150 200 250 300 350 400

Ns 873 596 389 194 108 53

Hs 1500 Exponential Hs 1500 Gumbel Hs 1500 Weibull

1000 969 912

1009 950 990

948 917 963

939 893 948

908 886 917

876 818 890

February 1 2012 38

What to do if only random data are available

storm exceedance

0

200

400

600

800

01110100100010000

probability per year

Hs

s

February 1 2012 39

Example of long term data

This are

Hs-classes

February 1 2012 40

Long term (continuation)

So from this last column we can conclude

100 of time H gt 0 m s

23 of time H gt 1 m s

12 of time H gt 2 m s

001 of time H gt 9 m s

0

2

4

6

8

10

12

14

1E-071E-061E-051E-041E-031E-021E-011E+00

exceedance per year

wave

he

igh

t H

s (

m)

February 1 2012 41

From probability of waves to probability of storms

Suppose a ldquostormrdquo lasts for 12 hrs

===gt 730 stormsyear

once per year storm = 100730 = 013 =gt 67 m

once per 10 year storm = 0013 =gt 94 m

once per 100 year storm = 00013 =gt 119 m

0

5

10

15

20

1 10 100 1000 10000

return period in years

Hs o

f th

e g

ive

n s

torm

February 1 2012 42

Meteorological data

bull Not of direct importance for design

bull Can be important for hindcast of wave data and storm surge

bull Extremely important for the execution of the works (workability)

February 1 2012 43

Waves from Wind (Brettschneider)

February 1 2012 44

required soil data

February 1 2012 45

in situ test methods

February 1 2012 46

During construction

bull Quarry stone

bull Concrete

bull Local Equipment

bull Labour

bull skilled

bull cost

bull availability

bull expatriates

Page 35: Chapter 6: Data Collection

February 1 2012 35

calculation for Weibull

alfa= 124

150 cumul P Q ln(Qs) -ln(H) Qs W

150 175 384 384 021993 078007 422098 -056 6810 032522

175 200 381 765 043814 056186 389284 -069 4905 064136

200 225 266 1031 059049 040951 357655 -081 3575 091261

225 250 157 1188 068041 031959 332863 -092 2790 111202

250 275 148 1336 076518 023482 302042 -101 2050 134858

275 300 111 1447 082875 017125 270471 -11 1495 158094

300 325 81 1528 087514 012486 238876 -118 1090 180552

325 350 63 1591 091123 008877 204769 -125 775 204065

350 375 31 1622 092898 007102 182455 -132 620 219099

375 400 32 1654 094731 005269 152606 -139 460 238832

400 425 23 1677 096048 003952 123837 -145 345 257486

425 450 11 1688 096678 003322 106471 -15 290 268590

450 475 20 1708 097824 002176 064185 -156 190 295184

475 500 9 1717 098339 001661 037156 -161 145 311883

500 525 7 1724 098740 001260 009531 -166 110 328731

525 550 9 1733 099255 000745 -043078 -17 065 360263

550 575 8 1741 099714 000286 -138629 -175 025 415922

575 600 5 1746 1 0 NUM -179 000 DIV0

1746

20 year 873 085586

-104906

099524

-07849

541 beta 116842

gamma 122575

Hs for condition 1 500 1028785 911838

1

lnssH Q

1

ln sss

s

QH

N

1124

1500

1500122 117 ln

873

122 117 675

912

sH

m

February 1 2012 36

Weibull exceedance graph

Weibull distribution

y = 11573x + 12497

R2 = 09905

0

2

4

6

8

10

0 2 4 6 8 10

Weibull Reduced variable

Str

om

heig

ht

Hss

10 100 1000 10000

February 1 2012 37

Summary

HT threshold value

Exponential

Gumbel

Weibull

150 m 163 m 136 m 122 m

HT 150 200 250 300 350 400

Ns 873 596 389 194 108 53

Hs 1500 Exponential Hs 1500 Gumbel Hs 1500 Weibull

1000 969 912

1009 950 990

948 917 963

939 893 948

908 886 917

876 818 890

February 1 2012 38

What to do if only random data are available

storm exceedance

0

200

400

600

800

01110100100010000

probability per year

Hs

s

February 1 2012 39

Example of long term data

This are

Hs-classes

February 1 2012 40

Long term (continuation)

So from this last column we can conclude

100 of time H gt 0 m s

23 of time H gt 1 m s

12 of time H gt 2 m s

001 of time H gt 9 m s

0

2

4

6

8

10

12

14

1E-071E-061E-051E-041E-031E-021E-011E+00

exceedance per year

wave

he

igh

t H

s (

m)

February 1 2012 41

From probability of waves to probability of storms

Suppose a ldquostormrdquo lasts for 12 hrs

===gt 730 stormsyear

once per year storm = 100730 = 013 =gt 67 m

once per 10 year storm = 0013 =gt 94 m

once per 100 year storm = 00013 =gt 119 m

0

5

10

15

20

1 10 100 1000 10000

return period in years

Hs o

f th

e g

ive

n s

torm

February 1 2012 42

Meteorological data

bull Not of direct importance for design

bull Can be important for hindcast of wave data and storm surge

bull Extremely important for the execution of the works (workability)

February 1 2012 43

Waves from Wind (Brettschneider)

February 1 2012 44

required soil data

February 1 2012 45

in situ test methods

February 1 2012 46

During construction

bull Quarry stone

bull Concrete

bull Local Equipment

bull Labour

bull skilled

bull cost

bull availability

bull expatriates

Page 36: Chapter 6: Data Collection

February 1 2012 36

Weibull exceedance graph

Weibull distribution

y = 11573x + 12497

R2 = 09905

0

2

4

6

8

10

0 2 4 6 8 10

Weibull Reduced variable

Str

om

heig

ht

Hss

10 100 1000 10000

February 1 2012 37

Summary

HT threshold value

Exponential

Gumbel

Weibull

150 m 163 m 136 m 122 m

HT 150 200 250 300 350 400

Ns 873 596 389 194 108 53

Hs 1500 Exponential Hs 1500 Gumbel Hs 1500 Weibull

1000 969 912

1009 950 990

948 917 963

939 893 948

908 886 917

876 818 890

February 1 2012 38

What to do if only random data are available

storm exceedance

0

200

400

600

800

01110100100010000

probability per year

Hs

s

February 1 2012 39

Example of long term data

This are

Hs-classes

February 1 2012 40

Long term (continuation)

So from this last column we can conclude

100 of time H gt 0 m s

23 of time H gt 1 m s

12 of time H gt 2 m s

001 of time H gt 9 m s

0

2

4

6

8

10

12

14

1E-071E-061E-051E-041E-031E-021E-011E+00

exceedance per year

wave

he

igh

t H

s (

m)

February 1 2012 41

From probability of waves to probability of storms

Suppose a ldquostormrdquo lasts for 12 hrs

===gt 730 stormsyear

once per year storm = 100730 = 013 =gt 67 m

once per 10 year storm = 0013 =gt 94 m

once per 100 year storm = 00013 =gt 119 m

0

5

10

15

20

1 10 100 1000 10000

return period in years

Hs o

f th

e g

ive

n s

torm

February 1 2012 42

Meteorological data

bull Not of direct importance for design

bull Can be important for hindcast of wave data and storm surge

bull Extremely important for the execution of the works (workability)

February 1 2012 43

Waves from Wind (Brettschneider)

February 1 2012 44

required soil data

February 1 2012 45

in situ test methods

February 1 2012 46

During construction

bull Quarry stone

bull Concrete

bull Local Equipment

bull Labour

bull skilled

bull cost

bull availability

bull expatriates

Page 37: Chapter 6: Data Collection

February 1 2012 37

Summary

HT threshold value

Exponential

Gumbel

Weibull

150 m 163 m 136 m 122 m

HT 150 200 250 300 350 400

Ns 873 596 389 194 108 53

Hs 1500 Exponential Hs 1500 Gumbel Hs 1500 Weibull

1000 969 912

1009 950 990

948 917 963

939 893 948

908 886 917

876 818 890

February 1 2012 38

What to do if only random data are available

storm exceedance

0

200

400

600

800

01110100100010000

probability per year

Hs

s

February 1 2012 39

Example of long term data

This are

Hs-classes

February 1 2012 40

Long term (continuation)

So from this last column we can conclude

100 of time H gt 0 m s

23 of time H gt 1 m s

12 of time H gt 2 m s

001 of time H gt 9 m s

0

2

4

6

8

10

12

14

1E-071E-061E-051E-041E-031E-021E-011E+00

exceedance per year

wave

he

igh

t H

s (

m)

February 1 2012 41

From probability of waves to probability of storms

Suppose a ldquostormrdquo lasts for 12 hrs

===gt 730 stormsyear

once per year storm = 100730 = 013 =gt 67 m

once per 10 year storm = 0013 =gt 94 m

once per 100 year storm = 00013 =gt 119 m

0

5

10

15

20

1 10 100 1000 10000

return period in years

Hs o

f th

e g

ive

n s

torm

February 1 2012 42

Meteorological data

bull Not of direct importance for design

bull Can be important for hindcast of wave data and storm surge

bull Extremely important for the execution of the works (workability)

February 1 2012 43

Waves from Wind (Brettschneider)

February 1 2012 44

required soil data

February 1 2012 45

in situ test methods

February 1 2012 46

During construction

bull Quarry stone

bull Concrete

bull Local Equipment

bull Labour

bull skilled

bull cost

bull availability

bull expatriates

Page 38: Chapter 6: Data Collection

February 1 2012 38

What to do if only random data are available

storm exceedance

0

200

400

600

800

01110100100010000

probability per year

Hs

s

February 1 2012 39

Example of long term data

This are

Hs-classes

February 1 2012 40

Long term (continuation)

So from this last column we can conclude

100 of time H gt 0 m s

23 of time H gt 1 m s

12 of time H gt 2 m s

001 of time H gt 9 m s

0

2

4

6

8

10

12

14

1E-071E-061E-051E-041E-031E-021E-011E+00

exceedance per year

wave

he

igh

t H

s (

m)

February 1 2012 41

From probability of waves to probability of storms

Suppose a ldquostormrdquo lasts for 12 hrs

===gt 730 stormsyear

once per year storm = 100730 = 013 =gt 67 m

once per 10 year storm = 0013 =gt 94 m

once per 100 year storm = 00013 =gt 119 m

0

5

10

15

20

1 10 100 1000 10000

return period in years

Hs o

f th

e g

ive

n s

torm

February 1 2012 42

Meteorological data

bull Not of direct importance for design

bull Can be important for hindcast of wave data and storm surge

bull Extremely important for the execution of the works (workability)

February 1 2012 43

Waves from Wind (Brettschneider)

February 1 2012 44

required soil data

February 1 2012 45

in situ test methods

February 1 2012 46

During construction

bull Quarry stone

bull Concrete

bull Local Equipment

bull Labour

bull skilled

bull cost

bull availability

bull expatriates

Page 39: Chapter 6: Data Collection

February 1 2012 39

Example of long term data

This are

Hs-classes

February 1 2012 40

Long term (continuation)

So from this last column we can conclude

100 of time H gt 0 m s

23 of time H gt 1 m s

12 of time H gt 2 m s

001 of time H gt 9 m s

0

2

4

6

8

10

12

14

1E-071E-061E-051E-041E-031E-021E-011E+00

exceedance per year

wave

he

igh

t H

s (

m)

February 1 2012 41

From probability of waves to probability of storms

Suppose a ldquostormrdquo lasts for 12 hrs

===gt 730 stormsyear

once per year storm = 100730 = 013 =gt 67 m

once per 10 year storm = 0013 =gt 94 m

once per 100 year storm = 00013 =gt 119 m

0

5

10

15

20

1 10 100 1000 10000

return period in years

Hs o

f th

e g

ive

n s

torm

February 1 2012 42

Meteorological data

bull Not of direct importance for design

bull Can be important for hindcast of wave data and storm surge

bull Extremely important for the execution of the works (workability)

February 1 2012 43

Waves from Wind (Brettschneider)

February 1 2012 44

required soil data

February 1 2012 45

in situ test methods

February 1 2012 46

During construction

bull Quarry stone

bull Concrete

bull Local Equipment

bull Labour

bull skilled

bull cost

bull availability

bull expatriates

Page 40: Chapter 6: Data Collection

February 1 2012 40

Long term (continuation)

So from this last column we can conclude

100 of time H gt 0 m s

23 of time H gt 1 m s

12 of time H gt 2 m s

001 of time H gt 9 m s

0

2

4

6

8

10

12

14

1E-071E-061E-051E-041E-031E-021E-011E+00

exceedance per year

wave

he

igh

t H

s (

m)

February 1 2012 41

From probability of waves to probability of storms

Suppose a ldquostormrdquo lasts for 12 hrs

===gt 730 stormsyear

once per year storm = 100730 = 013 =gt 67 m

once per 10 year storm = 0013 =gt 94 m

once per 100 year storm = 00013 =gt 119 m

0

5

10

15

20

1 10 100 1000 10000

return period in years

Hs o

f th

e g

ive

n s

torm

February 1 2012 42

Meteorological data

bull Not of direct importance for design

bull Can be important for hindcast of wave data and storm surge

bull Extremely important for the execution of the works (workability)

February 1 2012 43

Waves from Wind (Brettschneider)

February 1 2012 44

required soil data

February 1 2012 45

in situ test methods

February 1 2012 46

During construction

bull Quarry stone

bull Concrete

bull Local Equipment

bull Labour

bull skilled

bull cost

bull availability

bull expatriates

Page 41: Chapter 6: Data Collection

February 1 2012 41

From probability of waves to probability of storms

Suppose a ldquostormrdquo lasts for 12 hrs

===gt 730 stormsyear

once per year storm = 100730 = 013 =gt 67 m

once per 10 year storm = 0013 =gt 94 m

once per 100 year storm = 00013 =gt 119 m

0

5

10

15

20

1 10 100 1000 10000

return period in years

Hs o

f th

e g

ive

n s

torm

February 1 2012 42

Meteorological data

bull Not of direct importance for design

bull Can be important for hindcast of wave data and storm surge

bull Extremely important for the execution of the works (workability)

February 1 2012 43

Waves from Wind (Brettschneider)

February 1 2012 44

required soil data

February 1 2012 45

in situ test methods

February 1 2012 46

During construction

bull Quarry stone

bull Concrete

bull Local Equipment

bull Labour

bull skilled

bull cost

bull availability

bull expatriates

Page 42: Chapter 6: Data Collection

February 1 2012 42

Meteorological data

bull Not of direct importance for design

bull Can be important for hindcast of wave data and storm surge

bull Extremely important for the execution of the works (workability)

February 1 2012 43

Waves from Wind (Brettschneider)

February 1 2012 44

required soil data

February 1 2012 45

in situ test methods

February 1 2012 46

During construction

bull Quarry stone

bull Concrete

bull Local Equipment

bull Labour

bull skilled

bull cost

bull availability

bull expatriates

Page 43: Chapter 6: Data Collection

February 1 2012 43

Waves from Wind (Brettschneider)

February 1 2012 44

required soil data

February 1 2012 45

in situ test methods

February 1 2012 46

During construction

bull Quarry stone

bull Concrete

bull Local Equipment

bull Labour

bull skilled

bull cost

bull availability

bull expatriates

Page 44: Chapter 6: Data Collection

February 1 2012 44

required soil data

February 1 2012 45

in situ test methods

February 1 2012 46

During construction

bull Quarry stone

bull Concrete

bull Local Equipment

bull Labour

bull skilled

bull cost

bull availability

bull expatriates

Page 45: Chapter 6: Data Collection

February 1 2012 45

in situ test methods

February 1 2012 46

During construction

bull Quarry stone

bull Concrete

bull Local Equipment

bull Labour

bull skilled

bull cost

bull availability

bull expatriates

Page 46: Chapter 6: Data Collection

February 1 2012 46

During construction

bull Quarry stone

bull Concrete

bull Local Equipment

bull Labour

bull skilled

bull cost

bull availability

bull expatriates