Top Banner
CHAPTER 6 ENERGY EQUATION 6.1 METHOD OF CALCULATIONS 6.1.1 Assumptions in Calculations The system is an open system at steady state. There are no moving parts in the system. The linear velocities of all streams are the same. All streams enter and leave the process at a single height. Since the effect of pressure difference to the energy balance in the process gives a very small value as compared to the values contributed by the sensible heat and the heat of formation, heat obtained from the pressure difference is assumed to be negligible. 6.1.2 Equations Used in Calculations 6.1.2.1 General Equations p k s E E H W Q (6.1) Based on the assumptions stated above, 0 , 0 , 0 p k s E E W Hence equation (6.1) can be reduced to H Q (6.2)
31
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Chapter 6

CHAPTER 6

ENERGY EQUATION

6.1 METHOD OF CALCULATIONS

6.1.1 Assumptions in Calculations

The system is an open system at steady state.

There are no moving parts in the system.

The linear velocities of all streams are the same.

All streams enter and leave the process at a single height.

Since the effect of pressure difference to the energy balance in the process

gives a very small value as compared to the values contributed by the

sensible heat and the heat of formation, heat obtained from the pressure

difference is assumed to be negligible.

6.1.2 Equations Used in Calculations

6.1.2.1 General Equations

pks EEHWQ (6.1)

Based on the assumptions stated above,

0,0,0 pks EEW

Hence equation (6.1) can be reduced to

HQ (6.2)

Page 2: Chapter 6

6.1.2.2 Equation for Reactive Process

fi

Inlet

ifi

Outlet

i HHnHHnH (6.3)

6.1.2.3 Equation for Process with Phase Changes

iH =bp

ref bp

T

T

T

Tvpvlp dTCHdTC )()(

(6.4)

6.1.2.4 Equation for Non-reactive Process

T

Tpii

ref

dTCnH or

bp

ref bp

T

T

T

Tvpvlpii dTCHdTCnH )()(

6.1.2.5 Equation for Heat Capacity, Cp

432 eTdTcTbTaCp

(6.6) Hence for sensible heat,

dTeTdTcTbTadTCT

T

T

Tp

refref

432

=

T

Tref

eTdTcTbTaT

5432

5432

(6.7)

6.1.2.6 Total Heat for the Energy Balance (for Non-reactive Process):

)(1

streamInlet

i

i

streamOutletTotal HHH (6.8)

And for this sample of calculations, listed are the values of constants in the ideal

gas heat capacity equation based on Elementary Principle of Chemical Engineering,

Third Edition:

Page 3: Chapter 6

6.1.2.7 Reference Conditions

The reference condition that consider in this calculation is temperature Tref = 25°C

and pressure Pref = 1 atm. Therefore, when T = Tref there will be no sensible heat.

Hence the sensible heat of the substances in standard condition = 0.

Table 6.1: Table of Constant in the Ideal Gas Heat Capacity

6.2 Summary of Energy Balance Calculations

6.2.1 Energy Balance at Degasser

Figure 6.1: Inlet and outlet streams of Degasser

Component Formula Cp A Cp B Cp C Cp D Hf (l)

KJ/mol Hf (v)

KJ/mol Hc KJ/mol Hv

KJ/mol

Hydrogen Sulphide H2S 31.94100 0.00144 0.00002 0.00000 0.00 -20.18 -562.59 17.65

Ammonia NH3 27.31500 0.02383 0.00002 0.00000 -67.20 -45.72 -382.58 22.77 Sulphur Dioxide SO2 23.85200 0.06699

-0.00005 0.00000 0.00 -297.05 0.00 24.91

Oxygen O2 28.10600 0.00000 0.00002 0.00000 0.00 0.00 0.00 6.82 Water / Steam H2O 32.24300 0.00192 0.00001 0.00000 -285.84 -241.83 0.00 40.66

Sulphur S 11.20000 0.79170 -

0.00015 0.00000 0.00 0.00 0.00 83.70

Methane CH4 19.25100 0.05213 0.00001 0.00000 0.00 -74.85 -890.36 8.18

Ethane C2H6 5.40900 0.17811 -

0.00007 0.00000 0.00 -84.67 -1559.90 14.72

Propane C3H8 -4.22400 0.30626 -

0.00016 0.00000 -119.80 -103.80 -2220.00 18.77

i-butane C4H10 -1.39000 0.38473 -

0.00018 0.00000 0.00 1.17 -2868.00 21.29

n-butane C4H10 9.48700 0.33130 -

0.00011 0.00000 -147.00 -124.70 -2878.00 22.31

S2

324.15 K

S3

324.15 K

S1

323.15 K

Page 4: Chapter 6

Here a sample calculation for degasser for non-reactive process with phase

changes. Hess’s Law is used for phase change calculation.

Table 6.2: Enthalpy of the streams at Degasser

Substances

Inlet stream 1 Outlet stream 2 Outlet stream 3

nin kmol/hr ΔHin kJ/hr nout kmol/hr ΔHout kJ/hr

nout kmol/hr ΔHout kJ/hr

Hydrogen Sulfide 28.88

ΔH1a 0.018696618

ΔH2a 28.86130338

ΔH3a

Amonia 34.39

ΔH1b 0.000448196

ΔH2b 34.39341299

ΔH3b

Water 2225

ΔH1c 0.006721165

ΔH2c 2224.68472

ΔH3c

Methane 9.18E-02

ΔH1d 9.17E-02

ΔH2d 0.00

ΔH3d

Ethane 9.18E-02

ΔH1e 9.18E-02

ΔH2e 0.00

ΔH3e

Propane 9.18E-02

ΔH1f 9.18E-02

ΔH2f 0.00

ΔH3f

i-Butane 9.18E-02

ΔH1g 9.18E-02

ΔH2g 0

ΔH3g

n-Butane 9.18E-02

ΔH1h 9.18E-02

ΔH2h 0

ΔH3h

F.2.1.1 Balance in Stream S1

F.2.1.1.1 Hydrogen Sulfide

Where

859.56

24824.13

Page 5: Chapter 6

F.2.1.1.2 Ammonia

Where

900.27

30963.82

F.2.1.1.3 Water

Where

843.79

1877183.16

Page 6: Chapter 6

F.2.1.1.4 Methane

Where

906.50

83.22

F.2.1.1.5 Ethane

Where

1357.53

124.62

Page 7: Chapter 6

F.2.1.1.6 Propane

Where

1914.18

175.72

F.2.1.1.7 i-Butane

Where

2529.29

232.19

Page 8: Chapter 6

F.2.1.1.8 n-Butane

Where

2540.56

233.22

233.22

1933820.07 kJ/hr

F.2.1.2 Balance in Stream S2

F.2.1.2.1 Hydrogen Sulfide

Where

Page 9: Chapter 6

894.12

17.05

F.2.1.2.2 Ammonia

Where

936.69

0.000448196 0.43

F.2.1.2.3 Water

Where

Page 10: Chapter 6

-2044.92

0.006721165 -13.47

F.2.1.2.4 Methane

Where

766.34

9.17E-02 71

Page 11: Chapter 6

F.2.1.2.5 Ethane

Where

877.64

9.17E-02

81.91

F.2.1.2.6 Propane

Where

Page 12: Chapter 6

605.22

9.17E-02 57.28

F.2.1.2.7 i-Butane

Where

343.5

9.17E-02 88.57

F.2.1.2.8 n-Butane

Page 13: Chapter 6

Where

1413.65

9.17E-02 131.82

0.43 - 13.47 + 71 + 81.91 + 57.28 + 88.57 + 131.82

434.59 kJ/hr

F.2.1.3 Balance in Stream S3

F.2.1.3.1 Hydrogen Sulfide

Where

Page 14: Chapter 6

894.12

28.86130338 25805.36

F.2.1.3.2 Ammonia

Where

936.69

34.39341299 32215.84

F.2.1.3.3 Water

Where

Page 15: Chapter 6

1958.16

2224.68472 4356297.99

4414319.18

4414319.18 + 434.59 – 4245775.61

1.69 x 105

Table 6.3: Energy balance on Degasser

ΔHinlet (kJ/h) ΔHoutlet (kJ/h) ΔHtotal (kJ/h)

4245775.61 4414753.9 1.65x

Page 16: Chapter 6

6.2.2 Energy Balance at Heater 1

Figure 6.2: Inlet and outlet streams of Heater 1

Table 6.4: Enthalpy of the streams at Heater 1

Substances

Inlet stream 3 Outlet stream 4

nin kmol/hr ΔHin kJ/hr nout kmol/hr ΔHout kJ/hr

Hydrogen

Sulfide 28.86 25805.36 28.86 63997.94

Amonia 34.39 32215.84 34.39 80605.48

Water 2224.68 4356297.99 2224.68 10708465.47

Table 6.5: Energy balance on Heater 1

ΔHinlet (kJ/h) ΔHoutlet (kJ/h) ΔHtotal (kJ/h)

4414319.18 10853068.90 6.44x

All energy balance details calculation are attached to the Appendix F

S3

324.15K

K

S4

362.15K

K

Page 17: Chapter 6

6.2.3 Energy Balance at Distillation Column

Figure 6.3: Inlet and outlet streams of Distillation Column

Table 6.6.1.: Enthalpy of the streams at Condenser of Distillation Column

Substances

Inlet stream 5a Outlet stream 5V Outlet stream 5L

nin

kmol/hr

ΔHin kJ/hr nout

kmol/hr

ΔHout

kJ/hr

nout

kmol/hr

ΔHout kJ/hr

Hydrogen

Sulfide 92.78 267838.85 28.85 42615.08 63.93 94423.16

Amonia 178.67 547471.34 34.37 53396.57 144.29 214456.82

Water 502.10 3137255.53 7.09 22842.46 495.01 2108306.49

Table 6.6.2: Energy balance on Condenser of Distillation Column

ΔHinlet (kJ/h) ΔHoutlet (kJ/h) ΔHtotal (kJ/h)

3.95x 2.54x -3.43x

S4

362.15 K

S5

340.96 K

S6

397.15 K

Page 18: Chapter 6

Table 6.7.1.: Enthalpy of the streams at Reboiler of Distillation Column

Substances

Inlet stream 6a Outlet stream 6V Outlet stream 6L

nin

kmol/hr

ΔHin kJ/hr nout

kmol/hr

ΔHout kJ/hr nout

kmol/hr

ΔHout kJ/hr

Hydrogen

Sulfide 0.01 20.41 0.01 18.38 0.00 1.92

Amonia 0.10 372.10 0.08 286.84 0.02 81.64

Water 3062.64 22863597.30 845.04 2643570.22 2217.59 16555064.48

Table 6.7.2: Energy balance on Reboiler of Distillation Column

ΔHinlet (kJ/h) ΔHoutlet (kJ/h) ΔHtotal (kJ/h)

2.29x 1.92x -3.66x

All energy balance details calculation are attached to the Appendix F

6.2.4 Energy Balance at Furnace

Figure 6.4: Inlet and outlet streams of Furnace

S5

340.96 K

K

S7

298.15K

S8

1273.15 K

K

Page 19: Chapter 6

Table 6.8: Enthalpy of the streams at Furnace

Substances

Inlet stream 5 Inlet stream 7 Outlet stream 8

nin

kmol/hr

ΔHin kJ/hr nout

kmol/hr

ΔHout kJ/hr nout

kmol/hr

ΔHout kJ/hr

Hydrogen

Sulfide 28.85 42615.08

- -

2.89 116871.89

Amonia 34.37 53396.57 - - 34.39 1662520.16

Water 7.09 10268.71 - - 33.07 1247419.51

Oxygen - - 64.94 0 25.98 838526.18

Sulfur

Dioxide

- - - -

25.98 1287830.05

Table 6.9: Energy balance on Furnace

ΔHinlet (kJ/h) ΔHoutlet (kJ/h) ΔHtotal (kJ/h)

1.06x 5.15x 5.05x

All energy balance details calculation are attached to the Appendix F

6.2.5 Energy balance at Cooler

Figure 6.5: Inlet and outlet streams of Cooler

S8

1273.15 K

S9

988.95 K

Page 20: Chapter 6

Table 6.10: Enthalpy of the streams at Cooler

Substance

Inlet stream S8 Outlet stream S9

nin,

kmol/hr

ΔĤin kJ/hr nout,

kmol/hr

ΔĤout kJ/hr

Hydrogen

Sulfide 2.89 118495.60 2.60 71485.41

Ammonia 34.39 1675678.39 34.39 1099264.89

Water 33.07 1247419.51 33.36 845378.48

Oxygen 25.98 838526.18 25.98 580880.22

Sulfur Dioxide 25.98 1287830.05 25.83 866735.98

Sulfur - -

0.43 6679.82

Table 6.11: Energy balance on Cooler

ΔHinlet (kJ/h) ΔHoutlet (kJ/h) ΔHtotal (kJ/h)

5167949.73 3470424.81 -1.7x

All energy balance details calculation are attached to the Appendix F

Page 21: Chapter 6

6.2.6 Energy balance at Condenser 1

Figure 6.6: Inlet and outlet streams of Condenser 1

Table 6.12: Enthalpy of the streams at Condenser 1

Substances

Inlet stream 9 Outlet stream10 Outlet stream 11

nin

kmol/hr

ΔHin kJ/hr nout

kmol/hr

ΔHout kJ/hr nout

kmol/hr

ΔHout kJ/hr

Hydrogen

Sulfide 2.60 71485.41 2.43 11960.14 0.17 839.67

Amonia 34.39 1099264.89 32.14 170149.86 2.26 11793.83

Water 33.36 845378.48 31.17 149290.80 2.19 15892.43

Oxygen 25.98 580880.22 24.27 101765.21 1.70 7144.48

Sulfur

Dioxide 25.83 866735.98 24.14 143259.08 1.69 10057.57

Sulfur 0.43 6679.82 0.40 1307.04 0.03 -15.64

Table 6.13: Energy balance on Condenser 1

ΔHinlet (kJ/h) ΔHoutlet (kJ/h) ΔHtotal (kJ/h)

3470424.81 623444.46 -2.85x

All energy balance details calculation are attached to the Appendix F

S10

438.15 K

S9

988.15 K S11

438.15 K

Page 22: Chapter 6

6.2.7 Energy Balance at Claus Reactor 1

Here a sample calculation for reactive process. Heat of formation is been

considered in calculation.

Figure 6.7: Inlet and outlet streams of Claus Reactor 1

Table 6.14: Enthalpy of the streams at Claus Reactor 1

Substance

Inlet stream S12 Outlet stream S13

nin, kmol/hr ΔĤin kJ/hr nout, kmol/hr ΔĤout kJ/hr

Hydrogen

Sulfide 2.43 18670.77 0.12 1231.29

Ammonia

32.14 269545.31 32.14 358893.69

Water 31.17 231485.20 33.47 318523.75

Oxygen 24.27 158030.49 20.95 179406.88

Sulfur Dioxide 24.14 226359.79 26.30 320567.78

Sulfur 0.40 1996.66 0.54 3474.44

S12

513.15 K

S13

578.15 K

Page 23: Chapter 6

F.2.8.1 Balance at stream S12

F.2.8.1.1 Hydrogen Sulfide

Where

7692.56

2.43 18670

F.2.8.1.2 Ammonia

Where

8387.33

32.14 269545.31

Page 24: Chapter 6

F.2.8.1.3 Water

Where

7426.96

31.17 231485.2

F.2.8.1.4 Oxygen

Where

6511.03

24.27 158030.49

Page 25: Chapter 6

F.2.8.1.5 Sulfur Dioxide

Where

9378.37

24.14 226359.79

F.2.8.1.6 Sulfur

Where

4935.88

0.4 1996.66

Page 26: Chapter 6

906088.22 kJ/hr

F.2.8.2 Balance at stream S13

F.2.8.2.1 Hydrogen Sulfide

Where

10166.29

0.12 1231.29

F.2.8.2.2 Ammonia

Where

Page 27: Chapter 6

11213.27

32.14 358893.69

F.2.8.2.3 Water

Where

9757.39

33.47 318523.75

F.2.8.2.4 Oxygen

Where

Page 28: Chapter 6

8563.21

20.95 179406.88

F.2.8.2.5 Sulfur Dioxide

Where

12484.19

26.30 320567.78

F.2.8.2.6 Sulfur

Where

Page 29: Chapter 6

6400.18

0.54 3474.44

1182097.82 kJ/hr

2.76x

Table 6.15: Energy balance on Claus Reactor 1

ΔHinlet (kJ/h) ΔHoutlet (kJ/h) ΔHtotal (kJ/h)

906088.22 1182097.82 2.76x

All energy balance details calculation are attached to the Appendix F

Page 30: Chapter 6

6.2.8 Energy balance at Super Claus Reactor

Figure 6.8: Inlet and outlet streams of Super Claus Reactor

Table 6.16: Enthalpy of the streams at Super Claus Reactor

Substances

Inlet stream 24 Inlet stream 25 Outlet stream 26

nin kmol/hr ΔHin kJ/hr nout

kmol/hr

ΔHout

kJ/hr

nout

kmol/hr

ΔHout kJ/hr

Hydrogen

Sulfide 3.59x 0.25 -

-

3.59x 3.07x

Amonia 31.73 239419.25 - - 31.73 295940.81

Water 33.17 222865.26 - - 33.17 265536.82

Oxygen 20.69 121798.22 8.09x 0 20.69 149620.61

Sulfur

Dioxide 25.91 218820.68 -

-

25.91 263485.74

Sulfur 0.72 3208.49 - - 0.72 3904.65

Table 6.17: Energy balance on Super Claus Reactor

ΔHinlet (kJ/h) ΔHoutlet (kJ/h) ΔHtotal (kJ/h)

806112.14 978488.63 1.72x

All energy balance details calculation are attached to the Appendix F

S24

493.15K

S26

536.15 K

S25

298.15K

Page 31: Chapter 6

Table 6.18: Summary Comparison with HYSYS

Equipment ∆H Manual

(kW) ∆H Hysis

(kW) %error

Degasser 46.94 49.84 5.82

Heater 1 1788.54 1903.00 6.01

Distillation Column Condenser

393.48 7303.59 94.61

Distillation Column Reboiler 1018.05 9.35E+03 89.11

Furnace 1401.91 1695.00 17.29

Cooler -471.53 -489.00 3.57

Condenser 1 -790.83 -906.30 12.74

Heater 2 91.21 95.78 4.77

Reactor 1 76.67 89.56 14.39

Condenser 2 -168.18 -249.90 32.70

Heater 3 51.16 54.07 5.37

Reactor 2 20.72 27.77 25.39

Condenser 3 -75.35 -85.02 11.38

Heater 4 39.10 41.34 5.42

Reactor 3 0.02 5.06 99.64

Condenser 4 -42.64 -50.16 14.99

Heater 5 72.70 76.77 5.30

Superclaus Reactor 47.88 576.10 91.69

Condenser 5 -158.87 -1832.00 91.33