Top Banner
1 Chapter 5 Transient Analysis Jaesung Jang Complete response = Transient response + Steady-state response Time Constant First order and Second order Differential Equation .
22

Chapter 5 Transient Analysis - CAUcau.ac.kr/~jjang14/IEEE/Chap5.pdf · Chapter 5 Transient Analysis Jaesung Jang ... Time Constant First order and Second order Differential Equation.

Mar 08, 2018

Download

Documents

dokhanh
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Chapter 5 Transient Analysis - CAUcau.ac.kr/~jjang14/IEEE/Chap5.pdf · Chapter 5 Transient Analysis Jaesung Jang ... Time Constant First order and Second order Differential Equation.

1

Chapter 5Transient Analysis

Jaesung Jang

Complete response = Transient response + Steady-state responseTime Constant

First order and Second order Differential Equation

.

Page 2: Chapter 5 Transient Analysis - CAUcau.ac.kr/~jjang14/IEEE/Chap5.pdf · Chapter 5 Transient Analysis Jaesung Jang ... Time Constant First order and Second order Differential Equation.

2

Transient Analysis• The difference of analysis of circuits with

energy storage elements (inductors or capacitors) & time-varying signals with resistive circuits is that the equations resulting from KVL and KCL are now differential equations rather than algebraic linear equations resulting from the resistive circuits.

• Transient region: the region where the signals are highly dependent on time. (temporary)

– No voltage or current sources– Transient Analysis

• Steady-state region: the region where the signals are not time dependent (time rate of change of signals is equal to zero) or periodic.

– Constant signals– Sinusoidal signals 0 1 2 3 4 5 6 7 8 9 10

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

t (s ec )

V/V

s

( )0=

dt

d

Page 3: Chapter 5 Transient Analysis - CAUcau.ac.kr/~jjang14/IEEE/Chap5.pdf · Chapter 5 Transient Analysis Jaesung Jang ... Time Constant First order and Second order Differential Equation.

3

Solution of Ordinary Differential Equation• Transient solution (xN) is a solution of the

homogeneous equation: transient (natural) response. -> temporary behavior without the source.

• Steady-state (particular) solution (xF) is a solution due to the source: steady-state (forced ) response.

• Complete response = transient (natural) response + steady-state (forced ) response -> x = xN + xF

• First order: The largest order of the differential equation is the first order.– RL or RC circuit.

• Second order: The largest order of the differential equation is the second order.– RLC or LC circuit.

sVxdt

dx =+

0=+ NN x

dt

dx

sFF Vx

dt

dx =+

0 1 2 3 4 5 6 7 8 9 100

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

t (sec)

V/V

s

Page 4: Chapter 5 Transient Analysis - CAUcau.ac.kr/~jjang14/IEEE/Chap5.pdf · Chapter 5 Transient Analysis Jaesung Jang ... Time Constant First order and Second order Differential Equation.

4

Writing Differential Equations• Key laws: KVL & KCL for capacitor voltages or inductor currents

( ) ( )

CSCCCSC

CR

CSCCSCC

S

tC

CC

CRSCRS

CR

CR

vRC

v

RC

v

dt

dv

R

vv

dt

dvCi

R

v

iRdt

dv

RC

i

dt

di

dt

dv

C

iR

dt

di

vtdC

titvRi

vRivvvv

iR

vii

for equation alDifferenti:

for equation alDifferenti:

0

00 :KVL

:KCL

0

=+→−

===

=+→=+

=′′

+=+

=++−→=++−

=→=

( ) ( ) ( )( )

equation aldifferentiordinary linear order -First

.parameterselement circuit of nscombinatio represents and ,, constants the

andcurrent inductor or the voltagecapacitor therepresents where

001

001

=+

baa

tx

tfbtxadt

tdxa

Page 5: Chapter 5 Transient Analysis - CAUcau.ac.kr/~jjang14/IEEE/Chap5.pdf · Chapter 5 Transient Analysis Jaesung Jang ... Time Constant First order and Second order Differential Equation.

5

Writing Differential Equations (cont.)• Key laws: KVL & KCL

( ) ( )

CSCCC

CCS

C

CCSCLCSCC

R

SS

S

t

C

LCRSLCRS

LCR

vvvdt

dvRC

dt

vdLC

dt

vdLCvv

dt

dvRC

dt

dvC

dt

dL

RR

v

R

v

dt

dvC

R

vvv

dt

dvCi

R

v

iLdt

dv

LC

i

Ldt

Rdi

dt

id

dt

dv

dt

idL

C

iR

dt

di

vdt

diLtd

C

titviR

vvRivvvvv

iiii

for equation alDifferenti:

1

for equation alDifferenti:

0

00 :KVL

:KCL

2

2

2

2

2

2

2

2

0

=++

−−=

−−=→−−

===

=++→=++

=+′′+=+

=+++−→=+++−===

( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( )ly.respective gain, DC theand

ratio, damping thefrequency, natural thetermed and 12, constants thewhere

21

.parameterselement circuit of nscombinatio represents and ,,, constants the

andcurrent or the voltagecapacitor therepresents where

equation aldifferentiordinary linear order -Second

0020120

2

2

20

0

0

12

2

0

2

0012

0012

2

2

abKaaaaa

tfKtxdt

tdx

dt

txdtf

a

btx

dt

tdx

a

a

dt

txd

a

a

baaa

tx

tfbtxadt

tdxa

dt

txda

Sn

Snn

===

=++→=++

→=++

ζω

ωζ

ω

Page 6: Chapter 5 Transient Analysis - CAUcau.ac.kr/~jjang14/IEEE/Chap5.pdf · Chapter 5 Transient Analysis Jaesung Jang ... Time Constant First order and Second order Differential Equation.

6

Examples of Writing Differential Equations

( ) ( )

( ) ( ) ( ) ( )

LS

LLL

LS

L

tL

LSL

tL

LLS

Lt

LL

LSRL

R

LSRLRS

RLR

RLR

vdt

dvv

L

R

dt

dv

dt

dvv

L

R

dt

dv

vtdL

tRvtRivvtd

L

tRvtRivv

R

vtd

L

tvti

R

vvii

R

v

vvvvvv

iiR

viii

for equation alDifferenti:22

200

0

0 :KVL

:KCL

00

02

221

=+→+=

+′′

+==→+′′

+==−

+′′

+==−

→+=

−=→=++−

+=→+=

∫∫

( )

( ) ( ) LSLLL

LL

LLL

S

LL

LLL

CRS

LLL

LLL

LC

LCRR

LL

LRCLRC

CRSCRS

LCR

iviRRdt

diLCRR

dt

idLCR

Ridt

diLiR

dt

diCRR

dt

idLCRv

Ridt

diLRi

dt

diCR

dt

idLCvvv

Ridt

diCR

dt

idLCRiRi

dt

diL

dt

dCRi

dt

dvCRiiRiv

Ridt

diLvvvvvv

vvvvvv

iii

for equation alDifferenti:

0

0 :KVL

:KCL

21212

2

1

21212

2

1

2122

2

122

2

12111

2

1

11

22

11

1

=++++

→++++=

→++

++=+=

++=

+

+=

+=+==

+=+=→=++−

+=→=++−

+=

Page 7: Chapter 5 Transient Analysis - CAUcau.ac.kr/~jjang14/IEEE/Chap5.pdf · Chapter 5 Transient Analysis Jaesung Jang ... Time Constant First order and Second order Differential Equation.

7

DC steady state solution: Final Condition• Steady state solution due to AC (sinusoidal waveforms) is in Chap. 6 (frequency

response).• DC steady state solution: response of a circuit that have been connected to a DC

source for a long time or response of a circuit long after a switch has been activated.– All the time derivatives are equal to zero at the steady state.

• Capacitors: insulators (very large resistances) are inside the capacitors.• Inductors: Induction works only when the change in electric fields happens.

statesteady at the SC

SCC

vvRC

v

RC

v

dt

dv

=

=+ ( ) ( )

( ) statesteady at the 21

21212

2

1

RR

vi

viRRdt

diLCRR

dt

idLCR

SL

SLLL

+=

=++++

( ) ( )

( ) ( )

circuits.short as hehave inductors all and

circuitsopen as behave capacitors all

state,steady DCAt

as 0

as 0

∞→→=

∞→→=

tdt

tdiLtv

tdt

tdvCti

LL

CC

+

+ +

+

Page 8: Chapter 5 Transient Analysis - CAUcau.ac.kr/~jjang14/IEEE/Chap5.pdf · Chapter 5 Transient Analysis Jaesung Jang ... Time Constant First order and Second order Differential Equation.

8

DC steady state solution: Initial Condition• Initial condition: response of a circuit before a switch is first activated.

– Since power equals energy per unit time, finite power requires continuous change in energy.

• Primary variables: capacitor voltages and inductor currents-> energy storage elements– Capacitor voltages and inductor currents cannot change instantaneously but

should be continuous. -> continuity of capacitor voltages and inductor currents

– The value of an inductor current or a capacitor voltage just prior to the closing (or opening) of a switch is equal to the value just after the switch has been closed (or opened).

( ) ( )( ) ( )

0"after just " signifies 0

and 0" beforejust " signifies 0notation thewhere

00

00

=

=

===

===

+

+−

+−

t

t

titi

tvtv

LL

CC

Discontinuous of capacitor voltage-> infinite power at t=0.

( ) ( ) ( ) ( )tCvtWtLitW CCLL22

2

1

2

1 ==

Page 9: Chapter 5 Transient Analysis - CAUcau.ac.kr/~jjang14/IEEE/Chap5.pdf · Chapter 5 Transient Analysis Jaesung Jang ... Time Constant First order and Second order Differential Equation.

9

First Order Response• First-order circuit: one energy storage element + one energy loss

element (e.g. RC circuit, RL circuit)

• Procedures– Write the differential equation of the circuit for t=0+, that is, immediately

after the switch has changed. The variable x(t) in the differential equation will be either a capacitor voltage or an inductor current. You can reduce the circuit to Thevenin or Norton equivalent form.

– Identify the initial conditions x(t=0+) [= x(t=0-)] and final conditions x(t=∞).– Solve the differential equation.– Write the complete solution for the circuit in the form.

• The time constant (τ) is a measure of how fast capacitor voltages or inductor currents react to the input (voltage or current source). It is a period of time during which capacitor voltages or inductor currents change by 63.2% to get to the steady state.

( ) ( ) ( ) ( )[ ] ( )τttxtxtxtx −∞=−=+∞== exp0

( ) ( )[ ]( ) ( )[ ] 632.01

0

0 1 =−==−∞==−= −e

txtx

txtx τ

Page 10: Chapter 5 Transient Analysis - CAUcau.ac.kr/~jjang14/IEEE/Chap5.pdf · Chapter 5 Transient Analysis Jaesung Jang ... Time Constant First order and Second order Differential Equation.

10

First Order Response (cont.)• First-order circuit: one energy storage element + one

energy loss element (e.g. RC circuit, RL circuit)( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( )( ) ( )

( ) ( ) ( )

( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( ) 0for 00

DCfor

Response Complete

0 0

0: where DC todue Response Forced

constant. a is where0

Response Natural

ly.respective gain, DC andconstant time the termed and where

00

00

00

0001

0

0

0

1001

≥∞=−==→∞=+==+=∞=+=+=

≥=→≥=+

→=

=→−

=→=+

==

=+→=+→=+

−−

ttxtxxtxxtx

FKextxextxtxtx

tFKtxtFKtxdt

tdxdt

tdxFtf

xextxtx

dt

tdxtx

dt

tdx

abKaa

tfKtxdt

tdxtf

a

btx

dt

tdx

a

atfbtxa

dt

tdxa

Stt

FN

SFSFF

F

tN

NNN

N

S

S

ττ

τ

τ

ττ

τ

τ

Page 11: Chapter 5 Transient Analysis - CAUcau.ac.kr/~jjang14/IEEE/Chap5.pdf · Chapter 5 Transient Analysis Jaesung Jang ... Time Constant First order and Second order Differential Equation.

11

Example: First Order Response 1

( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( )( ) ( ) ( ) 47.07120 :Step4

,1 ,47.0F470k1 , :Step3

V12,0 V 50 :Step2

0

00 :KVL

:KCL :Step1

tC

tCCC

SSC

SCCC

SSCCCSC

CR

CRSCRS

CR

CR

etvetvtvtv

vFKRCvx

vtvtvtv

FKtxdt

tdxtvv

dt

dvRC

R

vv

dt

dvCi

R

v

vRivvvv

iR

vii

−−

+−

−+=∞=+∞=−==

===×Ω=====∞=====

=+→>=+→−

===

=++−→=++−

=→=

τ

µτ

τ

+

Page 12: Chapter 5 Transient Analysis - CAUcau.ac.kr/~jjang14/IEEE/Chap5.pdf · Chapter 5 Transient Analysis Jaesung Jang ... Time Constant First order and Second order Differential Equation.

12

Example: First Order Response 2

( ) ( )

( ) ( ) ( )

( ) ( ) ( )( ) ( ) ( ) 025.05.125.120 :Step4

,1 ,025.04H1.0 , :Step3

A5.12,0A 00 :Step2

0

00 :KVL

:KCL :Step1

tL

tLLL

BSL

BLLL

SB

LL

LLBLRB

LR

etietititi

vFRKRLix

Rvtititi

FKtxdt

tdxt

R

vi

dt

di

R

Ldt

diLRivvvv

ii

−−

+−

−+=∞=+∞=−==

===Ω=====∞=====

=+→>=+→

=++−→=++−

=

τ

τ

τ

+

Page 13: Chapter 5 Transient Analysis - CAUcau.ac.kr/~jjang14/IEEE/Chap5.pdf · Chapter 5 Transient Analysis Jaesung Jang ... Time Constant First order and Second order Differential Equation.

13

First Order Transient Response Using Thevenin/Norton Theorem

• One must be careful to determine the equivalent circuits before and after the switch changes position.

– it is possible that equivalent circuit seen by the load before activating the switch is different from the circuit seen after closing the switch.

( ) ( ) ( )+− ====≤= 00 0 22 tvVtvtVtv CCC

Page 14: Chapter 5 Transient Analysis - CAUcau.ac.kr/~jjang14/IEEE/Chap5.pdf · Chapter 5 Transient Analysis Jaesung Jang ... Time Constant First order and Second order Differential Equation.

14

First Order Transient Response Using Thevenin/Norton Theorem (cont.)

( ) ( )

( ) ( ) ( )

( ) ( ) ( )( ) ( )∞=+∞=−==

=====∞====

=+→>=+

+−

tvetvtvtv

vFKRCvx

vtvtvtv

FKtxdt

tdxtvv

dt

dvRC

Ct

CCC

SSC

SCCC

SSCC

τ

τ

τ

0 :Step4

,1 , , :Step3

,00 :Step2

0 :Step1( ) ( )

( ) ( ) ( )

( ) ( ) ( )( ) ( ) ( )

+==

+−=∞=+∞=−==

=====∞=====

=+→>=+

−−

+−

2

2

1

1321

2

2

||||

0 :Step4

,1 , , :Step3

,0 0 :Step2

0 :Step1

R

V

R

VRVRRRR

VeVVtvetvtvtv

VFKCRvx

VtvtvVtv

FKtxdt

tdxtVv

dt

dvCR

TTT

Tt

TCt

CCC

TSTC

TCCC

STCC

T

ττ

τ

τ

Page 11

Page 15: Chapter 5 Transient Analysis - CAUcau.ac.kr/~jjang14/IEEE/Chap5.pdf · Chapter 5 Transient Analysis Jaesung Jang ... Time Constant First order and Second order Differential Equation.

15

First Order Transient Response Using Thevenin/Norton Theorem (cont.)

( ) ( )

( ) ( ) ( )

( ) ( ) ( )( ) ( ) ( )( ) divider voltage: ||

0 :Step4

,1 , , :Step3

,0 00 :Step2

0 :Step1

21

2321 BTT

Tt

TCt

CCC

TSTC

TCCC

STCC

T

VRR

RVRRRR

VeVtvetvtvtv

VFKCRvx

Vtvtvtv

FKtxdt

tdxtVv

dt

dvCR

+=+=

+−=∞=+∞=−==

=====∞=====

=+→>=+

−−

+−

ττ

τ

τ

Example 5.100 (closing) < t < 50 ms

( ) ( )

( ) ( )( ) ( ) ( )

( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ( ) 0 :Step4

where0 ,1 , , :Step3

0,0abovesolution thefrom500 :Step2

0 0 :Step1

05.0**

32

*

τττ

τ

τ

−−−−

+−

=→=∞=+∞=−==

+======∞=======

=+→>=+

tCC

tCC

tCCC

TSTC

CCCCC

SCC

T

evtvevtvetvtvtv

RRRFKCRvx

tvtvvmstvtv

FKtxdt

tdxtv

dt

dvCR

50 ms (open the switch again) < t

Page 16: Chapter 5 Transient Analysis - CAUcau.ac.kr/~jjang14/IEEE/Chap5.pdf · Chapter 5 Transient Analysis Jaesung Jang ... Time Constant First order and Second order Differential Equation.

16

RC Charging & Discharging

Charging: S1 closed & S2 openedDischarging: S2 closed & S1 openedTime constant (τ = RC)=0.1 sec Charging

Discharging

Note: Capacitor voltage is continuous,but capacitor current is not (many jumps).

( ) ( )[ ]( ) ( )[ ] 632.01

0

0 1 =−==−∞==−= −e

txtx

txtx τ

Page 17: Chapter 5 Transient Analysis - CAUcau.ac.kr/~jjang14/IEEE/Chap5.pdf · Chapter 5 Transient Analysis Jaesung Jang ... Time Constant First order and Second order Differential Equation.

17

Second Order Transient Response• Second-order circuit: two energy storage element w/wo

one energy loss element (e.g. RLC circuit, LC circuit)

LL

T

L

T

TLL

LT

T

LL

CL

LT

TCL

T

R

CTRCRTLTRLRT

CLT

RLCS

idt

di

R

L

dt

idLC

R

v

dt

idLCi

dt

diLv

R

dt

diL

dt

dCi

dt

dvCi

dt

diLv

Rii

R

v

vvvvvvvvvvvv

iiR

viii

++=→+=

+=+=

−→+=

−=→=++−−=→=++−

+=→+=

2

2

2

21

1

0 and 0 :KVL

:KCL

Page 18: Chapter 5 Transient Analysis - CAUcau.ac.kr/~jjang14/IEEE/Chap5.pdf · Chapter 5 Transient Analysis Jaesung Jang ... Time Constant First order and Second order Differential Equation.

18

Second Order Transient Response (cont.)( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( )ly.respective gain, DC theand

ratio, damping thefrequency, natural thetermed and 12, constants thewhere

21

0020120

2

2

20012

2

2

abKaaaaa

tfKtxdt

tdx

dt

txdtfbtxa

dt

tdxa

dt

txda

Sn

Snn

===

=++→=++

ζω

ωζ

ω

1 and 1.0,1 === Sn Kζω

• The final value of 1 is predicted by the DC gain KS=1, which tells us about the steady state.

• The period of oscillation of the response is related to the natural frequency wn=1 leads to T=2 pi/wn = 6.28 sec.

• The reduction in amplitude of the oscillation is governed by the damping ratio. With large damping ratio, the response not overshoots (oscillates) but looks like the first order response.

• Damping -> friction effect

Page 19: Chapter 5 Transient Analysis - CAUcau.ac.kr/~jjang14/IEEE/Chap5.pdf · Chapter 5 Transient Analysis Jaesung Jang ... Time Constant First order and Second order Differential Equation.

19

Second Order Response( ) ( ) ( ) ( )

( ) ( ) ( )

( )( )

( )

( )

( )( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )txtxtx

tFKtxttfKtxdt

tdx

dt

txd

dt

tdxFtf

js

s

s

seetx

txdt

tdx

dt

txd

tfKtxdt

tdx

dt

txd

FN

SFSFF

n

F

n

F

nn

n

nn

nntsts

N

NN

n

N

n

Snn

+=

≥=→≥=++

→=

−±−=

→→<

−=→→

=

−±−=

→→>

−±−=+=

=++

=++

Response Complete

0 0 21

0: where DC todue Response Forced

1

nOscillatioresponse dUnderdampe1roots.Complex :3 Case

nOscillatioresponse overdamped Critically

1roots. repeated and Real:2 Case

1

systemorder first thelikeLook

response Overdamped1roots.distinct and Real :1 Case

1 where

021

Response Natural

21

2

2

2

22,1

2,1

22,1

22,121

2

2

2

2

2

2

21

ωζ

ω

ζωζω

ζω

ζζωζω

ζζωζωαα

ωζ

ω

ωζ

ω

.conditions initial by the determined be that willconstants is and 21 αα

Page 20: Chapter 5 Transient Analysis - CAUcau.ac.kr/~jjang14/IEEE/Chap5.pdf · Chapter 5 Transient Analysis Jaesung Jang ... Time Constant First order and Second order Differential Equation.

20

Second Order Response (cont.)• Procedures

– Write the differential equation of the circuit for t=0+, that is, immediately after the switch has changed. The variable x(t) in the differential equation will be either a capacitor voltage or an inductor current. You can reduce the circuit to Thevenin or Norton equivalent form. Rewrite the equation as the standard form.

– Identify the initial conditions x(t=0+) and dx/dt(t=0+) using the continuity of capacitor voltages and inductor currents.

– Write the complete solution for the circuit in the form.

– Apply the initial conditions to solve for the constants . and 21 αα

( ) ( ) ( )( ) ( ) ( ) ( ) ( )

( ) ( ) ( )txeetx

txteetx

txeetx

F

tjtj

Ftt

F

tt

nnnn

nn

nnnn

++=<

++==

++=>

−−−

−+−

−−

−−−

−+−

:1roots.Complex :3 Case

:1roots. repeated and Real:2 Case

:1roots.distinct and Real :1 Case

22

22

1

2

1

1

21

1

2

1

1

ζωζωζωζω

ωω

ζωζωζωζω

ααζ

ααζ

ααζ

Page 21: Chapter 5 Transient Analysis - CAUcau.ac.kr/~jjang14/IEEE/Chap5.pdf · Chapter 5 Transient Analysis Jaesung Jang ... Time Constant First order and Second order Differential Equation.

21

Example: Second Order Response

( ) ( )

( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( )

( )

( )( ) ( )

( )

( )

−−−+

−+−===

−−−+

−+−=

+===

====

+=

=−±−=+=

====→====→=

=++=++→=++

==→=+=→==+=+=

========

==++→=′′

+=++

=++→=+++−

+=→==

+

−−−

−+−

+

++

−−−

−+−

++++

+−+−

11200

11

00

and constants thedetermine A/s,200 and 0A 0 Using:Step4

0) response (forced Response Complete

1 where

response Overdamped

5.21

10

2

5000

22

2,rad/s 1000

10

111

21:00 :Step3

A/s200V25V 501000

0A 00,0V 50 :Step2

00

0 :KVL

:KCL :Step1

22

21

12

2

12

1

21

21

1

2

1

1

22,121

6

62

2

2

22

2

2

2

2

2

0

22

22

21

ζωζωαζωζωα

ζωζωαζωζωα

αα

αα

αα

ζωζωαα

ωζω

ζωω

ωζ

ω

ζωζωζωζω

ζωζωζωζω

nnnnL

t

nn

t

nnL

L

LL

tt

L

nntsts

L

n

nn

n

Snn

LLLLLL

LLSC

LL

LLCC

SLLLS

tL

CL

L

SCLRCLRS

CLT

RLCS

tdt

di

eedt

di

ti

tdt

diti

eeti

seeti

L

CRRCRC

LCLC

tfKtxdt

tdx

dt

txdi

dt

diRC

dt

idLC

C

i

dt

diR

dt

idL

tdt

dit

dt

divtvt

dt

diLRti

tititvtv

dt

dv

C

i

dt

diR

dt

idLvtd

C

titv

dt

diLRi

vvvvvvvv

iiR

viii

nnnn

nnnn

Page 22: Chapter 5 Transient Analysis - CAUcau.ac.kr/~jjang14/IEEE/Chap5.pdf · Chapter 5 Transient Analysis Jaesung Jang ... Time Constant First order and Second order Differential Equation.

22

Overdamped and Underdamped Circuit