Top Banner
CHAPTER 4 LOGARITHMIC FUNCTIONS EXERCISE 4.1 Section 4.1 Properties and graphs of logarithmic functions (page 95) 1. 5 3 = 125 log 5 125 = 3 2. 3 4 = 81 log 3 81 = 4 3. 6 2 = 1 36 log 6 1 36 = 2 4. 10 4 = 0.000 1 log 10 0.000 1 = 4 5. a 7 = 9 = 7 log a 9 6. p r = q = r log p q 7. log 10 100 = 2 10 2 = 100 8. log 5 625 = 4 5 4 = 625 9. 343 1 log 7 = 3 7 3 = 1 343 10. log 1 3 243 = 5 5 3 1 = 243 69
51

CHAPTER 4 LOGARITHMIC FUNCTIONS - Browser Expressresources.npl.edu.hk/~hflau/MS-Sol-EE-C04.pdf · CHAPTER 4 LOGARITHMIC FUNCTIONS EXERCISE 4.1 Section 4.1 Properties and graphs of

Aug 08, 2019

Download

Documents

NguyễnÁnh
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: CHAPTER 4 LOGARITHMIC FUNCTIONS - Browser Expressresources.npl.edu.hk/~hflau/MS-Sol-EE-C04.pdf · CHAPTER 4 LOGARITHMIC FUNCTIONS EXERCISE 4.1 Section 4.1 Properties and graphs of

CHAPTER 4 LOGARITHMIC FUNCTIONS

EXERCISE 4.1 Section 4.1 Properties and graphs of logarithmic functions (page 95)

1. 53 = 125 ∴ log5125 = 3 2. 34 = 81 ∴ log3 81 = 4

3. 6−2 = 136

∴ log6 136

= −2

4. 10−4 = 0.000 1 ∴ log10 0.000 1 = −4 5. a7 = 9 ∴ = 7 log a 9 6. pr = q ∴ = r log p q 7. log10100 = 2 ∴ 102 = 100 8. log5 625 = 4 ∴ 54 = 625

9. 3431log7 = −3

∴ 7−3 = 1

343

10. log 1

3

243 = −5

∴ 5

31 −

⎟⎠⎞

⎜⎝⎛ = 243

69

Page 2: CHAPTER 4 LOGARITHMIC FUNCTIONS - Browser Expressresources.npl.edu.hk/~hflau/MS-Sol-EE-C04.pdf · CHAPTER 4 LOGARITHMIC FUNCTIONS EXERCISE 4.1 Section 4.1 Properties and graphs of

CHAPTER 4 LOGARITHMIC FUNCTIONS

11. log e e1

= −12

∴ e−

12 =

1e

12. = t log b c ∴ = c bt

13. Let y = log2 32. Then 2y = 32 2y = 25

∴ y = 5 14. Let y = log9 3. Then 9y = 3 ∴ = 3 32 y

2y = 1

y = 12

15. Let y = log8 0.125. Then 8y = 0.125

8y = 18

∴ y = −1 16. Let y = log 1

6

216 .

Then y

⎟⎠⎞

⎜⎝⎛

61 = 216

= 66− y 3

∴ y = −3 17. Let y = lo . g a 1 Then a y = 1 ∴ y = 0 18. Let y = log . a a Then a y = a ∴ y = 1 19. Let y = logb b3. Then by = b3

∴ y = 3

70

Page 3: CHAPTER 4 LOGARITHMIC FUNCTIONS - Browser Expressresources.npl.edu.hk/~hflau/MS-Sol-EE-C04.pdf · CHAPTER 4 LOGARITHMIC FUNCTIONS EXERCISE 4.1 Section 4.1 Properties and graphs of

SECTION 4.1 PROPERTIES AND GRAPHS OF LOGARITHMIC FUNCTIONS

20. Let y = log e e15

.

Then e y = 15e

∴ y = −5 21. Let y = 10 . 10 7log

Then log10 7 = log10 y ∴ y = 7 22. Let y = . 5logaa Then loga 5 = loga y ∴ y = 5 23. log2 x = 5 x = 25

= 32 24. log5 x = 3 x = 53

= 125

25. log 1

3

x = −4

x = 4

31 −

⎟⎠⎞

⎜⎝⎛

= 81

26. log10 x = −12

x = 21

10−

= 110

27. log16 x = 0.25 x = 160.25

= 2 28. logx 10 = 1 10 = x1

x = 10 29. logx 81 = 2 81 = x2

x = 81 = 9 Note: The base x is positive.

71

Page 4: CHAPTER 4 LOGARITHMIC FUNCTIONS - Browser Expressresources.npl.edu.hk/~hflau/MS-Sol-EE-C04.pdf · CHAPTER 4 LOGARITHMIC FUNCTIONS EXERCISE 4.1 Section 4.1 Properties and graphs of

CHAPTER 4 LOGARITHMIC FUNCTIONS

30. log x 4 = 32

32

x = 4

x = 432

= 8

31. logx e1 = −1

e1 = x−1

x = e 32. log x e3 = −6 x−6 = e3

x = 63 −

e

= 1e

33. x 0.5 1 2 4 8 16

y = log4 x −0.5 0 0.5 1 1.5 2

72

Page 5: CHAPTER 4 LOGARITHMIC FUNCTIONS - Browser Expressresources.npl.edu.hk/~hflau/MS-Sol-EE-C04.pdf · CHAPTER 4 LOGARITHMIC FUNCTIONS EXERCISE 4.1 Section 4.1 Properties and graphs of

SECTION 4.1 PROPERTIES AND GRAPHS OF LOGARITHMIC FUNCTIONS

34. x 0.5 1 5 10 15 20

y = log e x −0.693 0 1.609 2.303 2.708 2.996

35. x 0.25 0.5 1 2 4 8

y = x21log 2 1 0 −1 −2 −3

73

Page 6: CHAPTER 4 LOGARITHMIC FUNCTIONS - Browser Expressresources.npl.edu.hk/~hflau/MS-Sol-EE-C04.pdf · CHAPTER 4 LOGARITHMIC FUNCTIONS EXERCISE 4.1 Section 4.1 Properties and graphs of

CHAPTER 4 LOGARITHMIC FUNCTIONS

36. x

15

1 5 25 125

y = x51log 1 0 −1 −2 −3

37.

x 31 1 3 9

y = −log3 x 1 0 −1 −2

38. x 1.5 2 4 6 8 10

y = loge (x − 1) −0.693 0 1.099 1.609 1.946 2.197

74

Page 7: CHAPTER 4 LOGARITHMIC FUNCTIONS - Browser Expressresources.npl.edu.hk/~hflau/MS-Sol-EE-C04.pdf · CHAPTER 4 LOGARITHMIC FUNCTIONS EXERCISE 4.1 Section 4.1 Properties and graphs of

SECTION 4.1 PROPERTIES AND GRAPHS OF LOGARITHMIC FUNCTIONS

39. x

31 1 3 9

y = 4 − log31 x 3 4 5 6

40. x −2.5 −2 −1 0 2 5

y = loge (x + 3) − 2 −2.693 −2 −1.307 −0.901 −0.391 0.079

41.

Note: The graph of y = is the mirror image of the graph of y = about the x-axis. xalog− xalog

75

Page 8: CHAPTER 4 LOGARITHMIC FUNCTIONS - Browser Expressresources.npl.edu.hk/~hflau/MS-Sol-EE-C04.pdf · CHAPTER 4 LOGARITHMIC FUNCTIONS EXERCISE 4.1 Section 4.1 Properties and graphs of

CHAPTER 4 LOGARITHMIC FUNCTIONS

42.

Note: The graph of y = is the mirror image of the graph of y = about the y-axis. )(log xa − xalog

43.

Note: The graph of y = can be obtained by shifting the graph of y = a units

to the right. ) (log axa − xalog

44.

Note: The graph of y = − a can be obtained by shifting the graph of y = a units

downward.xalog xalog

76

Page 9: CHAPTER 4 LOGARITHMIC FUNCTIONS - Browser Expressresources.npl.edu.hk/~hflau/MS-Sol-EE-C04.pdf · CHAPTER 4 LOGARITHMIC FUNCTIONS EXERCISE 4.1 Section 4.1 Properties and graphs of

SECTION 4.2 LAWS OF LOGARITHMS

45.

Note: Since yy

aa

x −⎟⎠⎞

⎜⎝⎛ = 1 = , xy

a1log = is equivalent to y = − . xalog

46.

Note: The graph of ) + (log = 1 axy

a

can be obtained by shifting the graph of xya1log = a units

to the left.

EXERCISE 4.2 Section 4.2 Laws of logarithms (page 101)

1. log10 4 + log10 25 = log10 (4 × 25) = log10 100 = 2 2. log6 42 − log6 7 = log6

427

= log6 6 = 1 3. log9 54 − log9 18 = log9

5418

= log9 3

= log9

129

= 12

77

Page 10: CHAPTER 4 LOGARITHMIC FUNCTIONS - Browser Expressresources.npl.edu.hk/~hflau/MS-Sol-EE-C04.pdf · CHAPTER 4 LOGARITHMIC FUNCTIONS EXERCISE 4.1 Section 4.1 Properties and graphs of

CHAPTER 4 LOGARITHMIC FUNCTIONS

4. loga a11 111

+ log = ⎟⎠⎞

⎜⎝⎛ ×

111 11 loga

= 1log a

= 0

5. log2 24 − log2 60 + log2 10 = log2 ⎟⎠⎞

⎜⎝⎛ ×

601024

= log2 4 = 2

6. log5 256 − log5 2 7

6 − log5 1021 = log5 ⎟

⎠⎞

⎜⎝⎛ ÷÷

2110

762

256

= log5 1251

= −3

7. 43

3

loglog

ee =

e

e

3

3

log 4

log 21

= 4

21

= 81

8. log

log7

7

32

8 2 = log

log

75

7

72

2

2

= 5 log 7 272

27log

= 107

9. ln ln 3

xx

3

= ln

ln

x

x

3

13

= 3 ln

ln

x

x13

= 9

10. 51

log 2 1010 =

2

10 51log

10⎟⎠

⎞⎜⎝

= 10 10125log

= 125

78

Page 11: CHAPTER 4 LOGARITHMIC FUNCTIONS - Browser Expressresources.npl.edu.hk/~hflau/MS-Sol-EE-C04.pdf · CHAPTER 4 LOGARITHMIC FUNCTIONS EXERCISE 4.1 Section 4.1 Properties and graphs of

SECTION 4.2 LAWS OF LOGARITHMS

11. = 3ln 4e43ln e

= 81ln e = 81

12. 35log 42log

125log 12log + 18log

aa

aaa

−−

= ⎟⎠⎞

⎜⎝⎛

⎟⎠⎞

⎜⎝⎛ ×

3542 log

12512 18 log

a

a

= ⎟⎠⎞

⎜⎝⎛

⎟⎠⎞

⎜⎝⎛

56 log

56 log

3

a

a

= ⎟⎠⎞

⎜⎝⎛

⎟⎠⎞

⎜⎝⎛

56 log

56 log 3

a

a

= 3

13. 21 log6 16 + 2 log6 3 = log6 16 2

1

+ log6 32

= log6 (4 × 9) = log6 36 = 2

14. 3 log + 4 log 2 log2 2

98

1615

2425

− 2

= 2

2

4

2

3

2 2524 log

1516 log +

89 log ⎟

⎠⎞

⎜⎝⎛−⎟

⎠⎞

⎜⎝⎛

⎟⎠⎞

⎜⎝⎛

= ⎥⎥⎦

⎢⎢⎣

⎡⎟⎠⎞

⎜⎝⎛÷⎟

⎠⎞

⎜⎝⎛×⎟

⎠⎞

⎜⎝⎛

243

2 2524

1516

89 log

= log2 2 = 1 15. log10 24 = log10 (23 × 3) = 3 log10 2 + log10 3 = 3p + q

16. log10 250 = log101 000

4

= log10 1 000 − log10 4 = log10 103 − log10 22

= 3 − 2 log10 2 = 3 − 2p

79

Page 12: CHAPTER 4 LOGARITHMIC FUNCTIONS - Browser Expressresources.npl.edu.hk/~hflau/MS-Sol-EE-C04.pdf · CHAPTER 4 LOGARITHMIC FUNCTIONS EXERCISE 4.1 Section 4.1 Properties and graphs of

CHAPTER 4 LOGARITHMIC FUNCTIONS

17. 2716log10 = 3

4

10 32log

= log10 24 − log10 33

= 4 log10 2 − 3 log10 3 = 4p − 3q

18. log10 0.6 = ⎟⎠⎞

⎜⎝⎛ ×

103 2 log10

= log10 2 + log10 3 − log10 10 = p + q − 1

19. log .103 13 5 =

31

10 227 log ⎟

⎠⎞

⎜⎝⎛

= log10 13

3

2

= 31

1010 2log 3log −

= pq31 −

20. log10 (7 + 4 ) + log10 (7 − 4 ) = log10 [(7 + 4 ) (7 − 4 )] = log10 [72 − ( 4 )2] = log10 45 = log10 (32 × 5) = log10 32 + log10 5 = log10 32 + log10

102

= 2 log10 3 + log10 10 − log10 2 = 2q + 1 − p 21. ln 75 = ln (3 × 52) = ln 3 + ln 52

= ln 3 + 2 ln 5 = a + 2b

22. ln 1549 = ln ⎟⎟

⎞⎜⎜⎝

×537 2

= ln 72 − (ln 3 + ln 5) = 2 ln 7 − ln 3 − ln 5 = 2c − a − b

23. ln 0.84 = ln ⎟⎠⎞

⎜⎝⎛ ×

2573

= ln 3 + ln 7 − ln 52

= ln 3 + ln 7 − 2 ln 5 = a + c – 2b = a − 2b + c

80

Page 13: CHAPTER 4 LOGARITHMIC FUNCTIONS - Browser Expressresources.npl.edu.hk/~hflau/MS-Sol-EE-C04.pdf · CHAPTER 4 LOGARITHMIC FUNCTIONS EXERCISE 4.1 Section 4.1 Properties and graphs of

SECTION 4.3 EQUATIONS INVOLVING LOGARITHMS

24. 21 ln 21 −

31 ln 25 +

41 ln 63 =

21 ln (3 × 7) −

31 ln 52 +

41 ln (32 × 7)

= 21 ln 3 +

21 ln 7 −

31 × 2 ln 5 +

41 × 2 ln 3 +

41 ln 7

= ln 3 − 32 ln 5 +

43 ln 7

= a − 32 b +

43 c

25. ln x5 − 3 ln x = ln x5 − ln x3

= ln 3

5

xx

= ln x2

26. 7 ln x + 12

ln (3x − 5) = ln + ln (3 5)12x x7 −

= ln 5)

12

x

x

7

3( −

27. ln ( 2 ln ( 3 ln x y x y xy

3 2 2) )− − = 3

2223 ln )(ln )(ln ⎟⎟⎠

⎞⎜⎜⎝

⎛−−

yxyxyx

= 3

22

23

)(

ln

⎟⎟⎠

⎞⎜⎜⎝

⎛yxyx

yx

= ln yx

3

4

28. 4 ln 3 ln + 14

ln yx

y x2

6 3− y = 41

36342

)(ln + ln ln yxyx

y−⎟⎟

⎞⎜⎜⎝

= ⎥⎥

⎢⎢

⎡⋅⋅⎟⎟

⎞⎜⎜⎝

⎛41

363

42

)( 1 ln yxyx

y

= ln y

x

234

52

EXERCISE 4.3 Section 4.3 Equations involving logarithms (page 105)

1. log8 (x − 3) + log8 (x − 5) = 1 log8 (x − 3) (x − 5) = log8 8 ∴ x2 − 8x + 15 = 8 x2 − 8x + 7 = 0 (x − 7) (x − 1) = 0 x = 7 or 1 (rejected) ∴ x = 7

81

Page 14: CHAPTER 4 LOGARITHMIC FUNCTIONS - Browser Expressresources.npl.edu.hk/~hflau/MS-Sol-EE-C04.pdf · CHAPTER 4 LOGARITHMIC FUNCTIONS EXERCISE 4.1 Section 4.1 Properties and graphs of

CHAPTER 4 LOGARITHMIC FUNCTIONS

2. log10 (x2 + 4) − 2 log10 x = 1

log10

2

2

xx + 4

= log10 10

∴ x

x

2

2

+ 4 = 10

x2 + 4 = 10x2

x2 = 49

x = 23

or −23

(rejected)

∴ x = 23

3. log7 (4x + 5) = 2 + log7 x log7 (4x + 5) = log7 72 + log7 x ∴ 4x + 5 = 49x 45x = 5

∴ x = 19

4. log6 3x + log6 (5x − 2) = 3 log6 [3x(5x − 2)] = log6 63

∴ 15x2 − 6x = 216 5x2 − 2x − 72 = 0 (x − 4) (5x + 18) = 0

x = 4 or −185

(rejected)

∴ x = 4 5. log15 (x + 2) + log15 (3x + 4) = 2 log15 (x + 2) (3x + 4) = log15 225 ∴ 3x2 + 10x + 8 = 225 3x2 + 10x − 217 = 0 (x − 7) (3x + 31) = 0

x = 7 or −331 (rejected)

∴ x = 7 6. = 0 52 x x + 5 6− = 0 (5 x x 2) (5 + 3)− = 2 or −3 (rejected) 5x

∴ x log 5 = log 2

x = log 2log 5

82

Page 15: CHAPTER 4 LOGARITHMIC FUNCTIONS - Browser Expressresources.npl.edu.hk/~hflau/MS-Sol-EE-C04.pdf · CHAPTER 4 LOGARITHMIC FUNCTIONS EXERCISE 4.1 Section 4.1 Properties and graphs of

SECTION 4.3 EQUATIONS INVOLVING LOGARITHMS

7. 22 x x 5(2− 1+ ) + 21 = 0 2 = 0 2 x x 5(2 2 + 21− × ) 2 = 0 2 x x 10(2 + 21− ) (2 = 0 x x 3) (2 7)− − = 3 or 7 2 x

∴ x = log 3log 2

or log 7log 2

8. = 0 e ex x2 7 18− − ( = 0 e ex x 9) ( + 2)− = 9 or −2 (rejected) e x

∴ x = ln 9 9. 6 2e ex x + 13 5− = 0 (2e ex x + 5) (3 1)− = 0

= e x 13

or −52

(rejected)

∴ x = ln 13

10. 2ex − 7 2x

e − 15 = 0

( 2x

e – 5) ( 22x

e + 3) = 0

e 2x

= 5 or −23 (rejected)

∴ 2x = ln 5

x = 2 ln 5 11. 23x = 7x–1

3x log 2 = (x − 1) log 7 x(3 log 2 − log 7) = −log 7

∴ x = 2 log 37 log

7 log−

12. = 5 32 1x+ x

(2x + 1) log 3 = x log 5 x (2 log 3 − log 5) = −log 3

∴ x = −

log 32 log 3 log 5

13. = 56 23 2 1− ⋅x x 7 +

+ = log (2log ( ) 723 2 1− ⋅x x 3 × 7) ∴ (3 − 2x) log 2 + (x + 1) log 7 = 3 log 2 + log 7 x log 7 − 2x log 2 = 0 x(log 7 − 2 log 2) = 0 log 7 − 2 log 2 ≠ 0 ∵ ∴ x = 0

83

Page 16: CHAPTER 4 LOGARITHMIC FUNCTIONS - Browser Expressresources.npl.edu.hk/~hflau/MS-Sol-EE-C04.pdf · CHAPTER 4 LOGARITHMIC FUNCTIONS EXERCISE 4.1 Section 4.1 Properties and graphs of

CHAPTER 4 LOGARITHMIC FUNCTIONS

14. = 3 4 8 2x+ 2( )x

= 3 [(2 ( )23 x+2 22 ) ]x

= 3 2 23 6x+ 4( )x

(3x + 6) log 2 = log 3 + 4x log 2 x log 2 = 6 log 2 − log 3

x = 6 log 2 log 3

log 2−

15. e x

x

3

3 =

2log64log

10

10

x

e⎟⎟⎠

⎞⎜⎜⎝

3

3

= log

log10

6

10

2

2

x

e⎟⎟⎠

⎞⎜⎜⎝

3

3

= 6

⎟⎟⎠

⎞⎜⎜⎝

3ln

3ex = ln 6

x = ln 6ln ln 3e3 −

= ln 63 ln 3−

16. = 13 . . . . . . . . . . . . . . . . . . . . . . . . . . (1) yx 7 + 6 = 5 . . . . . . . . . . . . . . . . . . . . . . . . . . (2) yx 7 6 − (1) + (2), 2(6x) = 18 6x = 9

∴ x = 6 log9 log

(1) − (2), 2(7y) = 8 7y = 4

∴ y = 7 log4 log

17. = 13 . . . . . . . . . . . . . . . . . . . . (1) yx 3 + 2 = 82 . . . . . . . . . . . . . . . . . . . . (2) 21 3 + 2 ++ yx

From (2), = 82 . . . . . . . . . . . . . . . . . . . . (3) )9(3 + )2(2 yx

(3) − (1) × 2, = 56 )3(7 y

= 8 y3

∴ y = log 8log 3

(1) × 9 − (3), = 35 7 2( x ) = 5 2 x

∴ x = log 5log 2

84

Page 17: CHAPTER 4 LOGARITHMIC FUNCTIONS - Browser Expressresources.npl.edu.hk/~hflau/MS-Sol-EE-C04.pdf · CHAPTER 4 LOGARITHMIC FUNCTIONS EXERCISE 4.1 Section 4.1 Properties and graphs of

SECTION 4.3 EQUATIONS INVOLVING LOGARITHMS

18. = 7 . . . . . . . . . . . . . . . . . (1) yx 5 4 − = 9 . . . . . . . . . . . . . . . . . (2) 21 5 + 4 −− yx

From (2), 14

4 5( ) ( )x y + 125

= 9

= 900 . . . . . . . . . . . . . . . (3) 25 4( ) )x + 4(5 y

) (1) × 4 + (3), = 928 29 4( x

= 32 4 x

∴ x = 52

(3) − (1) × 25, = 725 29 5( )y

= 25 5y

∴ y = 2 19. 2x + y = 6 . . . . . . . . . . . . . . . . . . . . . . . . . . (1) 3 2x y− = 10 . . . . . . . . . . . . . . . . . . . . . . . . . . (2)

From (2), x − 2y = log 10log 3

x − 2y = 1

log 3 . . . . . . . . . . . . . . . . . . . . . (3)

(1) × 2 + (3), 5x = 12 + 1

log 3

∴ x = 12 log 3 + 1

5 log 3

(1) − (3) × 2, 5y = 6 2

log 3−

y = 6 log 3 2

5 log 3−

20. = 7 y . . . . . . . . . . . . . . . . . . . . (1) 7 2( x )

)

x2 − y + 1 = 0 . . . . . . . . . . . . . . . . . . . . (2) From (2), y = x2 + 1 . . . . . . . . . . . . . . . . . . (3) Putting (3) into (1), = 7 7 2( x 2 1x +

= 7 2 x 2x

∴ x log 2 = x2 log 7 x(x log 7 − log 2) = 0

x = 0 or log 2log 7

. . . . . . . . . . . . (4)

Putting (4) into (3), when x = 0, y = 02 + 1 = 1

when x = log 2log 7

, y = 2

222

7) (log7) (log + 2) (log = 1 +

7 log2 log⎟⎟⎠

⎞⎜⎜⎝

85

Page 18: CHAPTER 4 LOGARITHMIC FUNCTIONS - Browser Expressresources.npl.edu.hk/~hflau/MS-Sol-EE-C04.pdf · CHAPTER 4 LOGARITHMIC FUNCTIONS EXERCISE 4.1 Section 4.1 Properties and graphs of

CHAPTER 4 LOGARITHMIC FUNCTIONS

EXERCISE 4.4 Section 4.4 Applications of logarithmic functions (page 110)

1. (a) 36 000 = 30 000t

⎟⎠⎞

⎜⎝⎛ +

10081

1.2 = (1.08)t

∴ t = 1.08 log1.2 log

= 2.369 i.e. It will take 2.4 years.

(b) 36 000 = 30 000t4

410081 ⎟

⎠⎞

⎜⎝⎛

×+

1.2 = (1.02)4t

∴ 4t = 1.02 log1.2 log

t = 2.302 i.e. It will take 2.3 years.

(c) 36 000 = 30 000 e 1008t

1.2 = e 1008t

∴ 1008t = ln 1.2

t = 2.279 i.e. It will take 2.3 years.

2. (a) 21 000 = 18 00012

121001 ⎟

⎠⎞

⎜⎝⎛

×+

r

67 =

12

200 11 ⎟

⎠⎞

⎜⎝⎛ +

r

121

67⎟⎠⎞

⎜⎝⎛ = 1 +

200 1r

r = 1 200⎥⎥⎥

⎢⎢⎢

⎡−⎟

⎠⎞

⎜⎝⎛ 1

67 12

1

= 15.514 5 i.e. The interest rate is 15.51% per annum.

(b) 21 000 = 18 000 e 1001×r

67 = e 100

r

∴ 100

r = ln 67

r = 15.415 1 i.e. The interest rate is 15.42% per annum.

86

Page 19: CHAPTER 4 LOGARITHMIC FUNCTIONS - Browser Expressresources.npl.edu.hk/~hflau/MS-Sol-EE-C04.pdf · CHAPTER 4 LOGARITHMIC FUNCTIONS EXERCISE 4.1 Section 4.1 Properties and graphs of

SECTION 4.4 APPLICATIONS OF LOGARITHMIC FUNCTIONS

3. (a) P = 6.5 et

1003

(b) 8 = 6.5 et

1003

5.6

8 = et

1003

∴ 100

3 t = ln 5.6

8

t = 6.92 i.e. The population will become 8 million after 7 years. 4. (a) 1 800 × 50.04t = 1 300 × 50.08t

300 1800 1 = t

t

04.0

08.0

55

1318 = 50.08

t − 0.04

t

∴ 0.04t = 5 log

1318 log

t = 5.05 ∴ The populations will be equal after 5 months.

(b) 2(1 800 × 50.04t ) = 1 300 × 50.08t

300 1

800 12 × = t

t

04.0

08.0

55

1336 = 50.08

t − 0.04

t

∴ 0.04t = 5 log

1336 log ⎟

⎠⎞

⎜⎝⎛

t = 15.82 ∴ The population of the black ants will be twice that of the red ants after 16 months.

5. (a) 2

0N = N0 e–k(1 590)

21 = e–1 590k

∴ −1 590k = ln 21

k = 0.000 436 (3 sig. fig.)

(b) N = 10 e–0.000 436(2 000)

= 4.181 1 i.e. There will be 4.18 grams remaining.

(c) 5 = 6 e–0.000 436t

∴ −0.000 436t = ln 65

t = 418.17 i.e. It takes 418 years.

87

Page 20: CHAPTER 4 LOGARITHMIC FUNCTIONS - Browser Expressresources.npl.edu.hk/~hflau/MS-Sol-EE-C04.pdf · CHAPTER 4 LOGARITHMIC FUNCTIONS EXERCISE 4.1 Section 4.1 Properties and graphs of

CHAPTER 4 LOGARITHMIC FUNCTIONS

6. (a) Initially, the time t = 0. ∴ W = 48 e–0.028(0)

= 48 i.e. The initial weight of the piece is 48 grams.

(b) After 10 years, W = 48 e–0.028(10)

= 36.277 6 i.e. There will be 36.28 grams remaining after 10 years.

(c) 24 = 48 e–0.028t

∴ −0.028t = ln 21

t = 24.76 i.e. The half-life is 25 years.

(d) 9 = 48 e–0.028t

∴ −0.028t = ln 489

t = 59.78 i.e. The piece will decay to 9 grams after 60 years. 7. (a) Let the required equation be N(t) = N0 e–kt.

Then 21 N0 = N0 e–k(5 750)

∴ −5 750k = ln 21

k = 0.000 121 Hence, the required equation is N(t) = N0 e–0.000 121t.

(b) 0.3 = e–0.000 121t

∴ −0.000 121t = ln 0.3 t = 9 950 (to the nearest ten) i.e. The age of the skeleton is 9 950 years old.

8. (a) 2

0N = N0 e–0.000 125t

21 = e–0.000 125t

∴ −0.000 125t = ln 21

t = 5 545.18 i.e. The half-life of carbon-14 is 5 545 years.

(b) 1 − 0.6 = e–0.000 125t

∴ −0.000 125 t = ln 0.4 t = 7 330.33 i.e. The piece of wood is 7 330 years old.

88

Page 21: CHAPTER 4 LOGARITHMIC FUNCTIONS - Browser Expressresources.npl.edu.hk/~hflau/MS-Sol-EE-C04.pdf · CHAPTER 4 LOGARITHMIC FUNCTIONS EXERCISE 4.1 Section 4.1 Properties and graphs of

SECTION 4.4 APPLICATIONS OF LOGARITHMIC FUNCTIONS

9. (a) When I = I0,

D = 10 log10 ⎟⎟⎠

⎞⎜⎜⎝

0

0

II

= 10 log10 1 = 0 i.e. The sound level of the threshold sound is 0 dB.

(b) (i) When I = 10I0,

D = 10 log10 ⎟⎟⎠

⎞⎜⎜⎝

0

010II

= 10 log10 10 = 10 i.e. The sound level of rustle of leaves is 10 dB.

(ii) When I = 109.5I0,

D = 10 log10 ⎟⎟⎠

⎞⎜⎜⎝

0

05.910

II

= 10 log10 109.5

= 95 i.e. The sound level of drilling is 95 dB.

(c) For printer,

50 = 10 log10 ⎟⎟⎠

⎞⎜⎜⎝

0II

∴ 0II = 10 10

50

I = 105I0 The ratio of the intensity of the sound of drilling to that of the printer

= 0

50

5.9

1010

II

= 104.5

∴ The sound of drilling is 104.5 times as intense as the printing noise.

(d) Let D′ and I′ be the new sound level and intensity respectively. Then D′ = D + 10 and I′ = kI

10 log10 ⎟⎟⎠

⎞⎜⎜⎝

0II + 10 = 10 log10 ⎟⎟

⎞⎜⎜⎝

0IkI

log10 ⎟⎟⎠

⎞⎜⎜⎝

0II + 1 = log10 ⎟⎟

⎞⎜⎜⎝

0IkI

log10 ⎟⎟⎠

⎞⎜⎜⎝

⎛÷

00

II

IkI = 1

∴ log10 k = 1 k = 10 i.e. We have to multiply the intensity by 10.

89

Page 22: CHAPTER 4 LOGARITHMIC FUNCTIONS - Browser Expressresources.npl.edu.hk/~hflau/MS-Sol-EE-C04.pdf · CHAPTER 4 LOGARITHMIC FUNCTIONS EXERCISE 4.1 Section 4.1 Properties and graphs of

CHAPTER 4 LOGARITHMIC FUNCTIONS

10. (a) pH = log10 41016.31

−×

= 3.500 3 i.e. The pH value of the orange juice is 3.50.

(b) (i) 7 = log10 ]OH[

1

3+

∴ ]OH[

1

3+ = 107

[H3O+] = 10–7

i.e. The hydronium ion concentration of distilled water is 10–7 moles per litre.

(ii) 1 = log10 ]OH[

1

3+

∴ [H3O+] = 10−1

i.e. The hydronium ion concentration of hydrochloric acid is 10–1 moles per litre.

(iii) 12 = log10 ]OH[

1

3+

∴ [H3O+] = 10–12

i.e. The hydronium ion concentration of household ammonia is 10–12 moles per litre.

(iv) 5.5 = log10 ]OH[

1

3+

∴ [H3O+] = 10–5.5

i.e. The hydronium ion concentration of face cleaning solution is 10–5.5 moles per litre.

90

Page 23: CHAPTER 4 LOGARITHMIC FUNCTIONS - Browser Expressresources.npl.edu.hk/~hflau/MS-Sol-EE-C04.pdf · CHAPTER 4 LOGARITHMIC FUNCTIONS EXERCISE 4.1 Section 4.1 Properties and graphs of

SECTION 4.5 LOGARITHMIC TRANSFORMATIONS

EXERCISE 4.5 Section 4.5 Logarithmic transformations (page 123)

1. (a) x 2 4 8 10 12

y 10.6 7.3 5.4 4.8 4.2

log10 x 0.301 0.602 0.903 1 1.079

log10 y 1.025 0.863 0.732 0.681 0.623

(b) Since the points plotted in (a) lie approximately in a straight line, thus x and y are related by y k . xn =

(c) log10 k = 1.18 k = 15.1 (3 sig. fig.)

n = 118

0. 0.82

0.7−

= −0.514 (3 sig. fig.)

91

Page 24: CHAPTER 4 LOGARITHMIC FUNCTIONS - Browser Expressresources.npl.edu.hk/~hflau/MS-Sol-EE-C04.pdf · CHAPTER 4 LOGARITHMIC FUNCTIONS EXERCISE 4.1 Section 4.1 Properties and graphs of

CHAPTER 4 LOGARITHMIC FUNCTIONS

2. (a) t 5 10 15 20 25

s 120 490 1 100 1 965 3 070

log10 t 0.699 1 1.176 1.301 1.398

log10 s 2.079 2.690 3.041 3.293 3.487

(b) log10 p = 0.65 ∴ p = 4.47 (3 sig. fig.)

n = 2.690

10 0.65 0−

−.

= 2.04 (3 sig. fig.)

92

Page 25: CHAPTER 4 LOGARITHMIC FUNCTIONS - Browser Expressresources.npl.edu.hk/~hflau/MS-Sol-EE-C04.pdf · CHAPTER 4 LOGARITHMIC FUNCTIONS EXERCISE 4.1 Section 4.1 Properties and graphs of

SECTION 4.5 LOGARITHMIC TRANSFORMATIONS

3. (a) d 108 150 778 1 427 2 875 4 497

T 0.6 1.0 11.9 29.5 84.0 164.8

log10 d 2.03 2.18 2.89 3.15 3.46 3.65

log10 T −0.22 0 1.08 1.47 1.92 2.22

(b) Since the points plotted in (a) are approximately on a straight line, the data are consistent with a relation of the form T = kd . n

(c) n = 2.7 0.54 2.5

= 1.47 (3 sig. fig.)

2.7

4

log

010−

k =

2.7 0.54 2.5

− (same slope)

∴ log10 k = −3.17 k = 6.76 × 10−4 (3 sig. fig.)

93

Page 26: CHAPTER 4 LOGARITHMIC FUNCTIONS - Browser Expressresources.npl.edu.hk/~hflau/MS-Sol-EE-C04.pdf · CHAPTER 4 LOGARITHMIC FUNCTIONS EXERCISE 4.1 Section 4.1 Properties and graphs of

CHAPTER 4 LOGARITHMIC FUNCTIONS

4. (a) d 5 12 15 20 28

F 7.2 1.3 0.8 0.5 0.2

log10 d 0.70 1.08 1.18 1.30 1.45

log10 F 0.86 0.11 −0.10 −0.30 −0.70

From the graph of log10 F against log10 d, we see that the points plotted are approximately on a straight line. It reveals that the data support the claim.

(b) log10 k = 2.3 ∴ k = 200 (3 sig. fig.)

n = 2.3 −

1.50 0.4

= −2

(c) From the result of (b), F = 200d − 2

When d = 3, F = 200(3−2) = 22.2

94

Page 27: CHAPTER 4 LOGARITHMIC FUNCTIONS - Browser Expressresources.npl.edu.hk/~hflau/MS-Sol-EE-C04.pdf · CHAPTER 4 LOGARITHMIC FUNCTIONS EXERCISE 4.1 Section 4.1 Properties and graphs of

SECTION 4.5 LOGARITHMIC TRANSFORMATIONS

5. (a) x 6 15 22 30 43

y 4.0 2.6 2.1 1.8 1.6

ln x 1.79 2.71 3.09 3.40 3.76

ln y 1.39 0.96 0.74 0.59 0.47

(b) Let y = kx n . Then ln k = 2.25 k = 9.49 (3 sig. fig.)

and n = 2.25

0−

0.8 3

= −0.483 (3 sig. fig.) ∴ y = 9.49 0 483x − .

95

Page 28: CHAPTER 4 LOGARITHMIC FUNCTIONS - Browser Expressresources.npl.edu.hk/~hflau/MS-Sol-EE-C04.pdf · CHAPTER 4 LOGARITHMIC FUNCTIONS EXERCISE 4.1 Section 4.1 Properties and graphs of

CHAPTER 4 LOGARITHMIC FUNCTIONS

6. (a) t 4 8 12 16 20 24

S 55 157 290 450 620 830

ln t 1.39 2.08 2.48 2.77 3.00 3.18

ln S 4.01 5.06 5.67 6.11 6.43 6.72

(b) Let S = kt . n

Then ln k = 1.9 k = 6.69 (3 sig. fig.)

and n = 5 2. 1.92.2 0

= 1.5 ∴ S = 6 6 9 1. .5t (c) When t = 10, S = 6.69 (101.5) = 212

96

Page 29: CHAPTER 4 LOGARITHMIC FUNCTIONS - Browser Expressresources.npl.edu.hk/~hflau/MS-Sol-EE-C04.pdf · CHAPTER 4 LOGARITHMIC FUNCTIONS EXERCISE 4.1 Section 4.1 Properties and graphs of

SECTION 4.5 LOGARITHMIC TRANSFORMATIONS

7. (a) P = a ekt

∴ ln P = ln (a ekt) = ln a + ln ekt

= kt + ln a (b) t 1 2 3 4 5 P 160 276 441 743 1 210 ln P 5.075 5.620 6.089 6.611 7.098

(c) ln a = y-intercept of the line in (b) = 4.6 ∴ a = e4.6

= 99.5 (3 sig. fig.) k = slope of the line in (b)

= 05

6.41.7−−

= 0.5

(d) From the result of (c), P= 99.5 e0.5t

When t = 7, P = 99.5 e0.5(7)

= 3 294.99 i.e. The population of the bacteria is approximately 3 295 after 7 hours.

97

Page 30: CHAPTER 4 LOGARITHMIC FUNCTIONS - Browser Expressresources.npl.edu.hk/~hflau/MS-Sol-EE-C04.pdf · CHAPTER 4 LOGARITHMIC FUNCTIONS EXERCISE 4.1 Section 4.1 Properties and graphs of

CHAPTER 4 LOGARITHMIC FUNCTIONS

8. (a) H(t) = h ebt

∴ ln [H(t)] = ln (h ebt) = ln h + ln ebt

= bt + ln h (b) t 1 2 3 4 5

H(t) 2.9 3.3 4.1 4.5 5.2

ln [H(t)] 1.065 1.194 1.411 1.504 1.649

(c) b = slope of the line in (b)

= 04

9.05.1−−

= 0.15 ln h = y-intercept of the line in (b) = 0.9 ∴ h = e0.9

= 2.46 (3 sig. fig.)

(d) From the result of (c), H(t) = 2.46 e0.15t

When H(t) = 6.5, 6.5 = 2.46 e0.15t

∴ 0.15t = ln 46.25.6

t = 6.478 i.e. The tree will be 6.5 m tall after 6.5 years.

(e) There is a constraint because the tree will not grow at such a rapid rate after 10 years. Besides, a tree has a limiting height and it cannot grow at this rate forever.

98

Page 31: CHAPTER 4 LOGARITHMIC FUNCTIONS - Browser Expressresources.npl.edu.hk/~hflau/MS-Sol-EE-C04.pdf · CHAPTER 4 LOGARITHMIC FUNCTIONS EXERCISE 4.1 Section 4.1 Properties and graphs of

SECTION 4.5 LOGARITHMIC TRANSFORMATIONS

9. (a) t 0 2 4 6 8 10 M 8.0 7.5 7.0 6.7 6.3 5.8 ln M 2.079 2.015 1.946 1.902 1.841 1.758

(b) M = a e–kt

∴ ln M = ln (a e–kt) = ln a + ln e–kt

= ln a − kt ln a = y-intercept of the line in (a) = 2.062 5 ∴ a = 7.87 (3 sig. fig.) −k = slope of the line in (a)

= 210275.1

−−

= −0.031 3 ∴ k = 0.031 3 (3 sig. fig.)

(c) From the result of (b), M = 7.87 e–0.031 3t

When t= 15, M= 7.87 e–0.031 3(15)

= 4.921 2 i.e. The mass of the substance will be 4.92 grams.

(d) 287.7 = 7.87 e–0.031 3t

∴ −0.031 3t = ln 21

t = 22.145 i.e. The half-life of the substance is 22.1 months.

99

Page 32: CHAPTER 4 LOGARITHMIC FUNCTIONS - Browser Expressresources.npl.edu.hk/~hflau/MS-Sol-EE-C04.pdf · CHAPTER 4 LOGARITHMIC FUNCTIONS EXERCISE 4.1 Section 4.1 Properties and graphs of

CHAPTER 4 LOGARITHMIC FUNCTIONS

10. (a) t 30 60 90 120 150

Q 1 776 1 150 723 450 290

ln Q 7.482 7.048 6.583 6.109 5.670

If Q = a ebt, then ln Q = ln (a ebt) = ln a + ln ebt

= bt + ln a Since the plotted points of ln Q against t are approximately on a straight line, the above

relation is valid.

(b) ln a = y-intercept of the line in (a) = 7.9 ∴ a = 2 697 (to the nearest integer) b = slope of the line in (a)

= 01509.77.5

−−

= −0.015 (2 sig. fig.)

(c) From the result of (b), Q = 2 697 e–0.015t

When t = 0, Q = 2 697 e–0.015(0)

= 2 697 i.e. The battery can hold 2 697 C of charge.

(d) 100 = 2 697 e–0.015t

∴ −0.015t = ln 697 2

100

t = 219.65 i.e. The battery can last for 220 minutes.

100

Page 33: CHAPTER 4 LOGARITHMIC FUNCTIONS - Browser Expressresources.npl.edu.hk/~hflau/MS-Sol-EE-C04.pdf · CHAPTER 4 LOGARITHMIC FUNCTIONS EXERCISE 4.1 Section 4.1 Properties and graphs of

SECTION 4.5 LOGARITHMIC TRANSFORMATIONS

11. (a) x 2 4 6 8 10 12

y 3.5 3.8 4.1 4.3 4.5 4.6

e y 33.1 44.7 60.3 73.7 90.0 99.5

(b) y = ln (a + bx) ∴ = a + bx e y

Hence, a = y-intercept of the line in (a) = 20 b = slope of the line in (a)

= 68 20

7 0−

= 6.86 (3 sig. fig.)

12. (a) x 1 3 5 7 9

y 3 34 85 160 255

yx2 3 3.78 3.4 3.27 3.15

log102

xx

0 0.053 0.028 0.017 0.012

101

Page 34: CHAPTER 4 LOGARITHMIC FUNCTIONS - Browser Expressresources.npl.edu.hk/~hflau/MS-Sol-EE-C04.pdf · CHAPTER 4 LOGARITHMIC FUNCTIONS EXERCISE 4.1 Section 4.1 Properties and graphs of

CHAPTER 4 LOGARITHMIC FUNCTIONS

(b) y = ax2 + b log10 x

∴ y

x 2 = 2

10log + x

xba ⋅

Hence, a = y-intercept of the line in (a) = 3 b = slope of the line in (a)

= 3 3 . −

30.02 0

= 15

13. (a) ln ⎥⎦

⎤⎢⎣

⎡−1

)(500

tP = ln ⎥

⎤⎢⎣

⎡−⎟

⎠⎞

⎜⎝⎛+

÷−

1 1

500500btea

= ln (1 + a e–bt − 1) = ln (a e–bt) = ln a + ln e−bt

= ln a − bt

(b) Draw the graph of ln ⎥⎦

⎤⎢⎣

⎡− 1

)(500

tPagainst t.

t 1 2 3 4 5 P(t) 120 142 170 209 236

ln ⎥⎦

⎤⎢⎣

⎡−1

)(500

tP 1.153 0.925 0.663 0.331 0.112

102

Page 35: CHAPTER 4 LOGARITHMIC FUNCTIONS - Browser Expressresources.npl.edu.hk/~hflau/MS-Sol-EE-C04.pdf · CHAPTER 4 LOGARITHMIC FUNCTIONS EXERCISE 4.1 Section 4.1 Properties and graphs of

SECTION 4.5 LOGARITHMIC TRANSFORMATIONS

ln a = y-intercept of the line in the figure = 1.475 ∴ a = 4.37 (3 sig. fig.) −b = slope of the line in the figure

= 15

2.11.0−−

= −0.275 ∴ b = 0.275

(c) From the result of (b),

P(t) = te 275.0 37.41

500−+

(i) When t = 0,

P(t)= 0 275.0 37.41

500×−+ e

= 93.11 i.e. The population of frogs is 93.

(ii) When t = 12,

P(t) = 12 275.0 37.41500

×−+ e

= 430.60 i.e. The population of frogs is 431. (d) When t tends to infinity, 4.37 e–0.275t tends to zero.

∴ P(t) = 01

500+

= 500 i.e. The population of frogs in the pond will eventually be 500. 14. (a) y = 50 + 30 (1 − p e–qx)

30

50−y = 1 − p e–qx

1 − 30

50−y = p e–qx

∴ ln ⎟⎠⎞

⎜⎝⎛ −−

30501 y = ln (p e–qx)

= ln p + ln e–qx

= ln p − qx

Hence, ln ⎟⎠⎞

⎜⎝⎛ −−

30501 y and x are linearly related.

103

Page 36: CHAPTER 4 LOGARITHMIC FUNCTIONS - Browser Expressresources.npl.edu.hk/~hflau/MS-Sol-EE-C04.pdf · CHAPTER 4 LOGARITHMIC FUNCTIONS EXERCISE 4.1 Section 4.1 Properties and graphs of

CHAPTER 4 LOGARITHMIC FUNCTIONS

(b) Draw the graph of ln ⎟⎠⎞

⎜⎝⎛ −−

30501 y against x.

x 1 2 3 4 5 y 55 62 64 68 69

ln ⎟⎠⎞

⎜⎝⎛ −−

30501 y −0.182 −0.511 −0.629 −0.916 −1.003

ln p = y-intercept of the line above = 0 ∴ p = 1 −q = slope of the line above

= 03

063.0−−−

= −0.21 ∴ q = 0.21

(c) From the result of (b), y = 50 + 30(1 − e–0.21x) 75 = 50 + 30(1 − e–0.21x)

e–0.21x = 61

∴ −0.21x = ln 61

x = 8.532 i.e. 8.5 kg per m2 of fertilizer should be applied.

(d) (i) When x = 0, y = 50 + 30[1 − e–0.21(0)] = 50 i.e. The yield will be 50 kg per m2. (ii) When x is very large, e–0.21x ≈ 0 ∴ y = 50 + 30(1 − 0) = 80 i.e. The yield will be 80 kg per m2.

104

Page 37: CHAPTER 4 LOGARITHMIC FUNCTIONS - Browser Expressresources.npl.edu.hk/~hflau/MS-Sol-EE-C04.pdf · CHAPTER 4 LOGARITHMIC FUNCTIONS EXERCISE 4.1 Section 4.1 Properties and graphs of

SECTION 4.5 LOGARITHMIC TRANSFORMATIONS

15. (a) N = atbe–t

ln N = ln (atbe–t) = ln a + ln tb + ln e–t

= ln a + b ln t − t ∴ ln N + t = ln a + b ln t Hence, ln N + t and ln t are linearly related.

(b) Draw the graph of ln N + t against ln t. t 1 2 3 4 5

N 55 160 200 172 128

ln t 0 0.693 1.099 1.386 1.609

ln N + t 5.007 7.075 8.298 9.147 9.852

ln a = y-intercept of the line above = 5 ∴ a = 148.4 (1 d.p.) b = slope of the line above

= 0 15 8

−−

= 3

105

Page 38: CHAPTER 4 LOGARITHMIC FUNCTIONS - Browser Expressresources.npl.edu.hk/~hflau/MS-Sol-EE-C04.pdf · CHAPTER 4 LOGARITHMIC FUNCTIONS EXERCISE 4.1 Section 4.1 Properties and graphs of

CHAPTER 4 LOGARITHMIC FUNCTIONS

(c) From the result of (b), N = 148.4 t3 e–t

When t = 8, N = 148.4(83)e–8

= 25.49 i.e. 25 chickens are infected.

REVISION EXERCISE 4 Revision exercise 4 (page 128)

1. (a) log2 (x2y3) = log2 [(2p)2 (8q)3] = log2 [(22p) (29q)] = log2 [22p+9q] = 2p + 9q

(b) 57

37

loglog

xx = 5

7

31

7

loglog

xx

= x

x

log 5

log 31

7

7

= 151

2. (a) 2 log10 x + log10 3 = log10 (7x − 2) log10 x2 + log10 3 = log10 (7x − 2) log10 3x2 = log10 (7x − 2) ∴ 3x2 = 7x − 2 3x2 − 7x + 2 = 0 (3x − 1) (x − 2) = 0

∴ = 31 or 2

(b) 1 + 2 log10 (x − 1) = log10 (2x − 3) + log10 (5x − 2) log10 10 + log10 (x − 1)2 = log10 (2x − 3) (5x − 2) log10 (10x2 − 20x + 10) = log10 (10x2 − 19x + 6) ∴ 10x2 − 20x + 10 = 10x2 − 19x + 6 ∴ x = 4 3. (a) 52x − 5 x+1 + 6 = 0 52x − 5(5x) + 6 = 0 (5x − 2) (5x − 3) = 0 5x = 2 or 3

∴ x = 5 log2 log or

5 log3 log

= 0.430 7 or 0.682 6

106

Page 39: CHAPTER 4 LOGARITHMIC FUNCTIONS - Browser Expressresources.npl.edu.hk/~hflau/MS-Sol-EE-C04.pdf · CHAPTER 4 LOGARITHMIC FUNCTIONS EXERCISE 4.1 Section 4.1 Properties and graphs of

REVISION EXERCISE 4

(b) e0.2x − 2e0.1x − 3 = 0 (e0.1x − 3) (e0.1x + 1) = 0 e0.1x = 3 or −1 (rejected) ∴ 0.1x = ln 3 x = 10.986 1

(c) − e3log88 ln 5 = x2

x3log77− ∴ 3 − 5 = x 2 − 3x x2 − 3x + 2 = 0 (x − 1) (x − 2) = 0 ∴ x = 1 or 2 4. ln = hx + k )]([ xf = 1 ∵ f ( )0 ∴ ln 1 = h(0) + k Hence, k = 0 = e∵ f ( )2 3

∴ ln e3 = h(2) + k 3 = 2h

∴ h = 32

5. (a) The equation connecting x and y should be of the form ln y = m ln x + k where m and k are constants. m = slope of the graph

= 42−

= 21

k = y-intercept of the graph = 2 ∴ The required equation is

ln y = 21

− ln x + 2

ln y + ln x = 2 ln x y = 2 i.e. x y = e2

107

Page 40: CHAPTER 4 LOGARITHMIC FUNCTIONS - Browser Expressresources.npl.edu.hk/~hflau/MS-Sol-EE-C04.pdf · CHAPTER 4 LOGARITHMIC FUNCTIONS EXERCISE 4.1 Section 4.1 Properties and graphs of

CHAPTER 4 LOGARITHMIC FUNCTIONS

(b) x y = e2

∴ y = x

e2

x 1 2 3 4 5 6 7 8 9

y =x

e2

7.39 5.22 4.27 3.69 3.30 3.02 2.79 2.61 2.46

6. (a) y = kax Taking logarithms, log10 y = log10 k + x log10 a. log10 a = slope of the graph

= 1 52 4

−−

= 21

∴ a = 21

10 log10 k = y-intercept of the graph

∴ 0 1

log 2 10

−− k

= 21

log10 k = 23

∴ k = 23

10

108

Page 41: CHAPTER 4 LOGARITHMIC FUNCTIONS - Browser Expressresources.npl.edu.hk/~hflau/MS-Sol-EE-C04.pdf · CHAPTER 4 LOGARITHMIC FUNCTIONS EXERCISE 4.1 Section 4.1 Properties and graphs of

REVISION EXERCISE 4

(b) y = 10 23

(10 21

)x

∴ y = 10 23

21

+x

x −3 −2 −1 0 0.5 1

y = 10 2

321

+x 1 3.16 10 31.6 56.2 100

7. (a) When x tends to negative infinity, y = a ex + b tends to b. From the graph, b = 2. The point (0, 3) is on the graph. ∴ 3 = a e0 + 2 ∴ a = 1

109

Page 42: CHAPTER 4 LOGARITHMIC FUNCTIONS - Browser Expressresources.npl.edu.hk/~hflau/MS-Sol-EE-C04.pdf · CHAPTER 4 LOGARITHMIC FUNCTIONS EXERCISE 4.1 Section 4.1 Properties and graphs of

CHAPTER 4 LOGARITHMIC FUNCTIONS

(b)

Note: The graph of y = a e−x + b is the mirror image of the graph of y = a ex + b about the

y-axis. 8. (a) Q = A ekt

Putting t = 1, Q = 96 into it, 96 = A ek(1)

∴ 96 = A ek. . . . . . . . . . . . . . . . . . . . . . . . (1) Putting t = 3, Q = 144 into it, 144 = A ek(3)

∴ 144 = A e3k. . . . . . . . . . . . . . . . . . . . . . . (2)

(2) ÷ (1), 23 = e2k

ek = 23 . . . . . . . . . . . . . . . . . . . (3)

∴ k = ln 23

= 0.202 7 Putting (3) into (1),

96 = A ⎟⎟⎠

⎞⎜⎜⎝

23

∴ A = 78.38

(b) From the result of (a), Q = 78.38 e0.202 7t

When Q = 300, 300 = 78.38 e0.202 7t

∴ 0.202 7t = ln 38.78

300

t = 6.622 i.e. The amount of polluted material will become 300 after 7 months.

9. (a) (i) When S = 21 S0,

21 S0 = S0 e–0.12t

∴ −0.12t = ln 21

t = 5.776 i.e. The sales will reduce to half after 5.8 months.

110

Page 43: CHAPTER 4 LOGARITHMIC FUNCTIONS - Browser Expressresources.npl.edu.hk/~hflau/MS-Sol-EE-C04.pdf · CHAPTER 4 LOGARITHMIC FUNCTIONS EXERCISE 4.1 Section 4.1 Properties and graphs of

REVISION EXERCISE 4

(ii) When S = 30% of S0, 0.3S0 = S0 e–0.12t

0.3 = e–0.12t

∴ −0.12t = ln 0.3 t = 10.033 i.e. The sales will diminish to 30% of the original amount after 10.0 months. (b) A = the sales at the beginning of the campaign = S0 e–0.12 × 6

= S0 e–0.72

When S = S0, S0 = S0 e–0.72 × e0.08t

1 = e–0.72 + 0.08t

∴ −0.72 + 0.08t = 0 t = 9 i.e. The sales will resume to S0 after 9 months. 10. (a) 2 log2 x = y + 1 . . . . . . (1) log2 (2x) = y + 5 . . . . . . (2) (1) − (2), 2 log2 x − log2 (2x) = −4 ∴ log2 x2 − log2 (2x) = −4

log2

2

2x

x = −4

x2

= 2−4

x = 18

. . . . . . . . (3)

Putting (3) into (1), 2 log2 18

= y + 1

2 (−3) = y + 1 ∴ y = −7

(b) + = 4 e x2 xe 23 −

− 4 + = 0 e x2 xe 23 −

(ex − ) (e − ) = 0 xe− x xe−3 ∴ = or ex xe− xe−3 = 1 or 3 e x2

2x = 0 or ln 3

x = 0 or 12

ln 3

(c) log10 (9 − 1) = logx10 (3 + 1) + 1 x

1 + 31 9log10 x

x − = 1

1 + 3

1) + (3 1) 3(log10 x

xx − = 1

log10 (3 − 1) = 1 x

− 1 = 10 3x

= 11 3x

∴ x = loglog

10

10

113

= 2.183 (4 sig. fig.)

111

Page 44: CHAPTER 4 LOGARITHMIC FUNCTIONS - Browser Expressresources.npl.edu.hk/~hflau/MS-Sol-EE-C04.pdf · CHAPTER 4 LOGARITHMIC FUNCTIONS EXERCISE 4.1 Section 4.1 Properties and graphs of

CHAPTER 4 LOGARITHMIC FUNCTIONS

11. (a) (ln x)2 = 2 ln x (ln x)2 − 2 ln x = 0 ln x (ln x − 2) = 0 ln x = 0 or 2 ∴ x = 1 or e2

(b)

(c) From the graph in (b), (ln x)2 > 2 ln x when x < 1 or x > e2

(d) (i) Substitute the point (e2, 5) into y = 2 ln x + k, 5 = 2 ln e2 + k 5 = 2(2) + k ∴ k = 1 (ii)

Note: The graph of y = 2 ln x + 1 can be obtained by shifting the graph of y = 2 ln x

in (b) 1 unit upward.

112

Page 45: CHAPTER 4 LOGARITHMIC FUNCTIONS - Browser Expressresources.npl.edu.hk/~hflau/MS-Sol-EE-C04.pdf · CHAPTER 4 LOGARITHMIC FUNCTIONS EXERCISE 4.1 Section 4.1 Properties and graphs of

REVISION EXERCISE 4

12. (a) m = 5 e−0.4t

When t = 0, m = 5 e−0.4(0)

= 5

(b) If the mass becomes 54

g,

54

= 5 e−0.4t

−0.4t = ln 14

t = ln40 4.

= 3.466 i.e. The required time is 3.466 hours.

(c) Let t1 and t2 be the times when the mass becomes 3 g and 2.9 g respectively. 3 = . . . . . . . . . . . . (1) 14.0 5 te−

2.9 = . . . . . . . . . . . . (2) 24.0 5 te−

From (1), 35

= 14.0 te−

−0.4t1 = ln 35

t1 = 53 ln

4.01

Similarly, from (2), t2 = 59.2 ln

4.01

t2 − t1 = ⎟⎠⎞

⎜⎝⎛ −

− 53 ln

59.2 ln

4.01

= 39.2 ln

4.01

= 0.084 75 i.e. The required time = 0.084 75 hour

(d) (i) m = 5 e–0.4t

ln m = ln (5 e–0.4t) = ln 5 + ln e–0.4t

= ln 5 − 0.4t ∴ ln m and t are connected by the equation in the form ln m = a + bt where a and b

are constants. Hence, the graph of ln m against t is a straight line. (ii) The slope is −0.4. The intercept on the ln m axis is the value of ln m when t = 0. i.e. ln m = ln 5 ∴ The intercept = ln 5

113

Page 46: CHAPTER 4 LOGARITHMIC FUNCTIONS - Browser Expressresources.npl.edu.hk/~hflau/MS-Sol-EE-C04.pdf · CHAPTER 4 LOGARITHMIC FUNCTIONS EXERCISE 4.1 Section 4.1 Properties and graphs of

CHAPTER 4 LOGARITHMIC FUNCTIONS

13. (a) (i) The half-life is the time at which P = 50. 50 = 100 e–0.000 12t

∴ −0.000 12t = ln 10050

t = 5 780 (3 sig. fig.) i.e. The half-life of carbon-14 is 5 780 years. (ii) When P = 30,

30 = 100 e−0.000 12t

∴ −0.000 12t = ln 10030

t = 10 033.11 i.e. The bone has been buried for 10 033 years.

(b) (i) Suppose the man has died for t0 hours at 11 p.m. Now T0 = 16. When t = t0, T = 25. ∴ 25 − 16 = (37.5 − 16) 0kte−

9 = 21.5 . . . . . . . . . . . . . . . . . . . . . . (1) 0kte−

When t = t0 + 1, T = 20. ∴ 20 − 16 = (37.5 − 16) )1( 0 +− tke 4 = 21.5 )1( 0 +− tke

(2) ÷ (1), 94 = . . . . . . . . . . . . . . . . . . . . . (2) )( 00 ktkkte −−−−

94 = e–k. . . . . . . . . . . . . . . . . . . . . . . . . . . . . (3)

∴ −k = ln 94

k = 0.81 (2 sig. fig.) (ii) Putting (3) into (1),

9 = 21.50

94 t

⎟⎠⎞

⎜⎝⎛

∴ t0 ln ⎟⎠⎞

⎜⎝⎛

94 = ln

5.219

∴ t0 = 1.074 ∴ The man has died for 1 hour at 11 p.m. i.e. The murder was committed at 10 p.m. (iii) No, carbon-dating cannot be employed to estimate the time of death as only a very little

amount of carbon-14 would have decayed. The change in percentage of carbon-14 cannot be measured accurately enough to evaluate the murder time.

114

Page 47: CHAPTER 4 LOGARITHMIC FUNCTIONS - Browser Expressresources.npl.edu.hk/~hflau/MS-Sol-EE-C04.pdf · CHAPTER 4 LOGARITHMIC FUNCTIONS EXERCISE 4.1 Section 4.1 Properties and graphs of

REVISION EXERCISE 4

14. (a) I = kV n

log10 I = log10 k + n log10 V Thus, the graph of log10 I against log10 V is a straight line.

V 160 180 200 220 240

I 52 70 93 121 152

log10 V 2.204 2.255 2.301 2.342 2.380

log10 I 1.716 1.845 1.968 2.083 2.182

n = slope of the graph

= 275.2 375.29.1 175.2

−−

= 2.75 log10 k = y-intercept of the graph

∴ 0 275.2

log 9.1 10

−− k

= 2.75

log10 k = −4.356 k = 4.4 × 10−5

(b) Thus, I = 4.4 × 10−5 V 2.75. When V = 230, I = 4.4 × 10−5 (2302.75) = 137

(c) If V increases to V1 = 2V, then I becomes I1 = 4.4 × 10−5 (2V)2.75

= 6.727 (4.4 × 10−5 V 2.75) ∴ The percentage increase in I = (6.727 − 1) × 100% = 572.7%

115

Page 48: CHAPTER 4 LOGARITHMIC FUNCTIONS - Browser Expressresources.npl.edu.hk/~hflau/MS-Sol-EE-C04.pdf · CHAPTER 4 LOGARITHMIC FUNCTIONS EXERCISE 4.1 Section 4.1 Properties and graphs of

CHAPTER 4 LOGARITHMIC FUNCTIONS

15. (a) t 1 2 3 4 5 Q 136 370 1 004 2 730 7 415 ln t 0 0.693 1 1.098 6 1.386 3 1.609 4

ln Q 4.912 7 5.913 5 6.911 7 7.912 1 8.911 3 (b) (i) (ii)

116

Page 49: CHAPTER 4 LOGARITHMIC FUNCTIONS - Browser Expressresources.npl.edu.hk/~hflau/MS-Sol-EE-C04.pdf · CHAPTER 4 LOGARITHMIC FUNCTIONS EXERCISE 4.1 Section 4.1 Properties and graphs of

REVISION EXERCISE 4

(iii)

(c) From the straight line graph in (b)(ii), we can say that ln Q = ln a + bt where a and b are constants. Hence, Q = a ebt. ln a = y-intercept of the line in (b)(ii) = 3.9 ∴ a = 49.4 (3 sig. fig.) b = slope of the line in (b)(ii)

= 05

9.39.8−−

= 1 ∴ The equation connecting Q and t is Q = 49.4 et.

(d) When t = 7, Q = 49.4 e7

= 54 200 (3 sig. fig.) i.e. The amount of algae will be 54 200 after 7 days. 16. (a) (i) ln [P(t) + 5] = ln [a ebt − 5 + 5] = ln (a ebt) = ln a + ln ebt

= bt + ln a

117

Page 50: CHAPTER 4 LOGARITHMIC FUNCTIONS - Browser Expressresources.npl.edu.hk/~hflau/MS-Sol-EE-C04.pdf · CHAPTER 4 LOGARITHMIC FUNCTIONS EXERCISE 4.1 Section 4.1 Properties and graphs of

CHAPTER 4 LOGARITHMIC FUNCTIONS

(ii) t 2 4 6 9 P(t) 8.5 13.0 19.7 28.1 ln [P(t) + 5] 2.602 7 2.890 4 3.206 8 3.499 5

(iii) ln a = y-intercept of the line in (ii) = 2.3 ∴ a = 10 (2 sig. fig.) b = slope of the line in (ii)

= 08

3.25.3−−

= 0.15 (iv) Hence, the equation connecting P and t is P(t) = 10 e0.15t − 5. When t = 10, P(10) = 10 e0.15(10) − 5 = 40 i.e. The amount of product is 40 grams when t = 10.

118

Page 51: CHAPTER 4 LOGARITHMIC FUNCTIONS - Browser Expressresources.npl.edu.hk/~hflau/MS-Sol-EE-C04.pdf · CHAPTER 4 LOGARITHMIC FUNCTIONS EXERCISE 4.1 Section 4.1 Properties and graphs of

REVISION EXERCISE 4

(b) (i) t 0 4 8 12 15 R(t) = 115 − e0.3t 115 111.7 104.0 78.4 25.0

(ii) 21 (115 − e0.3t) = 10 e0.15t − 5

115 − e0.3t = 20 e0.15t − 10 e0.3t + 20 e0.15t − 125 = 0 (e0.15t − 5) (e0.15t + 25) = 0 e0.15t = 5 or −25 (rejected)

∴ t = 0.15

5ln

= 10.730 ∴ The reaction will reach the equilibrium state after 10.7 minutes.

119