Top Banner

of 55

Chapter 3 State Variables

Apr 06, 2018

Download

Documents

jalex3997
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
  • 8/3/2019 Chapter 3 State Variables

    1/55

    Chapter 3: Modeling in the Time Domain1

    Chapter 3

    Modeling in the Time Domain

  • 8/3/2019 Chapter 3 State Variables

    2/55

    Chapter 3: Modeling in the Time Domain2

    Cramers rule (1704-1752 Gabriel Cramer)

    Ax+ By=f

    Cx+Dy=g how do you solve it?

    Lets eliminate y ADx+BDy=fD

    - BCx+BDy=gB

    (AD-BC)x=fD-gB x= (fD-gB)/(AD-BC)

    Determinant=AD-BC

  • 8/3/2019 Chapter 3 State Variables

    3/55

    Chapter 3: Modeling in the Time Domain3

    Cramers rule

    BCAD

    fCgAy

    BCAD

    gBfDx

    BCAD

    gC

    fA

    yBCAD

    Dg

    Bf

    x

    BCADDet

    g

    f

    y

    x

    DC

    BA

    !

    !

    -

    !

    -

    !

    !

    !

    -

    Ax+By=f

    Cx+Dy=g

  • 8/3/2019 Chapter 3 State Variables

    4/55

    Chapter 3: Modeling in the Time Domain4

    Examples; Cramers rule

    1

    5

    491

    5

    38

    1*12*3

    31

    43

    1*12*3

    23

    14

    3

    4

    21

    13

    32

    43

    !

    !!

    !

    -

    !

    -

    !

    !

    !

    -

    !

    !

    yx

    yx

    BCADDet

    y

    x

    yx

    yx

  • 8/3/2019 Chapter 3 State Variables

    5/55

    Chapter 3: Modeling in the Time Domain5

    Review of Matrices

    ? A ? A

    -

    !

    -

    !

    -

    -

    !

    -

    !

    -

    -

    !

    -

    -

    963

    852

    741

    987

    654

    321

    ,2

    121

    42

    31

    43

    21

    1210

    86

    87

    65

    43

    21

    T

    T

    T

    T

    yxy

    x

  • 8/3/2019 Chapter 3 State Variables

    6/55

    Chapter 3: Modeling in the Time Domain6

    Review of Matrices

    _ a

    _ a j

    j

    T

    Xyx

    yxyx

    Xyxy

    x

    AA

    BABA

    cwcz

    cycx

    wz

    yxc

    1i1ij

    11j1

    AC222

    1

    AC221

    matrixsymmetric

    11

    113

    33

    33

    43

    21

    76

    54

    43

    21

    76

    54

    )(

    ,86

    42

    43

    212

    !

    -

    !

    !!

    !

    -

    !

    -

    !

    -

    -

    !

    -

    -

    !

    -

    !

    -

    -

    !

    -

  • 8/3/2019 Chapter 3 State Variables

    7/55

    Chapter 3: Modeling in the Time Domain7

    Review of Matrices

    !

    -

    {

    -

    !

    -

    !

    -

    -

    -

    !

    -

    !

    -

    -

    zyx

    zyx

    zyx

    z

    y

    x

    ABBA

    987

    654

    32

    987

    654

    321

    **

    4631

    3423

    4*82*73*81*7

    4*62*53*61*5

    43

    21*

    87

    65

    5043

    2219

    8*46*37*45*3

    8*26*17*25*1

    87

    65*

    43

    21

  • 8/3/2019 Chapter 3 State Variables

    8/55

    Chapter 3: Modeling in the Time Domain8

    Introduction

    Frequency-domain technique rapidly providing stability and transient

    response information Immediate can see the effect of varyingsystem parameters

    State-space approach (modern, ortime-domain approach)can be used fornon-linear system with backlash,saturation and dead zones

  • 8/3/2019 Chapter 3 State Variables

    9/55

    Chapter 3: Modeling in the Time Domain9

    State-space Representation

    Select a particular subset of allpossible system variables; state

    variables For an nth order system, write n

    simultaneous, first-order differentialequations in terms of the statevariables; simultaneous differentialequationsstate equations

  • 8/3/2019 Chapter 3 State Variables

    10/55

    Chapter 3: Modeling in the Time Domain10

    State-space Representation

    Solve the simultaneous equations withthe known initial conditions of all thestate variables at t

    0

    as well as thesystem input

    Algebraically combine the statevariables with the systems input and

    find all other system variablesoutputequations State equation +output equation

    state space representation

  • 8/3/2019 Chapter 3 State Variables

    11/55

    Chapter 3: Modeling in the Time Domain11

    State-space representation

    x=Ax+Bu

    y=Cx+Du

    x=state vector Y=output vectorx=time derivative of the state vector

    u=input vector

    A=system matrixB=input matrix

    C=output matrix

    D=feedforward matrix

  • 8/3/2019 Chapter 3 State Variables

    12/55

    Chapter 3: Modeling in the Time Domain12

    Example

    fz

    x

    z

    x

    fxzfxxzx

    xz

    xz

    fxxx

    -

    -

    -

    !

    -

    !!!

    !

    !

    !

    1

    0

    23

    10

    3232

    32

  • 8/3/2019 Chapter 3 State Variables

    13/55

    Chapter 3: Modeling in the Time Domain13

    Example II

    f

    y

    zx

    y

    zx

    fxzy

    fxxxxzyxzy

    xz

    fxxxx

    -

    -

    -

    !

    -

    !

    !!!

    !!

    !

    !

    1

    00

    234

    100010

    432

    432

    432

  • 8/3/2019 Chapter 3 State Variables

    14/55

    Chapter 3: Modeling in the Time Domain14

    Next Move?

    -

    !

    -

    -

    !

    -

    !!

    !

    !

    !!

    !

    v

    xy

    v

    x

    v

    x

    xxxv

    xv

    Solution

    xx

    xxx

    ]01[

    23

    10

    32

    5at t

    0)0(,1)0(

    032

  • 8/3/2019 Chapter 3 State Variables

    15/55

    Chapter 3: Modeling in the Time Domain15

    -

    !

    -

    -!

    -

    -

    !

    -

    -

    !

    -

    -

    !

    -

    !(

    ((!(

    3.011.0

    30

    01

    )1.0()1.0(

    3

    0

    0

    1

    23

    10

    )0(

    )0(

    23

    10

    )0(

    )0(1.0

    2

    )()()()( 2

    vx

    v

    x

    v

    xtLet

    tty

    ttytytty

  • 8/3/2019 Chapter 3 State Variables

    16/55

    Chapter 3: Modeling in the Time Domain16

    -

    !

    -

    -

    !

    -

    -

    !

    -

    -

    !

    -

    -

    !

    -

    !

    24.0

    97.01.0

    4.2

    3.0

    3.0

    1

    )2.0(

    )2.0(

    4.2

    3.0

    3.0

    1

    23

    10

    )1.0(

    )1.0(

    23

    10

    )1.0(

    )1.0(

    2.0

    v

    x

    v

    x

    v

    x

    t

  • 8/3/2019 Chapter 3 State Variables

    17/55

    Chapter 3: Modeling in the Time Domain17

    iii

    iii

    iii

    ii

    vtvv

    xtxx

    vxv

    vx

    Scheme

    *

    *

    23

    1

    1

    (!

    (!

    !

    !

    Simple Euler Scheme

  • 8/3/2019 Chapter 3 State Variables

    18/55

    Chapter 3: Modeling in the Time Domain18

    Exact Solution of the Example

    )2sin2

    12(cos)(

    2)1(

    1)1()(

    )()32(0)0(,1)0(

    032

    2

    2

    ttetx

    s

    ssX

    ssXssxx

    xxx

    t !

    !

    !!!

    !

  • 8/3/2019 Chapter 3 State Variables

    19/55

    Chapter 3: Modeling in the Time Domain19

    Simple Euler Scheme

    Time x(I) v(I) x dot v dot x(I+1) v(I+1) Exact

    0 1 0 0 -3 1 -0.03 1

    0.01 1 -0.03 -0.03 -2.94 0.9997 -0.0594 0.999851

    0.02 0.9997 -0.0594 -0.0594 -2.8803 0.999106 -0.0882 0.999408

    0.03 0.999106 -0.0882 -0.0882 -2.82091 0.998224 -0.11641 0.998677

    0.04 0.998224 -0.11641 -0.11641 -2.76185 0.99706 -0.14403 0.9976640.05 0.99706 -0.14403 -0.14403 -2.70312 0.99562 -0.17106 0.996374

    0.06 0.99562 -0.17106 -0.17106 -2.64474 0.993909 -0.19751 0.994814

    0.07 0.993909 -0.19751 -0.19751 -2.58671 0.991934 -0.22338 0.99299

    0.08 0.991934 -0.22338 -0.22338 -2.52905 0.9897 -0.24867 0.990907

    0.09 0.9897 -0.24867 -0.24867 -2.47177 0.987213 -0.27338 0.98857

    0.1 0.987213 -0.27338 -0.27338 -2.41487 0.98448 -0.29753 0.985987

    0.11 0.98448 -0.29753 -0.29753 -2.35837 0.981504 -0.32112 0.983161

    0.12 0.981504 -0.32112 -0.32112 -2.30228 0.978293 -0.34414 0.98010.13 0.978293 -0.34414 -0.34414 -2.2466 0.974852 -0.36661 0.976808

    0.14 0.974852 -0.36661 -0.36661 -2.19134 0.971186 -0.38852 0.973291

    0.15 0.971186 -0.38852 -0.38852 -2.13652 0.9673 -0.40988 0.969555

    0.16 0.9673 -0.40988 -0.40988 -2.08213 0.963202 -0.43071 0.965604

    -0.2

    0

    0.2

    0.4

    0.6

    0.8

    1

    1.2

    0 2 4 6

    Euler Scheme

    exact

  • 8/3/2019 Chapter 3 State Variables

    20/55

    Chapter 3: Modeling in the Time Domain20

    )22(6

    1

    ),(*

    )

    2

    ,

    2

    (*

    )2

    ,2

    (*

    ),(*

    ),(

    1

    1

    1

    nnnnii

    niin

    n

    iin

    n

    iin

    iin

    iiii

    DCBAyy

    CytfhD

    By

    htfhC

    Ay

    htfhB

    ytfhA

    ythfyy

    !

    !

    !

    !

    !

    !

    Runge- Kutta Scheme; General

  • 8/3/2019 Chapter 3 State Variables

    21/55

    Chapter 3: Modeling in the Time Domain21Figure 3.1RLnetwork

    Initial condition i(0)

    Ldi/dt+Ri=v(t) state equation

    i(t) is state variable; but you

    can pick up something else;e.g. vR

  • 8/3/2019 Chapter 3 State Variables

    22/55

    Chapter 3: Modeling in the Time Domain22

    RLnetwork

    Laplace transform

    L[sI(s)-i(o)]+RI(s)=V(s)

    For unit step v(t)=1, V(s)=1/s I(s)=1/{s(Ls+R)}+ i(o)L/(Ls+R)

    1/{s(Ls+R)}=(1/L)[A/s+B/(s+R/L)]

    A=L/R, B=-L/R I(s)=(1/R)[1/s-1/(s+R/L)]+ i(o)/(s+R/L)

    i(t)=(1/R)[1-e-(R/L)t]+ i(o) e-(R/L)t

  • 8/3/2019 Chapter 3 State Variables

    23/55

    Chapter 3: Modeling in the Time Domain23

    RLnetwork

    i(t) state variable Ldi/dt+Ri=v(t) state equation If initial condition i(0), input v(t) are

    known, we know i(t) Then we know other network variables;

    output equations

    VR(

    t)=R

    i(t

    ) VL(t)=V(t)-Ri(t) As VL(t)=Ldi/dt di/dt= VL(t)/L= [V(t)-Ri(t)]/L

  • 8/3/2019 Chapter 3 State Variables

    24/55

    Chapter 3: Modeling in the Time Domain24

    Figure 3.2RLC network

    Second order system; twostate variables needed; e.g.i(t), q(t) charge on thecapacitor

  • 8/3/2019 Chapter 3 State Variables

    25/55

    Chapter 3: Modeling in the Time Domain25

    RLC network

    Ldi/dt+Ri+(1/c)+idt=v(t) i(t)=dq/dt, i=q

    Lq+Rq+(1/c)q=v(t) To make two first-order equations dq/dt=i

    di/dt=-(1/LC)q-R

    /Li+v(t)/L State equations If we know initial conditions, and

    input v(t), we can solve the problem

  • 8/3/2019 Chapter 3 State Variables

    26/55

    Chapter 3: Modeling in the Time Domain26

    RLC network

    Output equation

    vL(t)=-(1/C)q(t)-Ri(t)+v(t) [note that

    vL+vR+vC=v(t)] Both system equations and output

    equationstate-space representation

    You can pick up other state variables,e.g. vR, vC i(t) must be continuous, i=vR/R

  • 8/3/2019 Chapter 3 State Variables

    27/55

    Chapter 3: Modeling in the Time Domain27

    RLC network

    vL=Ldi/dt=(L/R) dvR/dt

    As vL+vR+vC=v(t)

    (L/R) dvR/dt+vR+vC= v(t) dvR/dt=-(R/L) vR-(R/L) vC+(R/L)v(t)

    vC=(1/c)(vR/R)dt

    Differentiate dvC/dt=(1/RC)vR New state equations

  • 8/3/2019 Chapter 3 State Variables

    28/55

    Chapter 3: Modeling in the Time Domain28

    State-space representation

    State variables are linearlyindependent; no state variable can be

    written as a linear combination of theother state variables

    Summary of the RLC state-spacerepresentation

  • 8/3/2019 Chapter 3 State Variables

    29/55

    Chapter 3: Modeling in the Time Domain29

    1D,R-C

    1-C),(

    v(t)u,10

    B,

    110

    A,/

    /

    )(1LC

    1

    !

    -

    !!

    !

    !

    -

    !

    -

    !

    -

    !

    -

    !

    !!

    !

    tvy

    DuCxy

    equationsoutput

    Li

    qx

    L

    R

    LC

    dtdi

    dtdqx

    tvL

    iLRq

    dtdii

    dtdq

    BuAxx

    L

  • 8/3/2019 Chapter 3 State Variables

    30/55

    Chapter 3: Modeling in the Time Domain30

    Figure 3.3Graphicrepresentationof state space

    and a statevector

    For RLC network;

    vR, vC wereselected as statevariables Function of time t

  • 8/3/2019 Chapter 3 State Variables

    31/55

    Chapter 3: Modeling in the Time Domain31

    State-space representation

    x=Ax+Bu

    y=Cx+Du

    x=state vector Y=output vectorx=time derivative of the state vector

    u=input vector

    A=system matrix

    B=input matrix

    C=output matrix

    D=feedforward matrix

  • 8/3/2019 Chapter 3 State Variables

    32/55

    Chapter 3: Modeling in the Time Domain32

    Applying the State-space representation

    A minimum number of state variablesmust be selected as components ofthe state vector (sufficient todescribe completely the state of thesystem

    State variables must be linearly

    independent Usually number of energy-storageelements becomes number of statevariables

  • 8/3/2019 Chapter 3 State Variables

    33/55

    Chapter 3: Modeling in the Time Domain33

    Figure 3.4Block diagram of amass and damper

    Mdv/dt+Dv=f(t);(Ms+D)V(s)=F(s)

    One energy-storageelement (mass)

    First order equation, so one state-variable may be enough; but massmust have relative position use two

    state-variables, v(t), x(t)

  • 8/3/2019 Chapter 3 State Variables

    34/55

    Chapter 3: Modeling in the Time Domain34

    Example 3.1 Electrical network for representation in

    state space

    Output iR(t)

  • 8/3/2019 Chapter 3 State Variables

    35/55

    Chapter 3: Modeling in the Time Domain35

    Solution to the Example 3.1

    Write equation for all energy-storageelements; inductor & capacitor

    CdvC/dt=iC LdiL/dt=vL Select vC& iLas state variables

    Next, change iC& vLin terms of statevariables and input v(t)

    iC= iL- iR= iL- vC/R

    vL= v(t)-vC

  • 8/3/2019 Chapter 3 State Variables

    36/55

    Chapter 3: Modeling in the Time Domain36

    -

    -

    !

    -

    -

    -

    !

    -

    !

    !

    !

    !

    !

    L

    C

    L

    C

    L

    C

    C

    CL

    LCC

    CL

    LCC

    i

    v

    R

    tv

    Li

    v

    L

    CRCi

    v

    vR

    output

    tvLvLdt

    di

    iC

    vRCdt

    dv

    tvvdtdiL

    ivRdt

    dvC

    01

    i

    )(1

    0

    01

    11

    1i

    )(11

    11

    )(

    1

    R

    R

  • 8/3/2019 Chapter 3 State Variables

    37/55

    Chapter 3: Modeling in the Time Domain37

    Figure 3.6

    Electrical network forExample 3.2

  • 8/3/2019 Chapter 3 State Variables

    38/55

    Chapter 3: Modeling in the Time Domain38

    Figure 3.7

    Translationalmechanical system

  • 8/3/2019 Chapter 3 State Variables

    39/55

    Chapter 3: Modeling in the Time Domain39

    Figure 3.8

    Electric circuitfor Skill-AssessmentExercise 3.1

  • 8/3/2019 Chapter 3 State Variables

    40/55

    Chapter 3: Modeling in the Time Domain40

    Figure 3.9Translationalmechanical systemfor Skill-AssessmentExercise 3.2

  • 8/3/2019 Chapter 3 State Variables

    41/55

    Chapter 3: Modeling in the Time Domain41

    Figure 3.10a. Transfer function; b. equivalent block diagramshowing phase-variables. Note: y(t) = c(t)

  • 8/3/2019 Chapter 3 State Variables

    42/55

    Chapter 3: Modeling in the Time Domain42

    24926-24-

    2424269

    )(24)(24269

    24269

    24

    )(

    )(

    1

    3213

    32

    21

    3

    2

    1

    23

    23

    xcy

    rxxxx

    xx

    xx

    cx

    cxcx

    rcccc

    sRsCsss

    ssssR

    sC

    !!

    !

    !

    !

    !

    !

    !

    !

    !

    !

    State variables

    Output equation

    System

    equations

  • 8/3/2019 Chapter 3 State Variables

    43/55

    Chapter 3: Modeling in the Time Domain43

    ? A

    001

    1

    0

    0

    92624

    100

    010

    24926-24-

    3

    2

    1

    3

    2

    1

    2

    2

    1

    1

    3212

    32

    21

    -

    !

    -

    -

    -

    !

    -

    !!

    !

    !

    !

    x

    xx

    y

    r

    x

    x

    x

    x

    x

    x

    xcy

    rxxxx

    xx

    xx

  • 8/3/2019 Chapter 3 State Variables

    44/55

    Chapter 3: Modeling in the Time Domain44

    Can you explain?

  • 8/3/2019 Chapter 3 State Variables

    45/55

    Chapter 3: Modeling in the Time Domain45

    Figure 3.11

    Decomposing atransfer function

    Output equation

    y(t)=b0x1+b1x2+b2x3

  • 8/3/2019 Chapter 3 State Variables

    46/55

    Chapter 3: Modeling in the Time Domain46

    Figure 3.12a. Transfer function;b. decomposedtransfer function;c. equivalent block

    diagram. Note:y(t) = c(t)

  • 8/3/2019 Chapter 3 State Variables

    47/55

    Chapter 3: Modeling in the Time Domain47

    ? A

    172

    27

    )()27()(

    1

    00

    92624

    100010

    3

    2

    1

    123

    12

    3

    2

    1

    2

    2

    1

    -

    !

    !!

    -

    -

    -

    !

    -

    x

    x

    x

    y

    xxxy

    sXsssC

    r

    x

    xx

    x

    xx

  • 8/3/2019 Chapter 3 State Variables

    48/55

    Chapter 3: Modeling in the Time Domain48

    Figure 3.13Walking robots,such as Hannibalshown here, canbe used to explore

    hostileenvironments andrough terrain,such as that foundon other planetsor inside

    volcanoes.

    Bruce Frisch/S.S./Photo Researchers

  • 8/3/2019 Chapter 3 State Variables

    49/55

    Chapter 3: Modeling in the Time Domain49

    Converting to a Transfer Function

    )()(

    )()(

    )(])([

    )()()()(

    )()()(

    )()()()()()(

    )()()(

    1

    1

    1

    1

    DBAsICsU

    sYsT

    sUDBAsIC

    sDUsBUAsICsY

    sBUAsIsX

    sBUsXAsIsDUsCXsY

    sBUsAXssX

    DuCxy

    BuAxx

    !!

    !

    !

    !

    !!

    !

    !!

  • 8/3/2019 Chapter 3 State Variables

    50/55

    Chapter 3: Modeling in the Time Domain50

    Example 3.6

    ? A

    12s3ss

    )1(2

    )3(1

    1323

    )(

    321

    10

    01

    321

    100

    010

    00

    00

    00

    )(

    001

    0

    0

    10

    321

    100

    010

    23

    2

    2

    1

    3

    2

    1

    3

    2

    1

    2

    2

    1

    -

    !

    -

    !

    -

    -

    !

    -

    !

    -

    -

    -

    !

    -

    sss

    sss

    sss

    AsI

    s

    s

    s

    s

    s

    s

    AsI

    x

    x

    x

    y

    u

    x

    x

    x

    x

    x

    x

  • 8/3/2019 Chapter 3 State Variables

    51/55

    Chapter 3: Modeling in the Time Domain51

    ? A

    ? A

    ? A

    12s3ss

    )23(10

    10

    10

    )23(10

    00112s3ss

    1

    0

    0

    10

    12s3ss

    )1(2

    )3(1

    1323

    001

    )()(

    0

    001

    0

    0

    10

    23

    2

    2

    23

    23

    2

    2

    1

    !

    -

    !

    -

    -

    !

    !

    !

    !

    -

    !

    ss

    s

    ss

    sss

    sss

    sssDBAsICsT

    D

    C

    B

    Example 3.6

  • 8/3/2019 Chapter 3 State Variables

    52/55

    Chapter 3: Modeling in the Time Domain52

    Figure 3.14

    a.Simple pendulum;b. force components

    of Mg;c. free-body diagram

  • 8/3/2019 Chapter 3 State Variables

    53/55

    Chapter 3: Modeling in the Time Domain53

    Figure 3.15

    Nonlinear translationalmechanical systemfor Skill-AssessmentExercise 3.5

  • 8/3/2019 Chapter 3 State Variables

    54/55

    Chapter 3: Modeling in the Time Domain54

    Figure 3.16

    Pharmaceutical drug-levelconcentrations in a human

  • 8/3/2019 Chapter 3 State Variables

    55/55

    Chapter 3: Modeling in the Time Domain55

    Figure 3.17

    Aquifer systemmodel