Top Banner
AUSTRALIAN ENERGY RESOURCE ASSESSMENT 41 Chapter 3 Oil 3.1 Summary KEY MESSAGES Oil is the most widely used primary source of energy globally. It plays a critical role as a transport fuel in most countries including Australia. Australia has about 0.3 per cent of world oil reserves. Australia has limited reserves of crude oil and most of Australia’s known remaining oil resources are condensate and liquefied petroleum gas (LPG) associated with giant offshore gas fields. There is scope for growth in Australia’s oil reserves in existing fields, and for new oil discoveries in both proven basins and in under-explored frontier basins which are prospective for petroleum. There is also potential to develop alternative transport fuels such as biofuels, coal-to-liquids (CTL), gas-to-liquids (GTL) and shale oil. Australia’s oil consumption is projected to increase over the two next decades but the rate of growth is projected to be slower than in the past 20 years. Domestic crude oil production is projected to continue to decline. In the absence of major new discoveries and the development of alternatives, Australia’s net imports of liquid fuels are projected to increase, rising to be three-quarters of consumption by 2029–30. 3.1.1 World oil resources and market Oil is an important energy source, accounting for around 34 per cent of world primary energy consumption in 2007. However, its importance has been declining steadily since the 1970s when its share of primary energy consumption was around 45 per cent. World proven oil reserves were estimated at some 1.4 trillion barrels (equivalent to 8.3 million PJ) at the end of 2008. This is equal to around 42 years supply at current production rates. This global reserves to production ratio has been maintained at around 40 years for the past decade. Australia accounted for around 0.3 per cent of these reserves. World oil production was around 30.5 billion barrels (174 012 PJ) in 2008. Major oil producers include Saudi Arabia, the Russian Federation, United States, Iran and China, with the Middle East accounting for 31 per cent of the world’s production in 2008. The cost of oil production is expected to increase with the development of deeper water fields and the use of enhanced recovery technologies. World oil consumption has increased at an annual average rate of 1.6 per cent since 2000, to reach 31.6 billion barrels (Bbbl, 171 236 PJ) in 2008. The fastest growing oil consuming region is non- OECD Asia, which includes China and India. At present more than half of world oil consumption is used in the transport sector. World oil demand is projected by the International Energy Agency (IEA) in its reference case to increase by around 1 per cent per year to reach 36.8 Bbbl (210 271 PJ) in 2030. Demand growth is expected to be concentrated in non-OECD economies. World oil supply is also projected to increase at an average annual rate of 1 per cent. OPEC’s oil production is projected to grow as is supply from unconventional sources such as oil sands, gas-to- liquids, coal-to-liquids and oil shale. 3.1.2 Australia’s oil resources In 2008, Australia’s identified oil resources were estimated at 30 794 PJ made up of 16 170 PJ (2750 million barrels or mmbbl) of condensate, 8414 PJ (1431 mmbbl) of crude oil and 6210 PJ (1475 mmbbl) of LPG (liquefied petroleum gas). Australia has only limited domestic supplies of crude oil, and relies increasingly on imports to meet demand. Crude oil exploration in Australia has not repeated the early success of the 1960s when the first offshore exploration yielded giant field discoveries in the Gippsland Basin. Although Australia has over
42

Chapter 3 Oil - Geoscience Australia · Chapter 3 Oil 3.1 Summary Key messages • Oil is the most widely used primary source of energy globally. It plays a critical role as a transport

Jan 31, 2021

Download

Documents

dariahiddleston
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
  • AUSTRALIAN ENERGY RESOURCE ASSESSMENT

    41

    Chapter 3Oil

    3.1Summary

    K e y m e s s a g e s

    • Oilisthemostwidelyusedprimarysourceofenergyglobally.ItplaysacriticalroleasatransportfuelinmostcountriesincludingAustralia.

    • Australiahasabout0.3percentofworldoilreserves.AustraliahaslimitedreservesofcrudeoilandmostofAustralia’sknownremainingoilresourcesarecondensateandliquefiedpetroleumgas(LPG)associatedwithgiantoffshoregasfields.

    • ThereisscopeforgrowthinAustralia’soilreservesinexistingfields,andfornewoildiscoveriesinbothprovenbasinsandinunder-exploredfrontierbasinswhichareprospectiveforpetroleum.

    • Thereisalsopotentialtodevelopalternativetransportfuelssuchasbiofuels,coal-to-liquids(CTL),gas-to-liquids(GTL)andshaleoil.

    • Australia’soilconsumptionisprojectedtoincreaseoverthetwonextdecadesbuttherateofgrowthisprojectedtobeslowerthaninthepast20years.Domesticcrudeoilproductionisprojectedtocontinuetodecline.

    • Intheabsenceofmajornewdiscoveriesandthedevelopmentofalternatives,Australia’snetimportsofliquidfuelsareprojectedtoincrease,risingtobethree-quartersofconsumptionby2029–30.

    3.1.1 World oil resources and market• Oilisanimportantenergysource,accounting

    foraround34percentofworldprimaryenergyconsumptionin2007.However,itsimportancehasbeendecliningsteadilysincethe1970swhenitsshareofprimaryenergyconsumptionwasaround45percent.

    • Worldprovenoilreserveswereestimatedatsome1.4trillionbarrels(equivalentto8.3millionPJ)attheendof2008.Thisisequaltoaround42yearssupplyatcurrentproductionrates.Thisglobalreservestoproductionratiohasbeenmaintainedataround40yearsforthepastdecade.Australiaaccountedforaround0.3percentofthesereserves.

    • Worldoilproductionwasaround30.5billionbarrels(174012PJ)in2008.MajoroilproducersincludeSaudiArabia,theRussianFederation,UnitedStates,IranandChina,withtheMiddleEastaccountingfor31percentoftheworld’sproductionin2008.

    • Thecostofoilproductionisexpectedtoincreasewiththedevelopmentofdeeperwaterfieldsandtheuseofenhancedrecoverytechnologies.

    • Worldoilconsumptionhasincreasedatanannualaveragerateof1.6percentsince2000,toreach31.6billionbarrels(Bbbl,171236PJ)in2008.

    • Thefastestgrowingoilconsumingregionisnon-

    OECDAsia,whichincludesChinaandIndia.Atpresentmorethanhalfofworldoilconsumptionisusedinthetransportsector.

    • WorldoildemandisprojectedbytheInternationalEnergyAgency(IEA)initsreferencecasetoincreasebyaround1percentperyeartoreach36.8Bbbl(210271PJ)in2030.Demandgrowthisexpectedtobeconcentratedinnon-OECDeconomies.

    • Worldoilsupplyisalsoprojectedtoincreaseatanaverageannualrateof1percent.OPEC’soilproductionisprojectedtogrowasissupplyfromunconventionalsourcessuchasoilsands,gas-to-liquids,coal-to-liquidsandoilshale.

    3.1.2Australia’soilresources• In2008,Australia’sidentifiedoilresourceswere

    estimatedat30794PJmadeupof16170PJ(2750millionbarrelsormmbbl)ofcondensate,8414PJ(1431mmbbl)ofcrudeoiland6210PJ(1475mmbbl)ofLPG(liquefiedpetroleumgas).

    • Australiahasonlylimiteddomesticsuppliesofcrudeoil,andreliesincreasinglyonimportstomeet demand.

    • CrudeoilexplorationinAustraliahasnotrepeatedtheearlysuccessofthe1960swhenthefirstoffshoreexplorationyieldedgiantfielddiscoveriesintheGippslandBasin.AlthoughAustraliahasover

  • AUSTRALIAN ENERGY RESOURCE ASSESSMENT

    42

    BONAPARTE BASINTotal produced: 3364

    Crude oil remaining: 1205Condensate remaining: 2799

    LPG remaining: 1193

    BROWSE BASINTotal produced: 0

    Crude oil remaining: 82Condensate remaining: 6286

    LPG remaining: 1391

    CARNARVON BASIN AMADEUS BASINTotal produced: 13 357 Total produced: 112Crude oil remaining: 4839 Crude oil remaining: 24Condensate remaining: 5892 Condensate remaining: 12LPG remaining: 2603 LPG remaining: 0.8

    COOPER/EROMANGA BASINSTotal produced: 2856

    Crude oil remaining: 370Condensate remaining: 88

    LPG remaining: 125 BOWEN/SURAT BASINSTotal produced: 289Crude oil remaining: 41Condensate remaining: 12PERTH BASIN LPG remaining: 10

    Total produced: 143Crude oil remaining: 76

    Condensate remaining: 0.2

    BASS BASINTotal produced: 16

    Crude oil remaining: 76 GIPPSLAND BASINCondensate remaining: 247 Total produced: 25 536

    LPG remaining: 241 Crude oil remaining: 1699Condensate remaining: 753LPG remaining: 646

    DARWIN

    CANNING BASINTotal produced: 18Crude oil remaining: 0

    BRISBANE

    PERTH

    ADELAIDE SYDNEY

    MELBOURNEOTWAY BASINTotal produced: 11

    Condensate remaining: 82

    HOBART

    150°140°130°120°

    10°

    20°

    30°

    40°

    AERA 3.1

    0 750 km

    Liquid hydrocarbon (Crude Oil, Condensate& LPG) resources in PJ

    Gas pipelineGas pipeline(proposed)Oil pipeline

    Past production Petroleum basin

    Condensate resources

    Crude oil resources

    LPG resources

    Figure 3.1 Australiancrudeoil,condensateandnaturally-occurringLPGresources,infrastructure,pastproduction andremainingresources

    source: GeoscienceAustralia

    300crudeoilfields,mostproductionhascomefromonlysevenmajorfields.

    • Estimatesofundiscoveredcrudeoilinprovenbasinsrangefrom9996PJ(1700mmbbl)to29588PJ(5032mmbbl)andundiscoveredcondensatefrom4116PJ(700mmbbl)to35480PJ(6035mmbbl).Petroleumpotentialexistsindeepwaterfrontierbasinsbuttheoilresourceremainsunknown.

    • Australia’slargestremainingdiscoveredliquidpetroleumresourceisnowthecondensateandLPGintheundevelopedIchthysgasfieldintheoffshoreBrowseBasin(figure3.1).

    • Thescopeforenhancedoilrecovery(EOR)fromidentifiedfieldswasestimatedatabout6468PJ(1100mmbbls)in2005.Additionstoresourcesfromfieldgrowthwereestimatedatabout5880PJ(1000mmbbls)in2004.Intheinterveningperiodsomeofthispotentialhasbeen realised.

    • Inaddition,Australiahasalargeunconventionalandcurrentlynon-producingidentifiedshaleoil

    resourceof131600PJ(22390mmbbl)whichcouldpotentiallycontributetofutureoilsupply ifeconomicandenvironmentalchallengescan beovercome.

    3.1.3Australia’soilmarket• Oilandoilproductshavethesecondlargest

    share(1942PJor34percent)ofprimaryenergyconsumptioninAustralia,butdomesticprimaryoil(crudeoil,condensateandLPG)productionaccountsforonly6percentoftotalenergyproduction.Australia’snetimportsofoilandoilproductsrepresented45percentofconsumptionin2007–08.

    • Australianprimaryoilproduction(crudeoil,condensateandLPG)peakedin2000–01at1546PJ(276mmbbl).Sincethenprimaryoilproductionhasbeendecliningatanaveragerateof5percentperyearto1059PJ(187mmbbl,29.8GL)in2007–08.

    • Australiaisanetimporterofoilandoilproducts.In2007–08,Australia’snetimportsofprimaryoilwerearound383PJ(48mmbbl,7.7GL),valuedat $5.5 billion.

  • AUSTRALIAN ENERGY RESOURCE ASSESSMENT

    43

    CHAPTER 3: OIL

    3000

    2400

    1800

    1200

    600

    PJ

    0 0

    8

    16

    24

    32

    40

    %

    Year

    Oil consumption (PJ)

    1999- 2000- 2001- 2002- 2003- 2004- 2005- 2006- 2007- 2029-00 01 02 03 04 05 06 07 08 30

    Share of totalenergy (%)

    AERA 3.2

    Figure 3.2 Australia’soutlookforoilconsumptionsource: ABARE2009b;ABARE2010

    • Australianrefineriesproduced1557PJ(269mmbbl,42.8GL)ofrefinedoilproductsin2007–08.

    • Inthepast,Australiawasanetexporterofrefinedoilproducts.SincetheclosureofthePortStanvacrefineryin2003,Australiahasalsobecomeanetimporteroftheseproducts.In2007–08,Australia’snetimportofrefinedoilwasaround430PJ(94mmbbl,15GL),valuedat$12billion.

    • Thetransportsectoristhelargestconsumerofoil,accountingforaround70percentofAustralia’stotaluseofoilproducts.

    • InABARE’slatestlongtermenergyprojections,whichincludetheRenewableEnergyTarget, a5percentemissionsreductiontargetand othergovernmentpolicies,consumptionofoil andoilproductsinAustraliaisprojectedtoincreaseby1.3percentperyeartoreach2787PJ(equivalenttoabout473mmbbl)in2029–30.Itsshareofprimaryenergyconsumptionisprojectedtoremainaround 36percentin2029–30(figure3.2).

    • Australianproductionofcrudeoil,condensateandLPGisprojectedtodeclineatanaveragerateof2percentperyearto668PJby2029–30.

    • Netimportsofoilandoilproductsareprojectedtoaccountfor76percentofconsumptionin2029–30.

    3.2Backgroundinformation andworldmarket

    3.2.1DefinitionsThetermoilencompassestherangeofliquidhydrocarbonsandincludescrudeoilandcondensate.Liquefiedpetroleumgas(LPG)isconsideredalong

    withoilinthisstudy.Oilthathasbeenrefinedintootherproductsisreferredtoasrefinedproducts, oilproductsorpetroleumproducts.

    Crude oilisanaturally-occurringliquidconsistingmainlyofhydrocarbonsderivedfromthethermalandchemicalalterationoforganicmatterburiedinsedimentarybasins.Itisformedasorganic-richrocksareburiedandheatedovergeologicaltime.Crudeoilvarieswidelyinappearance,chemicalcompositionandviscosity.MostAustraliancrudeoilsareclassifiedaslightoil.Lightcrudeoilsareliquidswithlowdensityandlowviscositythatflowfreelyatstandardconditions:theyhavehighAPIgravityduetothepresenceoflighthydrocarbons.Heavyoils,ontheotherhand,havehigherdensityandviscosity,donotflowreadilyandhavelowAPIgravity(lessthan20°)havinglostthelighterhydrocarbons.Crudeoilisfoundindepositswithorwithoutassociatedgas;thisgasmayincludenaturalgasliquids–condensateandliquefiedpetroleumgas(LPG).Crudeoilcanalsobefoundinsemi-solidformmixedwithsandandwater(oilortarsands)orasanoilprecursor,alsoinsolidform,calledoilshale.Oilfromoilsandsandoilshaleisknownasunconventionaloil(box3.1).

    Condensateisaliquidmixtureofpentaneandheavierhydrocarbonsfoundinoilfieldswithassociatedgasoringasfields.Itisagasinthesubsurfacereservoir,butcondensestoformaliquidwhenproducedandbroughttothesurface(figure3.3).

    Liquefied petroleum gas(LPG)isamixtureoflighterhydrocarbons,suchaspropaneandbutane,andisnormallyagasatthesurface.Itisusuallystoredandtransportedasaliquidunderpressure.Inadditiontonaturally-occurringLPG,itisalsoproducedasaby-productofcrudeoilrefining.LPGhaslowerenergy

    LPG

    C5+

    C35

    MethaneCH4

    2 6

    Gas atsurface

    3 8

    4 10

    Liquid atsurface

    LNG andSales GasEthane

    C H

    PropaneC H

    Gas insubsurfaceButane

    C H

    Higherhydrocarbons

    Condensateand oil

    Liquid insubsurface

    AERA 3.3

    Figure 3.3 Petroleumresourcesnomenclatureintermsofchemicalcomposition,commercialproduct,physicalstateinthesubsurfaceandphysicalstateatthesurface

    source: GeoscienceAustralia

  • AUSTRALIAN ENERGY RESOURCE ASSESSMENT

    44

    contentpervolumethancondensateandcrudeoil(AppendixE).

    Refined productsincludepetroleumproductsusedasfuels(LPG,aviationgasoline,automotivegasoline,powerkerosene,aviationturbinefuel,lightingkerosene,heatingoil,automotivedieseloil,industrialdieselfuel,fueloil,refineryfuelandnaphtha)andrefinedproductsusedinnon-fuelapplications(solvents,lubricants,bitumen,waxes,petroleumcokeforanodeproductionandspecialisedfeedstocks).

    Primary oil consumptionincludesallpetroleumuseddirectlyasfuel–crudeoil,condensate,LPGandpetroleumproducts.

    Primary oil productionincludescrudeoil,condensateandnaturallyoccurringLPGpriortouseinrefineries.

    Oil shaleisafine-grainedsedimentaryrockcontaininglargeamountsoforganicmatter(kerogen),whichcanyieldsubstantialquantitiesofhydrocarbons.Oilshaleisessentiallyaveryrichthermallyimmaturesourcerock:itrequiresheatingtohightemperaturestoconverttheorganicmaterialwithintheshaletoliquidhydrocarbons–shaleoil.Shaleoilisconsideredanalternativetransportfuel,readilysubstitutableforhighgradecrudeoil.

    Oil sands,ortarsands,aresandstonesimpregnatedwithbitumen,theveryviscousheavyhydrocarbonsremainingafterthemorevolatilecomponentsofcrudeoilhavebeenlost.Miningandprocessingisrequiredtorecovertheoil.

    3.2.2OilsupplychainFigure3.4providesarepresentationoftheoilindustryinAustralia.Theoilindustryundertakestheexploration,developmentandproductionofcrudeoil,condensateandLPG.Moregenerally,thepetroleumindustryalsoincludesdownstreamactivitiessuchaspetroleumrefining,andthetransportandmarketingofrefinedproducts,as wellasnon-energyproductssuchaspetrochemicals andplastics.

    Resources and explorationThesupplyofoilbeginswithundiscoveredresourcesthatmustbeidentifiedthroughexploration.Geoscientistsidentifyareaswherehydrocarbonsareliabletobetrappedinthesubsurface,thatisinsedimentarybasinsofsufficientthicknesstocontainmaturepetroleumsourcerocksaswellassuitablereservoirandsealrocksintrapconfigurations(box3.1).Thesearchnarrowsfrombroadregionalgeologicalstudiesthroughtodetermininganindividualdrillingtarget.

    IntheAustraliancontext,governmentshavetakenakeyroleinprovidingregionalpre-competitivedatatoencourageinvestmentinexplorationbytheprivatesector(figure3.5).Companyaccesstoprospectiveexplorationareasisbycompetitivebidding,usuallyonthebasisofproposedworkprogram(thatisintendedexplorationeffort)orbytakingequityin(‘farming-into’)existingacreageholdings.

    Development and Processing, Transport,End Use Market

    Production Storage

    WorldOil tanker Market

    Exploration Developmentdecision decision

    IdentifiedresourcesUndiscovered

    resources

    AERA 3.4

    Transport

    Industrial

    Commercial

    Residential

    Other

    Exportmarket

    Domesticmarket

    Condensate LPG Imports Refinedfrom gas fields petroleum

    imports

    Resources and Exploration

    Oil tankerProject

    Oilrefinery

    Electricitygeneration

    Figure 3.4 Australia’soilsupplychainsource: ABAREandGeoscienceAustralia

  • AUSTRALIAN ENERGY RESOURCE ASSESSMENT

    45

    CHAPTER 3: OIL

    1

    Indu

    stry

    100

    10 000

    100 000

    10 000 000

    2km

    Gov

    ernm

    ent Regional understanding

    Field/prospectIn-

    formedactions

    Prospect/field/segment

    inventory

    Risk Uncertainty Explorationpermit

    Seismic Seismic Geologyimaging attributes modelling

    Play focus

    Basin statistics Play risk-field size distance Lead inventory -CHS maps-analogs - success rates

    play fairway analysis, stratigraphic drilling Precompetitivestudy

    Structural Sequence Petroleumstyles stratigraphy systems

    Stratigraphy Basic mapsData Plate-well data -structuremanagement reconstructions-fieldwork -isopachs Documentation

    Regional seismicgravity & magnetic

    AERA 3.5

    Figure 3.5 Theresourcediscoverytrianglesource: GeoscienceAustralia(adaptedfromBP)

    Reflectionseismicistheprimarytechnologyusedtoidentifylikelyhydrocarbon-bearingstructuresinthesub-surface.Drillingisthenrequiredtotestwhetherthestructurecontainsoilorgas,orboth,orneither.Theinitialdiscoverywellmaybefollowedbyappraisaldrillingand/orthecollectionoffurthersurveydata(often3Dseismic)tohelpdeterminetheextentofthe accumulation.

    Development and productionOnceaneconomicallyrecoverableresourcehasbeenidentified,itisamatterofdecidingwhethertoproceedtodevelopmentbasedonprojecteconomics,marketconditions(oilpricesandcostofextractiontechnologiesandfacilities)andtheavailabilityoffinance.

    Thedevelopmentphaseinvolvestheconstructionoftheinfrastructurerequiredfortheproductionoftheoilresource.Dependingonthelocation,thisinfrastructureincludesdevelopmentwells,productionfacilities,agatheringsystemtoconnectindividualwellstoprocessingfacilities,temporarystorageandtransportfacilities.

    InAustralia,theoptionsforoffshoredevelopmentincludeafloatingproductionandstorageoffloadingfacility(FPSO)as,forexample,theEnfieldoildevelopmentintheCarnarvonBasin,orbuildingaproductionplatformandpipingtheoilashore,asat

    theCliffHeadfieldinthePerthBasin.Wherethepipelineinfrastructureiswellestablished,newcrudeoildiscoveriescanberapidlybroughtonstreamasintheinshoreCarnarvonBasin.Onshore,theoptionsaretolinkintoorextendtheoilpipelinenetworkor,incasesofsmallremotefields,asatBlinaintheCanningBasin,totransporttheoilbyroad.

    Theproductionphaseincludesextractingoilfromthereservoirandseparatingimpurities.Attheinitialstageofextraction,thenaturalpressureofthesubsurfacereservoirisgenerallysufficientfortheoiltoflowtothesurface.Ifthereservoirpressureisinsufficient,anadvancedrecoverymethodisusedtoincreasereservoirpressure.

    Condensateisacomponentofnaturalgasandisproducedduringgasorcrudeoilfielddevelopment. Insomecasesthecondensateisextractedandthegasisreinjectedinaprocesscalledgasrecycling.

    Processing, transport, storage and tradeCrudeoilandcondensateisnotgenerallyusedinitsraworunprocessedform,apartfromsomelight-sweetcrudeoilwithlowsulphurcontentwhichcanbeusedasaburnerfuelforsteamgenerationinindustrialapplications.Themajorityofcrudeoilisprocessedinarefinerytoproducerefinedproducts,suchasgasoline,diesel,aviationfuel,fueloil,

    BOx 3.1 PETROLEUMSySTEMSANDRESOURCEPyRAMIDS

    Oilaccumulationsaretheproductsofa‘petroleum

    system’(MagoonandDow1994).Thecritical

    elementsofapetroleumsystemare:

    • source–anorganicrichrock,suchasanorganic

    richmudstone;

    • reservoir–porousandpermeablerock,suchas

    sandstone;

    • seal–animpermeablerocksuchasashaleor

    mudstone;

    • trap–asub-surfacestructurethatcontainsthe

  • AUSTRALIAN ENERGY RESOURCE ASSESSMENT

    46

    accumulation,suchasafaultblockoranticline;

    • overburden–sedimentsoverlyingthesourcerockrequiredforitsthermalmaturation;and

    • migrationpathwaystolinkthematuresourcetothetrap(figure3.6).

    Inadditiontothesestaticelements,theactualprocessesinvolved–trapformation,hydrocarbongeneration,expulsion,migration,accumulationandpreservation–mustoccur,andinthecorrectorder, forthepetroleumsystemtosuccessfullyoperateandforoilaccumulationstobeformedandpreserved. Itisessentialthatthesourcerockhasbeenthrough(orisstillwithin)theoilwindow,thezoneinthesubsurfacewheretemperaturesaresufficientforthermalalterationoftheorganicmattertooil.Athighertemperatures,belowthebottomoftheoilwindow,oilstartstobebrokendown(cracked)togas.

    Unconventionaloilaccumulationsreflectthefailureorunder-performanceofthepetroleumsystem.Oilshaleisanexamplewhereathermallyimmaturesourcerockhasnotgeneratedandexpelledhydrocarbons.Oilortarsandsoccurwhereconventionalcrudeoilhasfailedtobetrappedatdepthandhasmigratedneartothesurfaceandhasbecomedegradedbyevaporation,biodegradationandwaterwashingtoproduceaviscousheavyoilresidue.

    Thepetroleumresourcepyramid(McCabe1998)describeshowasmallervolumeofeasilyextractedconventionalgasandoilisunderpinnedbylargervolumesofmoredifficultandmorecostlytoextract

    unconventionalgasandoil(figure3.7).Forthe

    unconventionalhydrocarbonresources,additional

    technology,energyandcapitalhastobeappliedto

    extractthegasoroil,replacingthenaturalaction

    ofthegeologicalprocessesofthepetroleum

    system.Technologicaldevelopmentsandrisesin

    pricecanmakethelowerpartsoftheresource

    pyramidaccessibleandeconomictoproduce.The

    recentdevelopmentofoilsandsinCanadaandof

    shalegasintheUnitedStatesareexampleswhere

    risingenergypricesandtechnologicaldevelopment

    hasfacilitatedtheexploitationofunconventional

    hydrocarbonresourceslowerinthepyramid.

    Conv. Conv.Oil Gas

    Shale Oil Gas Hydrates

    Increased breakevenprice required

    Smaller volumes, Increased technologyeasy to develop requirements

    Larger volumes,difficult todevelop

    Heavy Oil CSG

    Tight Gas andOil SandsShale Gas

    AERA 3.7

    Figure 3.7 PetroleumResourcePyramidsource: GeoscienceAustralia(adaptedfromMcCabe1998andBranan2008)

    A A’Trap TrapTrap

    Geographic extent of petroleum system

    Present day

    Overburden Source

    Seal Underlying sequence

    Reservoir

    Top of oil window

    Bottom of oil window

    Petroleum accumulation

    Basement

    Stratigraphic extentof petroleum system

    AERA 3.6

    Figure 3.6 Petroleumsystemelementssource: MagoonandDow1994(modified)

  • AUSTRALIAN ENERGY RESOURCE ASSESSMENT

    47

    CHAPTER 3: OIL

    keroseneandLPG.Somecrudeoilandcondensatecanalsobeconvertedintonon-energyproductsandusedasafeedstockinthepetrochemicalindustry.

    Oncerefined,end-useproductscanbestoredandtransportedtothedemandcentreviaroad,rail,seaorpipeline.

    Around70percentofAustralia’scrudeoilandcondensateproductionoccursoffthenorth-westcoast.Around60percentofthisproductionisexported,reflectingtheproximitytorefineriesinsouth-eastAsia.In2008–09,approximately63percentofAustralia’srefineryinputrequirementswereimported.ThispartlyreflectstheinsufficientcrudeoilandcondensateproductionineasternAustralia,particularlywithinreasonabledistanceofrefineriesinSydneyandBrisbane.

    In2008–09,around40percentofAustralia’srefinedpetroleumproductswereimported,primarilyreflectingincreasingdependenceonoverseas

    refineriestomeetincrementaldomesticrefinedproductdemand.Some8percentofAustralia’srefineryproductionwasexported,mainlyintheformoftransportfuelsforinternationalcarriers.

    end use marketThemajorend-usemarketforrefinedproductsisthetransportsector.Refinedpetroleumproductsaretransportedtolocaldistributionpoints,fromwheretheyaredeliveredeitherdirectlytoendusersortoretailoutlets,predominatelyaspetrol,dieselandLPG.

    3.2.3WorldoilmarketTable3.1providesasnapshotoftheAustralianoilmarketwithinaglobalcontext.Australia’sreservesaccountforonlyasmallshareofglobalreserves,andAustraliaisarelativelysmallproducerandconsumer.

    Oil reserves and productionWorldprovenoilreserveswereestimatedtobearound1.4trillionbarrels(equivalenttoaround8.3millionPJ),attheendof2008(table3.1).This

    Table 3.1 Keyoilstatistics,2008

    unit australia2007–08

    australia2008

    World2008

    Reserves PJ - 24284 8257028

    Bbbl - 4.2 1408

    Shareofworld % - 0.3 100

    Production of crude oil, condensate and LPg PJ 1059 - 174012

    mmbbl 187 194 30471

    Shareofworld % - 0.6 100

    Averageannualgrowthfrom2000 % -4.3 1.3

    Oil refining capacity kb/d - 734 88627

    Shareofworld % - 0.8 100

    Consumption of crude oil, condensate and LPg PJ 1417 - -

    Averageannualgrowthfrom2000 % -2.4 - -

    Consumption of oil and oil products PJ 1942 - 171236a

    mmbbl - 342 31586a

    Shareofworld % - 1.1 100

    Shareofprimaryenergyconsumption % 33.6 - 34.0

    Averageannualgrowthfrom2000 % 1.3 - 1.6

    Imports of crude oil and other refinery feedstocks PJ 1019 - 98392a

    Averageannualgrowthfrom2000 % -0.3 - 1.8

    Imports of oil and oil products PJ 1678 - 139109a

    kb/d 762 771 67277a

    mmbbl 278 282 24556a

    Shareofworld % - 1.1 100

    Averageannualgrowthfrom2000 % 4.2 - 2.6

    exports of crude oil, condensate and LPg PJ 661 - 92842a

    Averageannualgrowthfrom2000 % -3.0 - -

    exports of oil and oil products PJ 807.7 - 135742a

    Averageannualgrowthfrom2000 % -2.6 - -

    Note: Bbbl–billionbarrels,mmbbl –millionbarrels,kb/d–thousandbarrelsadaya 2007data source: ABARE2009b;BP2009a;IEA2009a,b

  • AUSTRALIAN ENERGY RESOURCE ASSESSMENT

    48

    amountcouldbeincreasedinthefutureifunprovedoilreservesandresourcescanbeupgradedtoprovenreserves(oilconsideredtoberecoverablewithreasonablecertaintyundercurrenteconomicandoperatingconditions).Atcurrentratesofworldproduction,theestimatedprovenoilreservesareenoughtolastforaround42years.Sincethemid-1980stheglobalreservestoproductionratiohasbeensteadyataround40yearsormore(BP2009a)asproductionisbalancedasnewdiscoveriesaremadeandnewreservesaredevelopedeachyear.

    Abouttwo-thirdsoftotalworldreservesarelocatedintheMiddleEast.Fourofthefivecountrieswiththeworld’slargestreserves–SaudiArabia,Iran,IraqandKuwait–areinthisregion(figure3.8).SaudiArabiaaloneaccountedfor19percent(1552320PJ,264Bbbl)ofworldreserves.Canadahasthesecondlargestshareofworldoilreserves,thoughoilsandstotallingsome887880PJ(151Bbbl)accountforaround80percentofthesereserves.TheAsiaPacificregionaccountedfor3percentofworldoilreserves.ThelargestoilreservesinthisregionarelocatedinChina.

    Australiaisrankedtwenty-seventhintheworldintermsofprovenoilreserves,accountingforaround0.3percentofglobalreserves.

    Canada

    Kuwait

    Libya

    Australia

    Saudi Arabia

    Iran

    Iraq

    Venezuela

    United Arab Emirates

    Russian Federation

    Kazakhstan

    300250200150100

    a) Oil reserves, end 2008

    0 50

    Billion bbls

    China

    Australia

    Saudi Arabia

    Russian Federation

    United States

    Iran

    Mexico

    Canada

    Kuwait

    Venezuela

    United Arab Emirates

    40003000200010000

    b) Oil production, 2008

    AERA 3.8

    Million bbls

    Figure 3.8 Worldoilreservesandproduction,majorcountries,2008

    source: BP2009a;IEA2009a

    Worldtotaloilproductionin2008wassome30.5Bbbl(equivalenttoaround174012PJ).Productionofcrudeoilrepresentsmorethan90percentoftotaloilproduction,whichincludescrudeoil,condensate,LPGandunconventionaloil.ThemajoroilproducersarelocatedintheMiddleEast,witha31percentshareofworldproduction.SaudiArabiaisthelargestsingleproducer,accountingforaround13percentofworldproduction(figure3.8).TheRussianFederationisalsoamajorproducer(12percent).OtherFormerSovietUnioncountries(particularlyAzerbaijan,KazakhstanandTurkmenistan)andAfrica(particularlyAngolaandSudan)arealsobecomingimportantoilproducingregions.Overtheperiod2000to2008,productionfromthesetworegionsgrewatanaverageannualrateofaround7percentand5percentrespectively.

    Australiaisonlyasmalloilproducer,accountingfor0.6percentoftotaloilproductionin2008.

    Petroleum refiningBecausevirtuallyalloil,conventionalandunconventional,needstobeprocessedbeforeenduse,refinerycapacityandthroughputaresignificant

    Australia

    World

    OECD

    Non-OECD

    OPEC

    604020

    a) Oil share of primary energy consumption

    0

    %

    0 20 40 60

    b) Transport sector share of oil consumption

    80

    %

    World

    OECD

    Non-OECD

    OPEC

    Australia

    1971 2007AERA 3.9

    Figure 3.9 Oilshareoftotalenergyconsumptionandtransportsectorusage

    source: IEA2009a;2009b

  • AUSTRALIAN ENERGY RESOURCE ASSESSMENT

    49

    CHAPTER 3: OIL

    Table 3.2 Worldrefinerycapacitiesandpetroleumproduction,2008

    Refinery capacities (kb/d)

    share of world capacity (%)

    Refinery output (kb/d)

    share of world production (%)

    AsiaPacific 25098 28.3 22653 28.0

    NorthAmerica 21035 23.7 21567 26.7

    Europe 17007 19.2 16071 19.9

    FormerSovietUnion 8079 9.1 6172 7.6

    MiddleEast 7592 8.6 6493 8.0

    LatinAmerica 6588 7.4 5434 6.7

    Africa 3228 3.6 2466 3.0

    World 88 627 100.0 80 856 100.0

    australia 734 0.8 684 0.8

    Note: Includescapacityandproductionfromunconventionaloilsource: BP2009a;IEA2009a

    indicatorsofsupplyofenduseproducts.Table3.2summarisesworldrefiningcapacityandproduction,byregion.

    Thelargestshare,accountingforaround28percentofworldrefinerycapacityandoutput,isintheAsiaPacificregion.China,Japan,IndiaandtheRepublicofKoreaarethemajorproducersofrefinedproductsintheregion,althoughJapanandtheRepublicofKorearelyalmostentirelyonimportedcrudeoil.ThelargestsingleproduceristheUnitedStates,accountingformorethan20percentofworldproductionofoilproducts.Australiaaccountedforlessthan1percentofworldrefiningcapacityandproduction.

    Consumption Oilisanimportantenergysource,currentlyaccountingforaround34percentofworldprimaryenergyrequirements.However,itsshareofprimaryenergyhasbeendecliningsteadilysincethe1970sfromaround45percent(figure3.9).Worldoilconsumptiongrewatamoderaterateofaround1.5percentperyearbetween1971and2008whereasprimaryenergyconsumptiongrewat2.2percentperyearoverthesameperiod.

    Morethan50percentofworldoilconsumptioniscurrentlyusedinthetransportsector,comparedwithlessthan40percentintheearly1970s(figure3.9).Incontrast,theglobalsharesofoilconsumptionintheindustryandelectricitygenerationsectorshavebeensteadilydecliningoverthepasttwentyyears.In2007,theindustryandelectricitygenerationsectorsaccountedfor8percentand7percentrespectivelyoftotaloilconsumption.Around14percentofworldoilconsumptionisusedasnon-energyfeedstock.

    Figure3.10showsworldoilconsumptionbyregion.NorthAmericaandtheAsiaPacificarethemajorconsumingregions,responsiblefornearly60percentofworldoilconsumptionin2008.Oilconsumptioninnon-OECDcountrieshasgrownmorerapidlythantheworldaverage,atanaveragerateof3percentperyearbetween1971and2008.Thefastestgrowingoilconsumingregionisnon-OECDAsia,growingatan

    30

    25

    20

    15

    10

    5

    Billio

    n bb

    ls

    0200720011995198919831977

    a) Oil consumption, by region

    1971

    Year

    Non-OECDOECD Asia Pacific

    Europe

    Africa OECD Europe

    Former Soviet Non-OECDUnion Asia Pacific

    OECD NorthLatin America

    America

    Middle East

    Australia

    Brazil

    Canada

    United States

    China

    Middle East

    Latin America

    Japan

    Africa

    India

    Russian Federation

    Germany

    Korea

    France

    0 2000 4000 6000 8000

    b) Oil consumption, 2008

    AERA 3.10

    Million bblsFigure 3.10 Worldoilconsumptionsource: IEA2009a

  • AUSTRALIAN ENERGY RESOURCE ASSESSMENT

    50

    Table 3.3 Worldoiltradebyregion,2008

    shares To

    % asia North Pacific america

    europe Latin america

    africa australasia unknown World exports

    From

    MiddleEast 63 18 19 8 60 12 11 37

    Africa 8 19 22 27 7 1 0 15

    FormerSoviet 4 4Union

    47 4 1 1 40 15

    NorthAmerica 1 31 5 42 2 2 6 11

    AsiaPacific 19 1 1 12 4 80 8 10

    LatinAmerica 3 17 4 0 2 0 0 7

    Europe 1 8 0 7 24 0 34 4

    Australasia 1 0 0 0 0 0 0 1

    Unknown 0 2 2 0 0 4 0 1

    Worldimports 40 26 25 3 3 2 1 100

    source: BP2009a

    averagerateofmorethan5percentperyearoverthesameperiod.

    Australiaisrankedtwenty-secondintheworldintermsofoilconsumption,accountingforaround 1percentoftheworldtotal.Almost70percentisconsumedinthetransportsector,while8percent isusedasnon-energyfeedstock.

    TradeGiventhesignificantseparationofmajorproducingandmajorconsumingcountries,thereisasubstantialleveloftradeinoil.OverthepasttwentyyearsoiltradehasincreasedasoilproductionreservesintheAsiaPacificregionandNorthAmericafailedtokeeppacewithgrowthindemand.Inthemid-1980s,around40percentofworldoilconsumptionwassuppliedthroughinternationaltrade.Thisincreasedtoaround65percentin2008.

    Worldoiltradein2008was67.3millionbarrelsperday(IEA2009a).ThelargestexportregionwastheMiddleEast,whichaccountedforaround37percentofworldoilexports(table3.3).AfricaandtheFormerSovietUnioncountriestogetheraccountedfor30percentofworldoilexports.Thelargestimporterofoil,theAsiaPacificregion,accountedforaround40 percentofworldoiltradein2008.NorthAmericaandEuropetogetheraccountedforabouthalfof worldtrade.

    In2008,around63percentofAsiaPacificoilimportsweresourcedfromtheMiddleEastandregionaltradewithintheAsiaPacificaccountedforafurther19percent.InNorthAmerica,31percentofimportsaresourcedfromwithintheregion,specificallyoilexportsfromCanadaandMexicototheUnitedStates.SignificantquantitiesofoilareimportedintoNorthAmericafromLatinAmerica,theMiddleEastandAfrica.ThemajorityoftheEurope’simportsaresourcedfromtheFormerSovietUnion,AfricaandtheMiddleEast.

    Australiaisanetimporterofcrudeoilandcondensateandofrefinedoilproducts,butisanetexporterofLPG.Sincethemid-1990s,Australia’simportsofcrudeoilfromtheMiddleEasthavebeengraduallydecliningandhavebeenincreasinglysourcedfromSouth-EastAsia,mainlyfromVietnam.

    World oil market outlookInitsreferencescenario,theIEAprojectsworlddemandforprimaryoil–andthesupplytomeetthatdemand–tobothgrowby1percentperyear,from29645mmbbl(169297PJ)in2008to36820mmbbl(210271PJ)in2030(table3.4).

    Oildemandinnon-OECDeconomiesisexpectedtogrowatafasterratethaninOECDeconomies.By2030,non-OECDeconomiesareexpectedtorepresentmorethanhalfofworldoildemand,upfrom41percentin2008.

    ThemajorityoftheincreaseisexpectedtobesuppliedbyOPECcountries,wheresignificantprovenreservesofconventionalcrudeoilexist.OPEC’sshareofworldoilsupplycouldincreasefromaround44percentin2008to52percentin2030.

    Some52percentoftheoilwasusedinthetransportsectorin2008.Thisshareisexpectedtorisefurtherto57percentin2030.Viablealternativesfortransportfuelsareexpectedtoremainrelativelylimitedthroughouttheoutlookperiod,whiletheshareofoiluseinothersectors,includingindustryandelectricitygeneration,isexpectedtodeclinefurther.

    Productionofconventionaloil,includingcrudeoilandcondensate,isexpectedtoslowtowardstheendoftheoutlookperiod.Tomeetoildemand,increasedproductionisexpectedtocomefromunconventionalsources,mainlyoilsands,extra-heavyoil,gas-to-liquidsandcoal-to-liquids.Asaresult,theshareofunconventionaloilisexpectedtorisefrom2percentin2008to7percentin2030.

  • AUSTRALIAN ENERGY RESOURCE ASSESSMENT

    51

    CHAPTER 3: OIL

    Table 3.4 WorldoiloutlookfromIEAreferencecasea

    unit 2008 2030

    World oil supply PJ 169 097 210 271

    mmbbl 29610 36820

    ShareofOPECsupply % 43.7 52.2

    Shareofsupplyfromunconventionaloil

    % 2.1 7.0

    Annualgrowth2008–30 % 1.0

    World primary oil demand

    PJ 169 297 210 271

    mmbbl 29645 36820

    Shareofnon-OECDdemand

    % 41.3 53.4

    Shareoftransportsector demand

    % 52.0 57.0

    Annualgrowth2008–30 % 1.0

    a Dataareconvertedfrommillionbarrelsperdaytomillionbarrelsbymultiplyingwith350,factorthatisconsistentwithBP(2009a).source: IEA2009c

    TheIEAprojectsworlddemandforenergytogrowmoreslowlyunderits450scenarioinwhichcountriestakecoordinatedactiontorestricttheriseinglobaltemperaturesto2°CandstabilisethegreenhousegasesintheEarth’satmospheretoaround450partspermillioncarbondioxide-equivalent(IEA2009c).UnderthisscenariotheIEAprojectsoildemandtogrowatanaveragerateof0.2percentperyeartoreach31240mmbblin2030(down15percentonthereferencecase).IntheIEA’s450scenariodemandgrowthisdrivenprimarilybyChina(averaging2.7percentperyear)andtoalesserextentotherdevelopingcountrieswhiledemandreducesintheUnitedStatesandotherOECDcountries.InthisscenariotheIEApredictssavingsintransportfuelconsumptionthroughefficienciesandgreateruse ofelectricandhybridvehiclesandagreatercontributionfromsecond-generationbiofuels after2020(IEA2009c).

    3.3Australia’soilresources and market

    3.3.1CrudeoilresourcesAustralia’scrudeoilresourceswereestimatedat8414PJ(1431mmbbl)asat1January2009.Crudeoilrepresents27percentofliquidpetroleumresourceswiththeremainderbeingmadeupofcondensate(16170PJ,53percent)andnaturally-occurringLPG(6210PJ,20percent)(figure3.11).

    Asshownintable3.5,mostofAustralia’sidentifiedcrude oil resource is in the economic demonstrated resource(EDR)categoryandonlyasmallvolumeisconsideredsub-economicgivencurrentrelativelyhighoilprices.

    LPG6210 PJ Crude oil

    1475 mmbbl 8414 PJ1431 mmbbl

    Condensate16 170 PJ

    2750 mmbbl

    AERA 3.11

    Figure 3.11 Australia’sliquidpetroleumresourcesbyenergycontentandvolumeasat1January2009

    source: GeoscienceAustralia2009a

    ResourceclassificationismorefullydiscussedinAppendixD,butnotethatEDRareresourceswiththehighestlevelsofgeologicalandeconomiccertaintyandincluderemainingprovedplusprobablecommercialreservesofpetroleum.Sub-economicDemonstratedResources(SDR)areresourcesforwhichprofitableextractionhasnotyetbeenestablished.InferredResourcesarethosewithalowerlevelofconfidencethathavebeeninferred frommorelimitedgeologicalevidenceandassumedbutnotverified.

    Anadditionalbutuncertainresourceisrepresentedbythevolumesofcrudeoilthatcouldbeproducedfromexistingfieldsbytheapplicationofenhancedoilrecovery(EOR)technologiessuchasmisciblegasflooding(e.g.usingnitrogenorcarbondioxide).Thesemethodscanincreasetheoilrecoveryfactorsignificantlybeyondthe30–50percenttypicallyrecoveredusingcombinedprimaryandsecondrecoverymethods.However,EORdependsheavilyontheavailabilityandcostofmisciblegases(Wrightetal.1990)andisnotcurrentlyundertakenatanyAustralianoilfield.Reservesgrowth(GeoscienceAustralia,2001,2004,2005)inexistingfieldsisanotherpotentialsourceofadditionalcrudeoilresources.

    Table 3.5 AustraliancrudeoilresourcesrepresentedasMcKelveyclassificationestimatesasat1January2009

    Crude Oil Resources PJ mmbbl

    EconomicDemonstratedResources 6950 1182

    Sub-economicDemonstratedResources

    1464 249

    Total 8414 1431

    source: GeoscienceAustralia2009a

  • AUSTRALIAN ENERGY RESOURCE ASSESSMENT

    52

    Most(72percent)oftheremainingidentifiedcrudeoilresourceislocatedintheCarnarvon(4839PJ)andBonaparte(1205PJ)basins.Despiteits40yearsofproduction,theGippslandBasinremainsasignificantresource(1700PJ)withsmallervolumesinanumberofonshore(Cooper-Eromanga,Bowen-SuratandAmadeus)andoffshore(Browse,PerthandBass)basins(figure3.12).

    WhilecrudeoilresourcesareidentifiedacrossninebasinsandthroughmuchofthestratigraphiccolumnthesignificantvolumesarerestrictedtotheoffshoreMesozoicbasinsonthenorthwestmarginandinBassStrait.Theonshorebasinscontributeonlyabout5percent of the total crude oil resources.

    Australia’sremainingidentifiedcrudeoilresourcesaredwarfedbypastproductionwhichhascomemainlyfromafewsuper-giantfieldsintheGippslandBasinandtheBarrowIslandfieldintheCarnarvonBasin,alldiscoveredinthe1960s(figure3.13).Manysuchsmalleroilfieldshavebeenfoundsince,mostlyintheCarnarvonandBonapartebasins.Theimpactoftheseinitialdiscoveriesoncrudeoilresourcesandthereservestoproductionratioisillustratedinfigures3.14and3.15.

    Thereservestoproduction(R/P)ratiohasbeenrelativelysteadyataround7to10yearssincethe

    1980s.However,itmustberecognisedthatbothproductionvolumesandreserveshavedeclinedmarkedlyinrecentyears.Todate,around80percentofthecrudeoilreservesdiscoveredinAustraliahavebeenproduced.

    3.3.2CondensateresourcesCondensateexistsasahydrocarbongasinthesub-surfacereservoirthatcondensestoalightoilatthesurfacewhenagas(oragasandoil)accumulationisproduced.CondensatenowrepresentsmorethanhalfofAustralia’sremainingliquidhydrocarbonresources.In2008thedemonstratedcondensateresourcetotalled16170PJ(2750mmbbls)mostofwhichwasassessedasEDR(table3.6).

    Table 3.6 AustraliancondensateresourcesrepresentedasMcKelveyclassificationestimates asat1January2009

    Condensate Resources PJ mmbbl

    EconomicDemonstratedResources 12560 2136

    Sub-economicDemonstratedResources

    3610 614

    Total 16 170 2750

    source: GeoscienceAustralia2009a

    BONAPARTE BASINProduced: 2540

    Remaining: 1205

    BROWSE BASINProduced: 0

    Remaining: 82

    CANNING BASINProduced: 18Remaining: 0

    CARNARVON BASINProduced: 8643 AMADEUS BASINRemaining: 4839 Produced: 100

    Remaining: 24

    COOPER/EROMANGA BASINSProduced: 1629Remaining: 370

    BOWEN/SURAT BASINSProduced: 194Remaining: 41

    PERTH BASINProduced: 141Remaining: 76

    GIPPSLAND BASINProduced: 21 929Remaining: 1700

    BASS BASINProduced: 0

    Remaining: 76

    DARWIN

    BRISBANE

    PERTH

    ADELAIDE SYDNEY

    MELBOURNE

    HOBART

    150°140°130°120°

    10°

    20°

    30°

    40°

    AERA 3.12

    0 750 km

    Total production calculated(as at 2008 in PJ)Remaining resource (EDR + SDR)calculated (as at 2008 in PJ)

    Oil basin

    Crude oil

    Oil pipelineOil pipeline(proposed)

    Figure 3.12 Australia’sknowncrudeoilresources,bybasinandoilpipelinessource: GeoscienceAustralia

  • AUSTRALIAN ENERGY RESOURCE ASSESSMENT

    53

    CHAPTER 3: OIL

    AsmostAustraliancrudeoilsarelight,sweetcrudesandareverysimilartothecondensateproducedfromgasfields,bothareconsideredtohaveequivalentenergyvaluepervolume(5.88PJ/mmbbl)inthisreport.

    Condensateresourcesarelocatedacrosstenbasins,buttheoffshorebasinsalongtheNorthWestShelf–Bonaparte,BrowseandCarnarvon–contain92percentoftheresource(figure3.16).Similarly,thebulk of this resource is contained in a small number ofgiant‘wet’gasfields.TheundevelopedIchthysgasresourceintheBrowseBasin,forexample,isestimatedtocontain3099PJ(527mmbbls)or19percentofAustralia’scondensateresources;andis

    thelargestliquidhydrocarbonresourcefoundsincetheBassStraitoilfieldsintheGippslandBasinin the1960s.

    ProportionallytheCarnarvonBasingasfieldstendtobeleanerincondensatethanthoseintheBrowseandBonapartebasinsduetothedominanceof thesuper-giantdrygasaccumulationsofIo-Jansz andScarborough.

    Theidentifiedcondensateresourcehasanenergycontentthatislessthan10percentthatoftheassociatedgasresource,buthasstrategicimportanceasitconstitutesmorethanhalfof

    0

    3000

    2500

    Cru

    de o

    il di

    scov

    ered

    per

    ann

    um (m

    mbb

    l)

    2000

    1500

    1000

    500

    0

    600

    500

    400

    300

    200

    Cum

    ulat

    ive

    num

    ber o

    f dis

    cove

    ries

    100

    1960 1965 1970 1975 1980 1985 1990 1995 2000 2005

    Year

    AERA 3.13

    Discoveries (cumulative number)Crude oil (annual discovered volume mmbbl)

    Figure 3.13 Australia’scrudeoildiscoveries,annualdiscoveredvolume(bluecolumns)andcumulativenumber ofdiscoveries,1960–2008

    source: GeoscienceAustralia

    Crude resources

    Crude EDR

    01964

    16 000

    14 000

    12 000

    10 000

    PJ 8000

    6000

    4000

    2000

    1968 1972 1976 19841980 1988 1992 1996 200820042000

    AERA 3.14

    YearFigure 3.14 Australiancrudeoilresourcesandeconomicdemonstratedresources(EDR),1964–2008source: GeoscienceAustralia

  • AUSTRALIAN ENERGY RESOURCE ASSESSMENT

    54

    Australia’sliquidfuelresource.Accesstothisresourcerequiresdevelopmentofthegiantwetgasfieldswhichinseveralcasesalsocontainconsiderablevolumesofcarbondioxide(CO

    2).

    Australia’scondensateresourceshavegrownsubstantiallysincethediscoveryofthesuper-giantandgiantgasfieldsalongtheNorthWestShelfintheearly1970s(NorthRankinintheCarnarvonBasin,

    01964 1968 1972 1976 19841980 1988 1992 1996 200820042000

    80

    70

    60

    50

    Year

    s

    40

    30

    20

    10

    AERA 3.15

    YearFigure 3.15 Australiancrudeoilreservestoproductionratioinyearsofremainingproduction,1964–2008source: GeoscienceAustralia

    BONAPARTE BASINProduced: 592

    Remaining: 2799

    BROWSE BASINProduced: 0

    Remaining: 6286

    CARNARVON BASINProduced: 3365Remaining: 5892

    AMADEUS BASINProduced: 6Remaining: 12

    BOWEN/SURAT BASINSProduced: 48Remaining: 12COOPER/EROMANGA BASINS

    Produced: 585Remaining: 88

    PERTH BASINProduced: 2

    Remaining: 0.2

    OTWAY BASINProduced: 11

    Remaining: 82

    GIPPSLAND BASINProduced: 1182Remaining: 753

    BASS BASINProduced: 11

    Remaining: 247

    DARWIN

    BRISBANE

    PERTH

    ADELAIDE SYDNEY

    MELBOURNE

    HOBART

    150°140°130°120°

    10°

    20°

    30°

    40°

    AERA 3.16

    0 750 km

    CondensateTotal production calculated(as at 2008 in PJ)Remaining resource (EDR + SDR)calculated (as at 2008 in PJ)

    Gas basin

    Gas pipelineGas pipeline(proposed)

    Oil pipeline

    Figure 3.16 Australia’sknowncondensateresourcesbybasin,andgasandoilpipelinessource: GeoscienceAustralia

  • AUSTRALIAN ENERGY RESOURCE ASSESSMENT

    55

    CHAPTER 3: OIL

    ScottReef(Torosa)intheBrowseBasin,SunriseintheBonaparteBasin).ThebigstepinthecondensateEDRin2008(figure3.17)islargelyduetothepromotionofIchthysintothiscategory.

    TheEDRtoproductionratioofcondensatesince1980hasmostlybeenbetween20and50years,apartfromapeakintheearly1980s(figure3.18). In2008atcurrentlevelsofproductionAustraliahadabout30yearsofcondensatereservesremaining.

    3.3.3LPGresourcesTheidentifiedresourceofnaturally-occurringliquidpetroleumgas(LPG)in2008wasestimatedat6210PJ(1475mmbbls),mostofwhichwas

    assessedasEDR(table3.7).LPGrepresents20percentofAustralia’sliquidhydrocarbonresourceinenergycontentterms.LPGislessenergydensethancrudeoilandcondensate.Hence,thoughAustralia’snaturally-occurringLPGnowvolumetricallyexceedsthecrudeoilresource,thecrudeoilhasahigherenergycontent(8414PJin1431mmbblsofcrudeoil,comparedwith6210PJin1475mmbblsofLPG).

    LPGisamixtureoflighthydrocarbonsthatisnormallyagasinsubsurfacereservoirsandatthesurface.However,LPGisstoredandtransportedasaliquidunderpressureandformspartofAustralia’sliquidfuelsupply.InadditiontotheLPGoccurringnaturallyingasandoilfields,LPGisalsoproducedduringtherefiningofcrudeoil.

    1964 1968 1972 1976 19841980 1988 1992 1996 20082004

    AERA 3.17

    2000

    Condensate resources

    Condensate EDR

    0

    16 000

    14 000

    12 000

    10 000

    PJ

    8000

    6000

    4000

    2000

    18 000

    YearFigure 3.17 Australia’sidentifiedcondensateresourcessource: GeoscienceAustralia

    1972 1976 19841980 1988 1992 1996 200820040

    2000

    100

    AERA 3.18

    Year

    s

    50

    YearFigure 3.18 CondensateEDRtoproductionratioinyearsofremainingproductionsource: GeoscienceAustralia

  • AUSTRALIAN ENERGY RESOURCE ASSESSMENT

    56

    Table 3.7 Australiannaturally-occurringLPGresourcesrepresentedasMcKelveyclassificationestimatesasat1January2009

    LPg Resources PJ mmbbl

    EconomicDemonstratedResources 4613 1096

    Sub-economicDemonstratedResources

    1597 379

    Total 6210 1475

    Naturally-occurringLPGresourcesareidentifiedineightbasins(figure3.19).ThedistributionofLPGissimilartothatofcondensatewiththeCarnarvon,BrowseandBonapartebasinsagaindominating(85percentoftheremainingresource).TheresourceintheGippslandBasinremainssignificant(10percentofthetotal)eventhoughthisrepresentsonlyaboutaquarter of the initial resource.

    In2008atcurrentlevelsofproduction,Australiahad20yearsofnaturally-occurringLPGremaining.

    source: GeoscienceAustralia2009a

    3.3.4 Shale oil resourcesAustraliahassignificantpotentialunconventionaloilresourcescontainedinoilshaledepositsinseveralbasins.Oilshaleisessentiallyapetroleumsourcerockwhichhasnotundergonethecompletethermalmaturationrequiredtoconvertorganicmatterto

    oil.Inaddition,thefurthergeologicalprocessesofexplusion,migrationandaccumulationwhichproduceconventionalcrudeoilresourcestrappedinsubsurfacereservoirshavenotoccurred.Theunconventionalshaleoilresourcecanbetransformedintoliquidhydrocarbonsbymining,crushing,heating,processingandrefining,orbyin situheating,oilextractionandrefining(box3.2).

    Australia’stotalidentifiedenergyresourcecontainedinoilshalewasestimatedat131600PJ(22390mmbbl)in2009(table3.8).However,allofthiswasclassifiedaseitherrecoverablecontingent(84600PJ,14387mmbbl)orinferred(47000PJ,8003mmbbl)resources.Thisisalargeunconventional oil resource.

    Table 3.8 AustralianshaleoilresourcesrepresentedasMcKelveyclassificationestimatesasat1January2009

    shale Oil Resources PJ mmbbl

    Sub-economicDemonstratedResources

    84600 14387

    InferredResources* 47000 8003

    Total 131 600 22 390

    * Thetotalinferredresourcedoesnotincludea‘totalpotential’ lowgradeshaleoilresourceoftheToolebucFormation,Queenslandestimatedtobeabout9061100PJ(equivalentto1541000mmbbls,245000GL)byBMRandCSIROin1983.source: GeoscienceAustralia2009b

    BONAPARTE BASINProduced: 232

    Remaining: 1193 DARWIN

    BROWSE BASINProduced: 0

    Remaining: 1391

    CARNARVON BASINProduced: 1349Remaining: 2603

    AMADEUS BASINProduced: 6

    Remaining: 0.8

    COOPER/EROMANGA BASINS BOWEN/SURAT BASINSProduced: 47Produced: 642Remaining: 10Remaining: 125

    BRISBANE

    PERTH

    ADELAIDE SYDNEY

    MELBOURNEGIPPSLAND BASINProduced: 2427

    BASS BASIN Remaining: 646Produced: 5

    Remaining: 241

    HOBART

    150°140°130°120°

    10°

    20°

    30°

    40°

    AERA 3.19

    0 750 km

    LPG produced in PJ

    LPG remaining resourcein PJ

    Gas basin

    LPG resources

    Gas pipelineGas pipeline (proposed)Oil pipelineOil pipeline (proposed)

    Figure 3.19 Australia’sLPGresourcesbybasinsource: GeoscienceAustralia

  • AUSTRALIAN ENERGY RESOURCE ASSESSMENT

    57

    CHAPTER 3: OIL

    BOx 3.2 SHALEOIL

    ResourcesOilshaleisasignificantbutlargelyunutilisedsourceofhydrocarbons(shaleoil).Totalworldin-situshaleoilresourceswereestimatedin2005(thelastyearforwhichworldoilshalemarketdataareavailable)tobearound16.62millionPJ(2826billionbbl)in27countries(WEC2007).MostoftheresourceislocatedintheGreenRiveroilshaledepositintheUnitedStates.TheUSGSestimatestheGreenRiveroilshaletocontain1525billionbarrelsofoilin-placeinsomeseventeenoilshalezones(Johnsonetal.2009).OthercountrieswithsignificantshaleoilresourcesaretheRussianFederation,theDemocraticRepublicofCongo,Brazil,Italy,Morocco,Jordan,AustraliaandEstonia.Thetotalrecoverableshaleoilresourcewasestimatedatabout6.27millionPJ(1067Bbbl).Australiaisestimated tohaveabout1.3percentofworldrecoverable shale oil resources.

    ProductionSmallscaleproductionofhydrocabons(kerosene,lampoil,fueloil,andotherproducts)fromoilshalebeganinseveralcountriesinthelate1800sincludingAustraliawithproductionfromthetorbanitedepositsatJoadjaCreeknearLithgowandatGlenDavis(bothinNewSouthWales)from1865.ThisproductioncontinuedthroughWorldWarIIuntil1952.Therewasalsoproductionintheperiod1910–34fromtheMerseyRivertasmanitedepositsinTasmania.ProductioninmostwesterncountriesceasedafterWorldWarIIbecauseoftheavailabilityofcheapersuppliesofconventionalcrudeoil.However,productioncontinuedinEstonia,thethenUSSR,ChinaandBrazil,peakingat46Mtofoilshaleperyearin1980(WEC2007).Totalrecordedshaleoilproductionin2005wasabout5.014mmbbl,comprising2.529mmbblfromEstonia,1.319mmbblfromChinaand1.165mmbblfromBrazil.In2008productionofshaleoilwaslimitedtoEstonia,China,andBrazilwithseveralcountries,includingIsrael,Morocco,ThailandandtheUnitedStates,investigatingthepotentialproductionofshaleoiloruseofoilshaleinelectricitygeneration(WEC2009).

    Geology and extraction OilshaledepositsrangeinagefromCambriantoCenozoicandwereformedinawiderangeofdepositionalenvironmentsrangingfromfreshwaterandsalinepondsandlakescommonlyassociatedwithcoastalswamps(includingpeatswamps)tobroadmarinebasins.Oilshaleshaveawiderangeoforganicandmineralcompositionsandareclassifiedaccordingtotheirdepositionalenvironment,eitherterrestrial,lacustrineormarine.Terrestrialoilshalesarecomposedmostlyofresinsandotherlipid-rich(naturally-occurringmoleculesthatincludefats,waxesandsterols)organicmatterandplantmaterial.Lacustrineoilshales(knownaslamosite

    andtorbanite)containlipid-richmaterialderivedfromalgae,whereasmarineoilshales(tasmaniteandmarinite)arecomposedoflipid-richderivedfrommarinealgaeandothermarinemicro-organisms.

    Theorganicmatterinoilshale(whichcontainssmallamountsofsulphurandnitrogeninadditiontocarbon,hydrogenandoxygen)isinsolubleincommonorganicsolventsandismixedwithvariableamountsofmineralmatter,mostlysilicateandcarbonateminerals.Therearecurrentlytwomainmethodsforrecoveringoilfromoilshale.Thefirstinvolvesmining(commonlybyopen-cutmeans)andcrushingtheshale,andthenretorting(heating)it,typicallyintheabsenceofoxygen,toabout500°C.Alargenumberofoilshaleretortingtechnologieshavebeenproposedbutonlyalimitednumberareincommercialuse.Asecond,morerecentapproachinvolvesin-situextractionofshaleoilbygraduallyheatingtherocksoveraperiodofyearstoconvertthekerogen.Bothapproachesrelyonthechemicalprocessofpyrolysiswhichconvertsthekerogenintheoilshaletoshaleoil(syntheticcrudeoil),gasandasolidresidue.Conversionbeginsatlowertemperaturesbutproceedsfasterandmorecompletelyathighertemperatures.

    Renewedinterestinshaleoilinrecentyearshaspromptedongoingresearchintoextractiontechnologies.Alargenumberoftechnologieshavebeenproposedandmanytrialledtoproduceshaleoil.AreportbytheUnitedStatesDepartmentofEnergysummarisesthosecurrentlybeinginvestigatedtoproduceshaleoil(USDOE2007).In-situmethodsincludeinjectinghotfluids(steamorhotgasses)intotheshaleformationviadrillholesorheatingusingelementsorpipesdrilledintotheshalewiththeheatconductedbeyondthewalls.Otherapproachesrelyonheatingvolumesofshaleusingradiowavesorelectriccurrents.In-situextractionhasbeenreportedtorequirelessprocessingoftheresultantfuelsbeforerefiningbuttheprocessusessubstantialamountsofenergy.Bothmethodsusesubstantialamountsofwaterandtypicallyproducemoregreenhousegasesthandoesextractionofconventionalcrudeoil.Currentlyover30companiesintheUnitedStatesareinvestinginthedevelopmentofcommercial-scalesurfaceandin-situprocessingtechnologieswithseveralcompaniestestingin-situtechnologiestoextractshaleoilatmorethan300mdepth(USDOE2007).

    AustraliaThereisnooilbeingextractedfromoilshaleinAustralia.From2000to2004,theStage1demonstration-scaleprocessingplantattheStuartdepositnearGladstoneincentralQueenslandproducedmorethan1.5mmbblofoilusingahorizontalrotatingkilnprocess(AlbertaTaciuk

  • AUSTRALIAN ENERGY RESOURCE ASSESSMENT

    58

    Process).Nooilhasbeenproducedsince2004.Thedemonstrationplantachievedstableproductioncapacityof6000tofshaleperdayandoilyieldtotalling4500bblsperstreamdaywhilemaintainingproductqualityandadheringtoEnvironmentProtectionAuthorityemissionslimits.ThedemonstrationplantproducedUltraLowSulphurNaphtha(ULSN),accountingforabout55to60percentoftheoutputandLightFuelOil,about40to45percentofoutput.TheULSN,whichcanbeusedtomakepetrol,dieselandjetfuel,hadaverylowsulphurcontentoflessthan1partpermillion.

    SinceacquiringtheStuartoilshaleproject,QueenslandEnergyResourceshasundertakenadetailedtestingprogramofprocessingofthe

    QueenslandoilshaleatapilotplantinColorado,UnitedStatesandsuccessfullydemonstratedtheuseoftheParahoIIverticalkilntechnologytoextractshaleoil(WEC2009).Thecompanyiscurrentlyexaminingaproposalfortheconstructionofasmall-scaletechnologydemonstrationplantattheStuartsiteusingtheParahotechnology(www.qer.com).

    In2008,theQueenslandGovernmentprohibitedshaleoilminingattheMcFarlane(formerlyCondor)depositnearProserpinefor20years.TheQueenslandGovernmentiscurrentlyundertakingatwo-yearreviewonwhethertheoilshaleindustryshouldbedevelopedinthestate.OtherAustralianoilshaleindustrydevelopmentsaresummarisedelsewhere(GeoscienceAustralia2009b).

    ThemajorityofAustralianshaleoilresourcesofcommercialinterestarelocatedinQueensland,inthevicinityofGladstoneandMackay(figure3.20).ThickCenozoiclacustrineoilshaledeposits(lamosite)ofcommercialinterestarepredominantlyinaseriesofnarrowanddeepextensionalbasinsnearGladstoneandMackay.From1999to2003,oilwasproducedatademonstration-scaleprocessingplant(referredtoastheStuartOilShaleProject)attheStuartdeposit

    intheNarrowsBasin,nearGladstone.Theoilshalesaregradedfromabout60litrespertonneatzeropercentmoisture(LTOM)toover200LTOM,comfortablyabovethe50LTOMcut-offgenerallyregardedastheminimumrequiredforprofitableoperation.

    OilshaledepositsofvaryingqualityalsooccurinNewSouthWales,Tasmania,andWesternAustraliainsedimentarysequencesofPermian,Cretaceous

    DARWIN

    McFarlane

    Julia Creek RundleBungobine

    Duaringa Stuart

    Alpha

    Yaamba Nagoorin

    Nagoorin South LowmeadBRISBANE

    PERTH

    ADELAIDE SYDNEY

    MELBOURNE

    HOBART

    150°140°130°120°

    10°

    20°

    30°

    40°

    AERA 3.20

    0 750 km

    Shale oil

    Demonstrated Resources Undifferentiated (in PJ)

    Inferred resources (in PJ)

    Oil shale basin

    Oil shale occurence

    Figure 3.20 DistributionofAustralianindicatedshaleoilresourcessource: GeoscienceAustralia

  • AUSTRALIAN ENERGY RESOURCE ASSESSMENT

    59

    CHAPTER 3: OIL

    andCenozoicage.Therewassomemodestscaleproductionfromtwoofthesedepositsforperiodsuptothe1950s.

    Apotentialshaleoilresourceofapproximately1541000millionbarrels(9061086PJ)wasestimatedfortheToolebucFormationinnorth-westernQueenslandbythethenBureauofMineralResources(nowGeoscienceAustralia)andtheCSIRO(OzimicandSaxby1983).TheToolebucFormationisverywidespreadbut,atanaverage37LTOM,theresourceisconsideredverylowgrade.Itisnotcountedamongtheresourcesintable3.8.

    3.3.5TotaloilresourcesAustralia’soilresourcesarepredominantlymadeupofconventionalliquidhydrocarbons.Crudeoilreservesareindecline,butthereisasubstantialremainingresourceofcondensateandnaturally-occurringLPGassociatedwithundevelopedoffshoregasfields.Oilshaledepositscontainalarge,unconventionalresourcewhichdoesnotcurrentlyaddtoAustralia’sliquidfuelsupplies.Apartfrom

    enhancedoilrecovery(EOR),optionsforfutureliquidfuelsupplyalsoincludegas-to-liquids(GTL),coal-to-liquids(CTL)andbiofuelswhicharediscussedinotherchaptersinthisassessment.

    AERA 3.21

    Increased breakevenprice required

    Increased technologyrequirements

    Smaller volumes,easy to develop 8414 PJ

    (~1400 mmbbls)Crude oil

    Largervolumes, 22 380 PJdifficult todevelop (~2700 mmbbls condensate,

    1500 mmbbls LPG)

    131 600 PJ (~22 000 mmbbls)Contingent and inferred resource Shale Oil

    6468 PJ1100 mmbbls

    (estimate of scope for EOR in discovered fields)

    Figure 3.21 Australianoilresourcepyramidsource: GeoscienceAustralia(adaptedfromMcCabe1998andBranan2008)

    BONAPARTE BASINTotal produced: 3364

    Crude oil remaining: 1205Condensate remaining: 2799

    LPG remaining: 1193

    BROWSE BASINTotal produced: 0

    Crude oil remaining: 82Condensate remaining: 6286

    LPG remaining: 1391

    CARNARVON BASIN AMADEUS BASINTotal produced: 13 357 Total produced: 112Crude oil remaining: 4839 Crude oil remaining: 24Condensate remaining: 5892 Condensate remaining: 12LPG remaining: 2603 LPG remaining: 0.8

    COOPER/EROMANGA BASINSTotal produced: 2856

    Crude oil remaining: 370Condensate remaining: 88

    LPG remaining: 125 BOWEN/SURAT BASINSTotal produced: 289Crude oil remaining: 41Condensate remaining: 12PERTH BASIN LPG remaining: 10

    Total produced: 143Crude oil remaining: 76

    Condensate remaining: 0.2

    BASS BASINTotal produced: 16

    Crude oil remaining: 76 GIPPSLAND BASINCondensate remaining: 247 Total produced: 25 536

    LPG remaining: 241 Crude oil remaining: 1699Condensate remaining: 753LPG remaining: 646

    DARWIN

    CANNING BASINTotal produced: 18Crude oil remaining: 0

    BRISBANE

    PERTH

    ADELAIDE SYDNEY

    MELBOURNEOTWAY BASINTotal produced: 11

    Condensate remaining: 82

    HOBART

    150°140°130°120°

    10°

    20°

    30°

    40°

    AERA 3.22

    0 750 km

    Liquid hydrocarbon (Crude Oil, Condensate& LPG) resources in PJ

    Gas pipelineGas pipeline(proposed)Oil pipeline

    Past production Petroleum basin

    Condensate resources

    Crude oil resources

    LPG resources

    Figure 3.22 Australiancrudeoil,condensateandnaturally-occurringLPGresources,infrastructure,pastproductionandremainingresources

    source: GeoscienceAustralia

  • AUSTRALIAN ENERGY RESOURCE ASSESSMENT

    60

    Table 3.9 Crudeoil,condensateandLPGMcKelveyclassificationestimatesbybasinasat1January2009

    mcKelvey Basin

    Class.

    Total energy

    PJ

    Crude Oil

    PJ mmbbl

    Condensate

    PJ mmbbl PJ

    LPg

    mmbbl

    EDR Carnarvon 12464 4405 749 5457 928 2602 618

    EDR Browse 3957 0 0 3957 673 0 0

    EDR Bonaparte 4131 676 115 2264 385 1191 283

    EDR Gippsland 2626 1353 230 629 107 644 153

    EDR Other 945 516 88 253 43 176 42

    Total eDR 24 123 6950 1182 12 560 2136 4613 1096

    SDR Carnarvon 868 434 74 434 74 0 0

    SDR Browse 3797 82 14 2327 396 1389 330

    SDR Bonaparte 1063 529 90 534 91 0 0

    SDR Gippsland 470 348 59 122 21 0 0

    SDR Other 473 71 12 193 32 209 49

    Total sDR 6671 1464 249 3610 614 1597 379

    Total eDR + sDR 30 794 8414 1431 16 170 2750 6210 1475

    source: GeoscienceAustralia2009a

    Theresourcepyramid(figure3.21)highlightshowasmallervolumeofmorereadilyaccessible,highqualityresourcesareunderpinnedbylargerbutlessaccessibleresources.However,theseunconventionaloilresourcescomewithdevelopmentcostsandrisks.Technology,priceandtheirownenvironmentalimpactscaninfluenceaccesstothem.

    ConventionalhydrocarbonliquidresourcesarelocatedacrosstenbasinsbutmostremainingresourcesareintheCarnarvon,BrowseandBonapartebasins(table3.9).TheinitialliquidresourcesoftheCarnarvonBasinwerenearlyequivalenttothoseofthecrudeoil-richGippslandBasin(figures3.22and3.12).

    3.3.6Oilmarket

    Oil productionMostofAustralia’scurrentcrudeoilproductionisfromthematureoilprovinces–theCarnarvonandGippslandbasins–whichin2007–08accountedfor62percentand18percentrespectivelyofcrudeoilproduction.TheGippslandBasinalsoaccountsforalmosthalfofAustralia’snaturally-occurringLPGproduction,althoughthishasbeendecliningsteadilysinceproductionpeakedinthemid-1980s(figure3.23).

    Australia’sannualcrudeoilproductionprogressivelydeclinedbetween1985–86and1998–99from1102PJto738PJ(187.4to125.2mmbbl,29794to19905ML).However,followingthestart-upofanumberofnewoilfields,includingtheLaminaria/Corallina,Elang/KakatuaandCossack/Wanaeafields(alloffshorenorth-westernAustralia),oilproductionincreasedrapidly,peakingat1209PJ(205.7mmbbl,32704ML)in2000–01.Sincethen,crudeoilproductionhasdeclinedatarateof7percentperyear,to697PJ(117mmbbl,18602ML)in2007–08.

    Domesticproductionofcondensateincreasedfromaround36PJ(6.1mmbbl,1096ML)inthefirstyearofproductionin1982–83to257PJ(43.7mmbbl,6949ML)in2007–08,withproductionreaching316PJ(53.7mmbbl,8544ML)in2002–03.Naturally-occurringLPGproductioninAustraliaalsoincreasedfromaround80PJ(19mmbbl,3021ML)in1979–80to125PJ(29.7mmbbl,4721ML)in2005–06,mainlyfromtheCarnarvonBasininWesternAustralia.In2007–08,LPGproductiondeclinedto105PJ(25.6mmbbl,4072ML).

    Overthepastfouryears,anumberofoilprojectshavebeendeveloped,withsixfieldsintheCarnarvonBasinandoneeachinthePerthandBonapartebasins.Theeightfieldshaveaproductioncapacityinexcessof350thousandsofbarrelsperday(kbpd,table3.10).

    TheCliffHeaddevelopmentrepresentsthefirst–andcurrentlytheonly–offshoreproducingoilfieldinthePerthBasin.TheCliffHeadfieldismodestinsize(around10mmbbls),theaccumulation’ssizehavingbeenreviseddownwardsfollowingfurtherappraisaldrilling.Thedecisiontodevelopthefieldoccurredduringaperiodofrisingoilpricesthathelpedoffsettheimpactofthisappraisaldrilling.TheEnfield,StybarrowandVincentfields,alllocatedinthedeeperwatersoftheoffshoreExmouthSub-basin,CarnarvonBasin(figure3.24),signaltheadditionofasignificantnewoilproducingareaforAustralia:recoverablecrudeoilvolumesacrossadozenfieldstotalaroundhalf a billion barrels.

    Incontrasttothenearly6billionbarrelsofconventionaloilproducedinAustraliasincethe1960s,onlyafewmillionbarrelshavebeenproducedfromoilshale.Therewasintermittentandsmallscaleproductionfrom1865to1952whentherewasnoindigenousconventionalcrudeoilproduction.Another

  • AUSTRALIAN ENERGY RESOURCE ASSESSMENT

    61

    CHAPTER 3: OIL

    0

    35 000

    30 000

    25 000

    20 000

    ML

    15 000

    10 000

    5000

    1983-84 1987-88 1991-92 1995-96 1999-00 2003-04 2007-08

    a) Crude oil

    Year

    b) Condensate

    01983-84 1987-88 1991-92 1995-96 1999-00 2003-04 2007-08

    Year

    9000

    8000

    7000

    6000

    5000

    ML

    4000

    3000

    2000

    1000

    45 000

    40 000

    35 000

    30 000

    25 000

    20 000

    15 000

    10 000

    ML

    5000

    0

    c) LPG

    01983-84 1987-88 1991-92 1995-96 1999-00 2003-04 2007-08

    Year

    d) Total primary oil5000

    4500

    4000

    3500

    3000

    ML 2500

    2000

    1500

    1000

    500

    1987-88 1991-92 1995-96 1999-00 2003-04 2007-08

    Year1983-84

    AERA 3.23

    Northern South WesternQueensland Victoria

    Territory Australia Australia

    Figure 3.23 Australianoilproductionsource: ABARE2008

    Table 3.10 Crudeoilandcondensateprojectsrecentlycompleted,asatOctober2009

    Project Company Basin start up Capacity Capital expenditure

    ($m)

    CliffHeadoilfield ROCOil Perth 2006 20kbpd 285

    Enfieldoilfield WoodsideEnergy/Mitsui Carnarvon 2006 100kbpd 1480

    Puffinoilfield AEDOil/Sinopec Bonaparte 2007 30kbpd 150

    WoollybuttoilfieldSouthLobe TapOil Carnarvon 2008 6–8kbpd 143

    Perseus-over-Goodwynproject WoodsideEnergy Carnarvon 2008 na 800

    Stybarrowoilfield BHPBilliton/WoodsideEnergy

    Carnarvon 2008 80kbpd 874

    Vincentoilfield(stage1) WoodsideEnergy/Mitsui Carnarvon 2008 100kbpd 1000

    Angelgasandcondensatefield

    Woodside/BHPBilliton/BP/ChevronTexaco/Shell/JapanAustraliaLNG

    Carnarvon 2008 310PJpagas,50kbpdcondensate

    1400

    source: ABARE;GeoscienceAustralia

    unconventionaloilresource,tarsandsintheonshore

    GippslandBasin,wasexploitedduringWorldWarII

    andinthepost-warperiod(Bradshawetal.1999).

    ThehighqualityoilshaledepositsintheNarrows

    Basin,nearGladstone,havebeenthesubjectofpre-

    developmentstudiesforseveraldecades(McFarland2001).TheStuartOilShaleProjectachievedproductionfromademonstration-scaleprocessingplantintheperiod1999to2004,producingmorethan1.5millionbarrelsofoilusingahorizontalrotarykilnretort(box3.2).

  • AUSTRALIAN ENERGY RESOURCE ASSESSMENT

    62

    50 000

    40 000

    30 000

    20 000

    10 000

    0

    ML

    1969-70 1975-76 1981-82 1987-88 1993-94 1999-00 2005-06Year

    Griffin

    VincentStybarrow

    Pyrenees

    Enfield

    WESTERNAUSTRALIA

    EXMOUTH

    0001

    005

    002

    50

    0 25 km

    AERA 3.24

    Field outline information is provided by GP Info, an Encom Petroleum Information Pty Ltd product.

    NTQLD

    WASA

    NSW

    VIC

    TAS

    114°30'

    21°15'

    114°00'

    21°45'

    Gas fieldBathymetry contour (metres)

    Oil field

    Gas pipeline100

    Figure 3.24 Oilandgasfieldsandbathymetry,ExmouthSub-basin,CarnarvonBasinsource: GeoscienceAustralia

    Petroleum refiningThepetroleumrefiningindustryinAustraliaproducesawiderangeofoilproducts,suchasgasoline,diesel,aviationfuelandLPG,fromcrudeoilandcondensatefeedstock.In2007–08,Australianrefineriesconsumed1333PJ(226.7mmbbl,36043ML)ofcrudeoilandcondensate,ofwhichimportsaccountedforaround68percent(figure3.25).MostoftheimportsareusedinthedomesticpetroleumrefiningindustryinEasternAustralia,tooffsetthedecliningproductionfromtheGippslandBasin.

    Imports of refinery feedstocks

    Refinery feedstock from domestic production

    50 000

    40 000

    30 000

    20 000

    10 000

    ML

    01969-70 1975-76 1981-82 1987-88 1993-94 1999-00 2005-06

    AERA 3.25

    Year

    AERA 3.25

    Figure 3.25 SourcesofAustralianrefineryinputssource: ABARE2009b

    TherearesevenmajorpetroleumrefineriescurrentlyoperatinginAustralia,managedbyfourcompanies—BP,Caltex,MobilandShell(table3.11).Thesesevenrefinerieshaveacombinedcapacityofaround42.7billionlitresayear.ThelargestoftheseareBP’sKwinanarefineryinWesternAustraliaandCaltex’sKurnellrefineryinNewSouthWales.ArefineryatPortStanvacinSouthAustraliaceasedproductionin

    Imports of refinery feedstocks

    Refinery feedstock from domestic production

    Table 3.11 Australianrefinerycapacity

    Operator year commissioned

    Capacity mLpa

    New south Wales

    Clyde Shell 1928 4930

    Kurnell Caltex 1956 7320

    Queensland

    BulwerIsland BP 1965 5110

    Lytton Caltex 1965 6270

    south australia

    PortStanvaca Mobil 1963 (4520)

    Victoria

    Altona Mobil 1949 4530

    Geelong Shell 1954 6380

    Western australia

    Kwinana BP 1955 7960

    Totalb 42 500

    Notes: aThePortStanvacrefineryceasedproductioninJuly2003; bTotalofcurrentlyoperatingrefineries;MLpamillionlitresperannumsource: AustralianInstituteofPetroleum2007

  • AUSTRALIAN ENERGY RESOURCE ASSESSMENT

    63

    CHAPTER 3: OIL

    2003andiscurrentlyunderacareandmaintenanceregime.Itsclosureisoneofthereasonsbehindadeclineintotalrefineryoutput,whichhasledtoincreasedimportsofrefinedpetroleumproducts.

    Consumption Oilissecondonlytocoal,intermsofsharesinAustralianprimaryenergyconsumption.However,itssharehasbeendecliningsteadily,fromahighofalmost50percentofprimaryenergyuseinthelate1970stoaround34percentin2007–08.Priorto1979,Australia’sprimaryoilconsumptionhadgrownstronglyatarateofaround5percentperyear.However,sincethen,consumptionhasbeengrowingatamoderaterateofaround1percentperyear toreach1942PJ(347mmbbls,55168ML)in2007–08(ABARE2009b).

    ThetransportsectoristhelargestconsumerofoilproductsinAustralia,currentlyaccountingforaround70percentoftotaluse,comparedwith50percentinthe1970s(figure3.26).Theincreasedsharehasoffsetthedeclineintheindustrialsector’sshare,downfromabout40percentinthe1970stoabout20percentin2007–08.

    0 0

    20

    40

    60

    80

    2500 100

    2000

    1500

    PJ %

    1000

    500

    AERA 3.26

    1973- 1978- 1983- 1988- 1993- 1998- 2003- 2007-74 79 84 89 94 99 04 08

    Year

    Total oil Transport sector shareconsumption (PJ) of consumption (%)

    Share of primaryenergy consumption (%)

    Figure 3.26 Australianoilconsumption,shareoftotalenergyconsumptionandtransportsectorconsumption

    source: ABARE2009b

    TradeAustraliaisanetimporterofcrudeoilandoilproductsbutanetexporterofLPG.Morethan60percentofdomesticcrudeoilandcondensateproduction(18.6billionlitres,688PJ,117mmbbl)wasexportedin2007–08,predominantlyfromtheCarnarvon BasininWesternAustraliatoAsianrefineries. ThisreflectstheirrelativeproximitytothemajorproducingfieldscomparedwiththerefineriesonAustralia’seastcoast.Australiaalsoimported26billionlitres(962PJ,163.5mmbbl)ofcombinedcrudeoilandcondensatetomeetitsdomesticrefineries’

    -2

    2

    4

    6

    8

    10

    12

    14

    0

    7

    6

    5

    4

    3

    2

    1

    0

    a) Primary oil

    -11989-90 2007-081992-93 1995-96 1998-99 2001-02

    BL

    2007

    -08

    $billi

    on

    2004-05Year

    16

    14

    12

    10

    8

    6

    4

    2

    0

    -2

    BL

    -4 -4

    -2

    0

    2

    4

    6

    8

    10

    12

    14

    b) Refined oil products16

    1992-93 1995-96 1998-99 2001-02

    AERA 3.25

    1989-90 2004-05 2007-08Year

    2007

    -08

    $billi

    on

    Volume (BL) Value ($b)

    Figure 3.27 Australia’snetoilimports–volumeandvalue

    source: ABARE2008and2009c

    requirements.In2007–08,Australia’snetimportsofprimaryoil(crudeoil,condensateandLPG)werearound7.7billionlitres(383PJ,48.4mmbbl), valuedat$5.5billion.

    Formostofthe1990sAustraliawasanetexporterofrefinedoilproducts.Stronggrowthinconsumptionresultedinnetimportsfromaround1999–2000(figure3.27).However,importsincreasedsignificantlyfollowingtheclosureofthePortStanvacrefineryin2003andamountedtoaround15billionlitres(555PJ,94mmbbl)in2007–08.Theseimportswerevaluedataround$12billion.

    Oil supply–demand balanceFigure3.28providesasupply–demandbalanceforprimaryoil–productionfromoilfieldsandconsumptionindomesticrefineries(refineryfeedstock).Exceptforabriefperiodinthemid-

  • AUSTRALIAN ENERGY RESOURCE ASSESSMENT

    64

    0

    1800

    1600

    1400

    1200

    1000

    PJ

    800

    600

    400

    200

    1969-70 2007-081975-76 1981-82 1987-88 1993-94 1999-00

    AERA 3.28

    Year

    Naturally occurring Crude oilLPG production production

    Condensate Consumptionproduction (refinery input)

    (refinery output)

    0

    2250

    2000

    1750

    1500

    1250

    PJ

    1000

    750

    500

    250

    1965-66 2007-08

    ProductionConsumption

    AERA 3.29

    1971-72 1977-78 1983-84 1989-90 1995-96 2001-02Year

    Figure 3.28 Australianprimaryoilsupply–demandbalance

    source: ABARE2009b

    Figure 3.29 Australianrefinedoilproductssupply–demand balance

    source: ABARE2009b

    1980s,Australiahasreliedonnetimportstomeetdomesticrefineries’needs.In2007–08,refineriesinAustraliaused1462PJoffeedstockwitharound25percentofthisinputmetfromimports.

    Figure3.29providesasupply–demandbalanceforrefinedoilproducts,thatis,oilproductsproducedfromdomesticrefineriestomeetdomesticdemandforliquidfuels.Incontrasttoprimaryoil,Australiawasgenerallyselfsufficientintermsofrefinedoilproductsforsubstantialperiodsduringthe1980sand1990s,becauseAustraliahadenoughrefinerycapacitytomeetdomesticdemandforoilproducts.SincetheclosureofthePortStanvacrefineryin2002–03,however,netimportsofoilproductshaverisensteadily,andin2007–08netimportsaccountedforaround30percentoftotalconsumption.

    3.4Outlookto2030forAustralia’sresourcesandmarket

    3.4.1KeyfactorsinfluencingtheoutlookForthepurposesofthisassessment,akeyassumptionisthatdemandforoilwillcontinuetogrowandwillbemetfromavarietyofsourcesincludingimports,domesticconventionalcrudeoilandcondensateproduction,andunconventionalsources.GiventherapidchangesinthepastdecadewhereAustraliamovedfromnetexportertoimporterofoil,furthersignificantchangeisexpectedintheoutlookperiodto2030.Therewillbecontinuedproductionfromknownfields,andthedominanceofthebasinsoffshorenorth-westernAustraliawillbeentrenchedasproductioncomesonstreamfromcondensate-richgasfieldssuchasIchthysintheBrowseBasin,andasthenewlydevelopedExmouthSub-basinoftheCarnarvonBasinreachespeakproduction.Themajoruncertaintiesinindigenousoilsupplyarewhetherexplorationeffortsinfrontierbasinswillbesuccessfulinfindinganewoilprovince;whetherdiscoveredresourcesarecommercialised;andtheroleofunconventionaloilsources(gas-to-liquids,coal-to-liquids,enhancedoilrecoveryandshaleoil)aswellasalternativetransportfuelssuchas biofuels.

    Thisoutlookisaffectedbyvariousfactors,includingthegeologicalcharacteristicsoftheresource(suchaslocation,depth,quality),economiccharacteristicsoftheresource(suchascost),developmentsintechnology,infrastructureissues,fiscalandregulatoryregime,andenvironmentalconsiderations.Themarketpriceofoilisperhapsthemostimportantfactorofallindeterminingtheincentivesforoilexplorationanddevelopment,especiallyforunconventionaloilresources.

    Oil pricesAustraliaisaproducer,exporterandimporterofcrudeoilandrefinedproducts.Sincederegulationoftheoilsectorinthelate1980s,Australia’soilmarkethasbeenopen,competitiveandfullyexposedtoglobalmarketconditions.

    Globaloilpricesaresubjecttobothshort-termpricemovementsandlonger-termpricetrends.Short-termoilpricemovementsrelatetoinfluencesondemandandsupplyofoilinthemarketplace.Theseincludecyclical/seasonaloildemand,theimpactofsupplydisruptionssuchashurricanes,accidentsorsabotage,riskpremiumsassociatedwithgeopoliticaltensions,andextraneousshockstotheeconomysuchastheglobalfinancialcrisis.Indomesticmarketterms,significantexchangeratevariationsandmarketspeculationcanalsoaffectshort-termoilpricemovements.

    Inthelongerterm,animportantdriverofoilpriceswillbetheunderlyingmarginalcostofoilproduction,

  • AUSTRALIAN ENERGY RESOURCE ASSESSMENT

    65

    CHAPTER 3: OIL

    140

    120

    100

    80

    60

    40

    20

    0

    Prod

    uctio

    n co

    st ($

    200

    0)

    0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10 000Resources (billions of barrels)

    Deepwater andultra deepwater

    AERA 3.30

    Coal to liquidsOil shales

    Gas toliquids

    Arc

    tic

    CO

    -E

    OR

    2 EO

    R

    Heavy oiland bitumen

    lO

    ther

    Produced MENA

    conv

    entio

    nal

    oi

    whichwillhaveimplicationsforoilsupply,andacombinationoflongtermeconomicgrowthanddemandsideefficiencyimprovements,whichwill haveimplicationsforoildemand.

    TheIEA’srepresentationoftheavailabilityofoilresourcesandassociatedproductioncostsisshowninfigure3.30.Itshowsthatjustover1trillionbarrelsofoilhavealreadybeenproducedatacostofbelowUS$30perbarrel.Therearepotentiallyaround2trillionbarrelsofoilremainingthatcanbeproducedatacostbelowUS$40perbarrel,aroundthree-quartersoftheminOPECmembercountriesintheMiddleEastandNorthAfrica(MENA).Reflectingitslarge,lowcostreserves,OPEC’sshareofproductionisprojectedtoincreasefrom44percentin2008to52percentby2030(IEA2009c).OPEC’sdecisionsonoilfielddevelopmentwillbecomeprogressivelymoreimportantfortheworldoilmarket.

    TheimportanceofOPEC’sinvestmentdecisionswillbeunderpinnedbytheincreasingcostofnon-OPECproduction.Themajorityofnewnon-OPECinvestmentislikelytobeinoffshoreoilfields,increasinglyindeeperwater,furtherbelowtheseabedandagreaterdistancefromshore(includingfieldswithintheArcticcircle).ThecostofoilproductionfromdeepwatersourcesandthoseneedingadvancedtechniquessuchasEORisestimatedtobebetweenUS$35andUS$80abarrel,similartothecostofproductionfromoilsands.ThecostofproducingoilfromtheArcticcouldreachUS$100abarrelbecausethelargecostassociatedwithdevelopinginfrastructureinanenvironmentallychallengingarea(IEA2008).

    Theincreaseinoilpricesoverthepastfiveyearshasencouragedexplorationactivityinfrontierregions

    Figure 3.30 LongtermoilsupplycostcurveNote: MENA–MiddleEastandNorthAfrica

    source: IEA2008

    suchastheCamposBasinoffthecoastofBrazilandindeeperwaterintheGulfofMexico.TheBrazilianTupifield,forexample,oneofthemostsignificantoildiscoveriesinthepast20years,is5kmbelowthesurfaceoftheAtlanticOceanandbelowasaltlayerupto2kmthick.InSeptember2009,BPannouncedthediscoveryoftheTiberoilfieldintheGulfofMexico.Theoilfieldis10700mbelowtheoceanfloorandinwaterthatisaround1200mdeep,makingitoneofthedeepestdrilledintheindustry(BP2009b).Thecontinueddevelopmentandapplicationofdeepwaterdrillingandfielddevelopmentwilleventuallyleadtolowerproductioncostsandtheexpansionoffrontierareaswherenewoilfieldscanbedevelopedindeeperwaterandfurtherbelowtheseabed,buttheprocessatpresentiscostly.

    Syntheticoilproduction,suchasshaleoil,CTLandGTL,hasthehighestproductioncosts,estimatedbytheIEAatuptoUS$110perbarrel.Thismakesnoallowanceforanycostsassociatedwiththeabatementofgreenhousegasemissionsthatareby-productsoftheprocess.AtpresentthereareveryfewcommercialCTLandGTLprojects,reflectinglargecapitalandproductioncostsandtechnicallychallengingproductionprocesses.

    ThefutureexpansionofGTLcapacitywilldependoncompetingusesforgassuchasforelectricitygeneration,transportorexportbypipelineorasLNG.OneofthechallengesforCTLismanagingthehighCO

    2output.Eachbarrelofoilproducedfromthis

    technologyreleasesbetween0.5and0.7tonnesofCO

    2,comparedwitharound0.2tonnesofCO

    2 from

    abarrelofoilfromtheGTLprocess(IEA2008).

  • AUSTRALIAN ENERGY RESOURCE ASSESSMENT

    66

    GTLplantsareoperatinginQatar,SouthAfricaandMalaysiaandtherehasbeenoutputfromanexperimental(500bblsperday)plantinJapan.ThereisoneCTLplantinSouthAfrica.

    IncomparisontoGTLandCTL,productionfromoilshaleisthemoreuncertain,givenitsenergyandcarbonintensity.ThereissomeoilproductionfromoilshaleinBrazil,ChinaandEstonia.Theintroductionofapriceforcarbonwouldfurtherincreasethecostofshaleoilextraction.

    Recenthighoilpriceshaveencouragedinvestmentintechnologytoimproveextractionofoilfromoilsandsandresearchtocommercialiseoilproductionfromcoalandgas.IftheR&Dissuccessful,itshouldenableproductionofincreasedquantitiesofoilfromunconventionalsources.However,despitetherecentR&Deffort,productioncostsfortheseunconventionalsourceshaveallincreased,associatedwithhighercapitalandoperatingcosts.

    FurtherinformationonthelongtermoutlookforoilpricesiscontainedinChapter2.

    Oil demandThetwofactorsexpectedtoinfluenceoildemandoverthenexttwodecadesarethecontinueddecreaseinoilintensityinOECDeconomiesandtheincreasedoilconsumptioninnon-OECDeconomiesassociatedwithstrongeconomicgrowth.

    IntheOECD,oilintensity(theamountofoilconsumedperunitofGDP)hasbeendecreasingsincetheoilshocksofthe1970s(figure3.31).Oneofthedriversofthistrendhasbeenthemoveawayfromoil-firedelectricitygenerationcapacity,tocoal,gasornuclearpower.Theincreaseinpricesduring2007andthefirsthalfof2008islikelytoreinforcethistrendandwillencourageanalogousresponsesinotherareasofdemandsuchasthetransportsector.Improvedfuelefficiency,increaseduptakeofalternativetransportfuelsanddevelopmentofalternativetransportmodesareallpossibleimpacts.Thecontinueddecreaseinoilintensityalsocomplementsbroaderenvironmentalandenergysecuritypolicygoals.

    3.5

    3.0

    2.5

    2.0

    1.5

    1.0

    0.5

    01972 1977 1982 1987 1992 1997 2002 2007

    Oil

    cons

    umpt

    ion

    (bar

    rels

    per

    day

    )pe

    r rea

    l GD

    P (2

    000

    US$

    )

    OECD

    Non-OECD

    AERA 3.31

    Year

    Figure 3.31 OilintensityofGDPsource: ABAREestimatesfromIEA2009bdata

    Non-OECDeconomies,includingChinaandIndia,areprojectedtogrowstronglyovertheoutlookperiod.Historically,therehasbeenastrongcorrelationbetweeneconomicgrowthandoilconsumption,drivenbyhigherpersonalincomesandincreaseddemandforpersonaltransportandvehicleownership.TheIEAprojectsthat,by2030,non-OECDeconomieswillaccountforaround53percentofworldoilconsumption,comparedwith41percentin2008(IEA2009c).

    Resource characteristicsInAustralia,theinitialdepositionalenvironmentsandsubsequentmaturationhistoryafterburialthatarerequiredtoproduceandpreservecrudeoilaccumulations(Box3.1)haveoccurredlessfrequentlythanthegeologicalconditionsthathaveresultedinnaturalgasaccumulations.Australia’sidentifiedconventionalpetroleumresourcesaredominatedbywidelydistributednaturalgas.Incontrast,themajorknownaccumulationsofcrudeoilarerestrictedtotheGippslandBasinandfive‘oily’sub-basins(Longleyetal.2002)alongthenorth-westmargin.Thisdistributioniscontrolledbytheoccurrenceofdeep,narrowtroughscontainingmatureoilsourcerockswhichwereformedaroundthecontinent’smarginsasitbrokeapartfromGondwana.TheGippslandBasinisaworldclassoilprovincewithanumberofgiantfields:itisexceptionalintheAustraliancontext,havingthegreatestthicknessofyoung(Cenozoic)sediments.MostofAustralia’scrudeoilhascomefromthisonesmallbasinbeingsourcedfromanoilkitchen(theCentralDeep)onlyabout50kmwide(figure3.32).

    Similarly,thecrudeoilintheExmouth,BarrowandDampiersub-basinsoftheCarnarvonBasin,andintheVulcanSub-basinandtheLaminariaHigh–FlamingoSynclineoftheBonaparteBasinisderivedfromnarrowLateJurassictroughsfilledwithoil-pronesourcerocks.Somecrudeoilaccumulationshavebeenpreservedintheolder(Paleozoic)largelyonshorebasinsbutthemajordiscoveredresourcesandthegreatestpotentialforfuturefindsareoffshore.

    ThecondensateandLPGresourcesarealsopredominantlylocatedinoffshorebasins,especiallyingiantgasfieldsontheNorthWestShelf.Gasliquidsarenotpresentinthelargecoalseamgas(CSG)resourcesidentifiedinonshoreeasternAustralia.

    Australianshaleoilresourcesarevariableinorganicrichnessandmoisturecontent.ThoseinCenozoicbasinsofeasternQueenslandarethickandrelativelyshallowdepositswithviableoilyields,andhavealowcarbonatecontentwhichdoeshaveadvantagesinprocessing,includinglessCO

    2 release.

    Technology developmentsThedevelopmentofconventionaloilresourcesinthepasthasbenefitedfromsignificanttechnological

  • AUSTRALIAN ENERGY RESOURCE ASSESSMENT

    67

    CHAPTER 3: OIL

    VICTORIAORBOST

    BAIRNSDALE

    gton Fault SystemWellin Northere nk Pa laL tformNorthern Terrace

    SALE Fault SystRose edale m

    SnapperMarlinBarracouta

    Fortescue/HalibutCentral DeepBream BassDarr iman CaF na yos e u

    oF r lt nt KingfishFau Systel mt

    System

    GippslandSouthern Platform Rise

    0 50 km

    500

    10002000

    3000

    AERA 3.32

    NTQLD

    WASA

    NSW

    VIC

    TAS

    Basin outline

    Gas field

    Oil field

    FaultBathymetry contour (metres)100

    149°148°147°

    38°

    39°

    Field outline information is provided by GP Info, an Encom Petroleum Information Pty Ltd product. Figure 3.32 GippslandBasinshowingoilandgasfieldsandstructuralelementssource: GeoscienceAustralia,fromdataprovidedbyGeoScienceVictoria

    changeoverasustainedperiodoftime,leadingtoincreasedaccesstoreservoirs,increasedrecoveryofreserves,reducedcostsofexplorationandproduction,andreducedtechnicalandeconomicriskstothedevelopmentofoilprojects.Therearesimilartechnologicaladvances–andneeds–indevelopingunconventionalresources.Botharediscussedinmoredetailbelow.

    Development of exploration technologyExplorationinvolvesanumberofgeophysicalanddrillingactivitiestodeterminethelocation,size,type(oilorgas)andqualityofapetroleumresource.Priortoareaselection,initialregionalstudies(figure3.33)mayusenon-seismicsurveytechniques(gravity,magneticandgeochemicalsurveys,satelliteimageryandsea-bedsampling)todefinesedimentarybasinsandtodetermineifthereareanyindicationsofnaturalhydrocarbonsseepage.Recenttechnologicaldevelopments,suchasaccurateglobalpositioningsystems,improvedcomputingpower,andalgorithmsforreprocessingexistingseismicdataandadvancedvisualisationtechniquesusedtocombinedifferentdatasets(Wilkinson2006),haveenhancedthevalueofthisphaseoftheexplorationprocess,especiallyinoffshorefrontierbasins.InAustralia,withitslargelyunder-exploredvaston-andoffshorejurisdiction,governmenthastakenanactiveroleinprovidingthisregionalscalepre-competitiveinformationtostimulateexploration.

    Hashimotoetal.(2008)demonstratehowavarietyofgeophysicalandotherdatasetscanbeintegratedtoassessthestructureandpetroleumpotentialoftheremotefrontierCapelandFaustbasinsoffshorefromeasternAustralia.Figure3.33isa3DviewacrosstheundrilledCapelandFaustbasinsshowingseismiclinesintegratedwithgravityimagery.Thesedatasetshaveassistedintheidentificationofpotentiallyprospectivethicksedimentarydepocentres,boundingfaultsandstructuralhighsunderlainbyshallowbasementwithinthisvastfrontierarea.

    Oncetheprospectiveareaislocated,moredetailedseismicsurveytechniquesareusedtodeterminesubsurfacegeologicalstructures.Advancesin3Dseismicimagingcannowdisplaythesubsurfacestructureingreaterdetail(Wilkinson2006)andamplitudeanalysiscanrevealpotentialpetroleum-bearingreservoirs,contributingtorecenthighdrillingsuccessratesintheCarnarvonBasin(WilliamsonandKroh2007).Developmentsinexplorationdrillingnowallowprospectivestructuresidentifiedonseismictobetestedinwaterdepthsbeyondtwo and half kilometres.

    Development of production technologyForonshorefields,developmentproceedsinstepwiththeappraisaldrilling.Inoffshorefields,however,theoptimalnumberandlocationofdevelopmentwellsmustbeidentifiedpriortoproceedingwith thedevelopment.

  • AUSTRALIAN ENERGY RESOURCE ASSESSMENT

    68

    AERA 3.33

    NTQLD

    WASA

    NSW

    VIC

    TAS

    Fault

    Figure 3.33 Integratedseismicandgravitydatashowingthelocationofmajorfaults,sedimentarydepocentres(gravitylowsdenotedinbluetones)andareasofshallowbasement(gravityhighsdenotedinredtones)fromtheremoteCapelandFaustbasins

    source: GeoscienceAustralia

    Oilproductionrequirestheestablishmentofproductionwellsandfacilities.Attheinitialstageofproduction,thenaturalpressureofthesub-surfaceoilreservoirforcesoiltoflowtothewellhead.Thisprimaryrecoverycommonlyaccountsfor25to30percentoftotaloilinthereservoir(CEM2004),thoughsomeoffshoreAustralianreservoirshaverecoveryratesof70or80percentsupportedbyanaturalstrongwaterdrive,asinthecaseoftheGippslandBasin.Morecommonly,advancedrecoverytechniquesareemployedtoextractadditionaloilfromthereservoir,includinginjectingwaterorgasintothereservoirtomaintainthereservoir’spressure.Pumpscanalsobeusedtoextractoil.Theseconventionaltechniques can increase the additional amount of recoverableoilbyaround15percent.

    Enhancedoilrecovery(EOR)isamoreadvancedtechniquethathasbeendevelopedtoextractadditionaloilfromthereservoir.Thistechniquealterstheoilproperties,makingitflowmoreeasily,byinjectingvariousfluidsandgases,suchascomplexpolymers,CO

    2andnitrogen,toenablemore

    oiltobeproduced.Thistechniquecouldincreaseoilrecoverybyanadditional40percent,butiscostlytoimplement(IEA2007).Currently,thereare11countries,includingAustralia,participatingintheIEA’sEORImplementingAgreement,whichencouragesinternationalcollaborationonthedevelopmentofnewoilrecoverytechnologies,includinglesscostlyEORtechnology.Whilethesetechniqueshavebeenemployedinthepast,currentlythereisnoEORinAustralia.

    Bottom-supported Floating

    Submersible Jack-up Semi-submersible Drillship

    Thrusters

    ~50 m

    ~100 mAnchor chain

    Riser

    Approximate maximum water depth shown in metres (m)

    ~600 m ~1500 m AERA 3.34

    Figure 3.34 Typesofoffshoredrillingvesselssource: Wilkinson2006

  • AUSTRALIAN ENERGY RESOURCE ASSESSMENT

    69

    CHAPTER 3: OIL

    Reflectingthelargenumberofoilresourceslocatedoffshore,mostR&Dhasbeendirectedtowardoffshoretechnologies.Thereareseveralpossibledevelopmentoptionsforoffshoreoilprojects,basedonbottom-supportedandfloatingproductionfacilities.Thedevelopmentoftheseoptionsisdependentonseveralfactorsincludingresourcetype,reservoirsize,waterdepthanddistancefromshore.Bottom-supportedplatformdevelopmentsaresuitableforrelativelyshallowwaterdepth(figure3.34).

    Accesstodeepwaterfieldshasbecometechnologicallyfeasiblewiththerecentd