Top Banner
Nonlinear Optics Lab. Hanyang Univ. Chapter 3. Classical Theory of Absorption 3.1 Introduction Visible color of an object : Selective absorption, Scattering, Transmission 1) Absorption in gases : line spectrum - Electronic resonance : UV region ex) white daylight : N 2 or O 2 does not absorb at visible frequency - Molecular vibration : IR region - Molecular rotation : Microwave region 2) Absorption in liquids or sold : broad band spectrum ex) Green water : absorption in the red portion ex) Red dye : strong absorption in the blue or UV ex) Metal (free electron, plasma freq. : UV region) - Shine <= Visible frequencies are completely reflected - Characteristic color <= absorption of bound electrons ex) Most good insulators : usually transparent in the visible, but opaque in the UV ex) Semiconductors : usually absorbs visible, transparent in the IR => defects or impurities : modify the absortion spectra
18

Chapter 3. Classical Theory of Absorptionoptics.hanyang.ac.kr/~choh/degree/Quantum Optics/quantum... · 2016. 8. 29. · Nonlinear Optics Lab.Hanyang Univ. Chapter 3. Classical Theory

Jan 29, 2021

Download

Documents

dariahiddleston
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
  • Nonlinear Optics Lab. Hanyang Univ.

    Chapter 3. Classical Theory of Absorption

    3.1 Introduction

    Visible color of an object : Selective absorption, Scattering, Transmission

    1) Absorption in gases : line spectrum

    - Electronic resonance : UV region

    ex) white daylight : N2 or O2 does not absorb at visible frequency

    - Molecular vibration : IR region

    - Molecular rotation : Microwave region

    2) Absorption in liquids or sold : broad band spectrum

    ex) Green water : absorption in the red portion

    ex) Red dye : strong absorption in the blue or UV

    ex) Metal (free electron, plasma freq. : UV region)

    - Shine

  • Nonlinear Optics Lab. Hanyang Univ.

    3.2 Absorption and the Lorentz model

    Absorption (?) => Frictional force that damps out dipole oscillations

    fric2

    2

    F x),R(Ex

    sktedt

    dm=> Equation of motion ;

    3.3 Complex Polarization and Index of Refraction

    )(

    0EˆEkztie

    )(0

    2

    02

    2

    Eˆxdt

    dx2

    xd kztiem

    e

    dt

    sol))( a x(t) kztie

    where,

    i2

    (e/m)Eˆ-a

    2

    0

    2

    0

    where,dt

    dbbv

    xFfric

    Origin of friction : collision

    (Section 3.9, 3.10)

  • Nonlinear Optics Lab. Hanyang Univ.

    xp e- Dipole moment,

    22222

    0

    22

    0

    2

    22

    0

    2

    4)(

    2

    2

    /)(

    i

    m

    e

    i

    me

    In case of many electrons ;

    22222

    0

    22

    0

    0

    2

    22

    0

    0

    22

    4)(

    21

    2

    /1)(

    i

    m

    Ne

    i

    mNen

    Complex refractive index

    Ep ; - Polarizability,

    Polarizability

    z

    j jj

    jj i

    m

    e

    122222

    0

    22

    02

    4)(

    2)(

    )()(

    1 22

    2

    0

    2

    22

    n

    c

    N

    ck

    2)]()([ IR inn

    (2.3.13)

  • Nonlinear Optics Lab. Hanyang Univ.

    )(

    0Eε̂),(Ekztietz

    i) Intensity

    where,

    z

    j jj

    j

    Imc

    Necna

    122222

    0

    2

    0

    2

    4)(

    2/)]([2)(

    Electric field in the medium

    }/)]([{/)]([

    0

    )/)([

    0 Eε̂Eε̂cznticzncznti RI eee

    zaczn eIeIzI I )(02/)]([ )()0()(

    : absorption

    coefficient

    ii) Refractive Index

    z

    j jj

    j

    Rm

    Nen

    122222

    0

    22

    0

    0

    22

    4)(1)(

  • Nonlinear Optics Lab. Hanyang Univ.

    3.4 Polarizability and Index of Refraction near a Resonance

    Most gain media of lasers are composed of a background material and a small

    amount of resonant material.

    ex) gas : background gas + active gas medium

    ex) solid (ruby) : Al2O3 + Cr+3

    ex) liquid (dye) : ethanol + dye

    Thus we can write,

    )()()( rb

    b

    rrb

    b

    rrbr

    rbi

    i

    bi Nnn

    Nn

    NNn

    )(1

    )(1)()(1)(

    2

    0

    2

    2

    00

    2

    2

    bn (nearly const.)

    bb

    rrb

    b

    rrb

    n

    Nn

    Nnn

    2

    )()(1)(

    2/1

  • Nonlinear Optics Lab. Hanyang Univ.

    Near the resonance ( ),0

    ||,,|| 0 oo

    )(2))((22

    oooo

    i

    me

    o

    r

    2/

    )(2

    22

    0

    0

    0

    2

    )(4)(

    mn

    Nenn

    bR

    bRR

    22

    00

    2

    )(4)(

    mn

    Nenn

    bR

    bII

  • Nonlinear Optics Lab. Hanyang Univ.

    3.5 Lorentzian Atoms and Radiation in Cavities

    Electric field in a cavity is not the form of a traveling wave but a standing wave,

    ti

    nn zektz sinEε̂),(E

    where, ...,3,2,1,/ nLnkn

    Similarly as previous sections,

    zke nti sin a x(t)

    where,

    i2

    (e/m)Eˆ-a

    2

    0

    2

    n

    Maxwell wave equation for a cavity including cavity loss,

    ),(P1

    t)E(z,1

    2

    2

    2

    0

    2

    2

    22

    0

    2

    2

    tztctctcz

    where, : conductivity

    EJ

  • Nonlinear Optics Lab. Hanyang Univ.

    i

    mNe

    cccikn

    2

    /22

    0

    0

    222

    2

    0

    2

    Near resonance approxiamtion ; )(2,)(22222

    nnoo

    cigi

    m

    Nein )(

    2

    1

    )(42 220

    0

    0

    2

    0

    cg

    0

    )2

    )(22

    )1 0

    gccn

    : cavity pulling)(22/

    )2/(0

    0nn

    n gc

    gc

    gc

    : threshold gain (*)

    on n

  • Nonlinear Optics Lab. Hanyang Univ.

    (*) Relations 1), 2) are correct except the sign of g

    cg

    0

    If , then field amplification is possible,

    But, from (3.5.9),

    0)(2 2200

    2

    mc

    Neg : negative

    This means that c

    g0

    cannot be satisfied.

    That is, a classical laser theory based on the linear electron oscillator model is not possible.

    And, it requires a quantum mechanical treatment of light-matter interaction to understand

    how can be made positive.g

  • Nonlinear Optics Lab. Hanyang Univ.

    3.6 The Absorption Coefficient

    [Lorentzian Lineshape]

    (3.3.25) => )1when(4)(

    2)(

    2222

    0

    2

    0

    2

    jmc

    Nea

    Near the resonance,

    22

    00

    2

    )(2)(

    mc

    Nea

    2v 2

    0

    2

    0

    0

    0

    2

    )(4)(

    v

    v

    mc

    Nea

    where, 2/0

    0,|| o

  • Nonlinear Optics Lab. Hanyang Univ.

    Lineshape Function ;

    2

    0

    2

    0

    0

    )(

    /)(

    v

    vL

    : Lorentzian lineshape

    1)(

    Ld

    max

    0

    00 )(2

    1

    2

    1)(

    LL 02 : FWHM

    00

    2

    04

    )(

    mc

    Nea

    In general, )()( Saa twhere, is the integrated absorption coefficient

    ta

    Normalization : tt aSdaad

    00)()(

  • Nonlinear Optics Lab. Hanyang Univ.

    3.7 Oscillator Strength

    Absorption Cross section :N

    a )()(

    Natt /

    From (3.6.17) and (3.6.23), /scm1065.24

    22

    0

    2

    mc

    et

    : universal value

    Oscillator strength,

    As can be seen in Table 3.1 for the integrated cross section of hydrogen atom, actual values

    of do not agree with the calculated values by classical theory. This problem of classical

    theory could be patched by introducing oscillator strength assigned empirically.t

    fmc

    e

    mc

    ett

    0

    2

    0

    2

    44

    f

    * Quantum theory removes this defect of Lorentz’s model.

  • Nonlinear Optics Lab. Hanyang Univ.

    3.11 Doppler Broadening

    - 1842, C. J. Doppler, Predicted

    - 1854, C.H.D. Buys Ballot, Demonstrated (trumpet in a moving train)

    To an atom moving with velocity away from a source of radiation of frequency ,

    the frequency of the radiation appears to be shifted :

    cv

    v

    '

    )1('c

    v

    Atomic velocity distribution :

    dvekT

    mvdf

    kTvmx x 2/

    2/12

    2)(

    : Maxwell-Boltzman distribution

    Thus, the atom with resonance frequency

    will absorb radiation near to the frequency :0

    )1(0c

    v

    dc

    dvc

    v0

    0

    0

    ,)(

  • Nonlinear Optics Lab. Hanyang Univ.

    dv

    ce

    kT

    mvdf

    kTcmx x

    0

    2/)(

    2/12

    02

    02

    2)(

    Since the absorption rate must be proportional to , we may write

    the Doppler line shape function as

    )(vdf

    20

    20

    2 2/)(

    2/1

    2

    0

    2

    2)(

    kTcmx xekT

    cmvS

    : Doppler line shape function

    2ln

    000 )()(2

    1)

    2

    1( eSSS D

    : FWHM

    2/1

    0

    2/1

    0 2ln22

    2ln2

    2

    xx

    DM

    RT

    m

    kT

    c

    2/1

    0

    2ln41)(

    D

    S

  • Nonlinear Optics Lab. Hanyang Univ.

    3.12 The Voigt Profile

    Collisional broadening : Homogeneous => Lorentzian

    Doppler Broadening : Inhomogeneous => Gaussian

    In general, we cannot characterize an absorption lineshape of a gas

    as a pure Lorentzian or a pure Gaussian.

    Voigt profile : Described the absorption lineshape when both collision broadening

    and Doppler broadening must be taken into account.

    RTvMx xeRT

    MvSdvvS

    2/

    2/12

    2),()(

    where,2

    0

    200

    0

    )(

    )/1(),(

    cv

    vS

  • Nonlinear Optics Lab. Hanyang Univ.

    2

    0

    2

    00

    2/

    0

    2/1

    )/(2)(

    2

    cv

    edv

    RT

    MvS

    RTvM

    xx

    22

    0

    2

    2/3 )(

    12

    bxy

    edyb y

    : Voigt profile

    where, ,)2ln4(0

    02/1

    x

    D

    b

    02/1)2ln4(

    )(erfc)(2

    0

    2/3

    2

    0 beb

    bS b

    where,

    2

    2/1

    2erfc uedu

    : complementary error function

  • Nonlinear Optics Lab. Hanyang Univ.

    Limit case of Voigt profile

    10 bDb

    beb2/1

    1)(erfc

    2

    0

    0

    1)(

    S : nearly pure Lorentzian

    10 bD

    2/1

    0

    2ln41)(

    D

    S : nearly pure Gaussian

    ii) 1)(erfc2

    beb

    General case : numerical calculation

    i)

    )(ReRe)(

    22

    22ibxw

    bibyx

    edyi

    bbxy

    edy yy

    where, w : error function of complex argument

  • Nonlinear Optics Lab. Hanyang Univ.

    Example) Na vapor

    K 300T,line)-(D A5890

    MHz1300D

    MHzP17000 )torr(P2.2b : If P < 0.1 torr => Doppler regime

    Absorption coefficient, 2/1

    0

    2

    0

    0

    2

    0

    2ln41

    4)(

    4)(

    D

    Nmc

    feSN

    mc

    fea

    A5890,1 f

    TN

    )torr(P1065.9 18

    -150 cm P(torr)102.2)( a