Top Banner
Chapter-3-1 Chemistry 281, Winter 2015 LA Tech CTH 277 10:00-11:15 am Instructor: Dr. Upali Siriwardane E-mail : [email protected] Office: 311 Carson Taylor Hall ; Phone: 318- 257-4941; Office Hours: MTW 8:00 am - 10:00 am; Th,F 8:30 - 9:30 am & 1:00-2:00 pm. January 13, 2015 Test 1 (Chapters 1&,2), Chemistry 281(01) Winter 2015
44

Chapter-3-1 Chemistry 281, Winter 2015 LA Tech CTH 277 10:00-11:15 am Instructor: Dr. Upali Siriwardane E-mailE-mail: [email protected] Office: 311 Carson.

Dec 28, 2015

Download

Documents

Emily Casey
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Chapter-3-1 Chemistry 281, Winter 2015 LA Tech CTH 277 10:00-11:15 am Instructor: Dr. Upali Siriwardane E-mailE-mail: upali@latech.edu Office: 311 Carson.

Chapter-3-1Chemistry 281, Winter 2015 LA Tech

CTH 277 10:00-11:15 am

Instructor: Dr. Upali Siriwardane

E-mail:  [email protected]

Office:  311 Carson Taylor Hall ; Phone: 318-257-4941;

Office Hours:  MTW 8:00 am - 10:00 am;

Th,F 8:30 - 9:30 am & 1:00-2:00 pm.

January 13, 2015 Test 1 (Chapters 1&,2),

February 3, 2015 Test 2 (Chapters 2 & 3)

February 26, 2015, Test 3 (Chapters 4 & 5),

Comprehensive Final Make Up Exam: March 3

Chemistry 281(01) Winter 2015

Page 2: Chapter-3-1 Chemistry 281, Winter 2015 LA Tech CTH 277 10:00-11:15 am Instructor: Dr. Upali Siriwardane E-mailE-mail: upali@latech.edu Office: 311 Carson.

Chapter-3-2Chemistry 281, Winter 2015 LA Tech

Chapter 3. Structures of simple solids

Crystalline solids: The atoms, molecules or ions pack together in an ordered arrangement

Amorphous solids: No ordered structure to the particles of the solid. No well defined faces, angles or shapes

Polymeric Solids: Mostly amorphous but some have local crystiallnity. Examples would include glass and rubber.

Page 3: Chapter-3-1 Chemistry 281, Winter 2015 LA Tech CTH 277 10:00-11:15 am Instructor: Dr. Upali Siriwardane E-mailE-mail: upali@latech.edu Office: 311 Carson.

Chapter-3-3Chemistry 281, Winter 2015 LA Tech

The Fundamental types of Crystals

Metallic: metal cations held together by a sea of electrons

Ionic: cations and anions held together by predominantly electrostatic attractions

Network: atoms bonded together covalently throughout the solid (also known as covalent crystal or covalent network).

Covalent or Molecular: collections of individual molecules; each lattice point in the crystal is a molecule

Page 4: Chapter-3-1 Chemistry 281, Winter 2015 LA Tech CTH 277 10:00-11:15 am Instructor: Dr. Upali Siriwardane E-mailE-mail: upali@latech.edu Office: 311 Carson.

Chapter-3-4Chemistry 281, Winter 2015 LA Tech

Metallic Structures

Metallic Bonding in the Solid State: Metals the atoms have low electronegativities; therefore the

electrons are delocalized over all the atoms.

We can think of the structure of a metal as an arrangement of positive atom cores in a sea of electrons. For a more detailed picture see "Conductivity of Solids".

Metallic: Metal cations held together by a sea of valance electrons

Page 5: Chapter-3-1 Chemistry 281, Winter 2015 LA Tech CTH 277 10:00-11:15 am Instructor: Dr. Upali Siriwardane E-mailE-mail: upali@latech.edu Office: 311 Carson.

Chapter-3-5Chemistry 281, Winter 2015 LA Tech

Packing and GeometryClose packing

ABC.ABC... cubic close-packed CCP

gives face centered cubic or FCC(74.05% packed)

AB.AB... or AC.AC... (these are equivalent). This is called hexagonal close-packing HCP

CCPHCP

Page 6: Chapter-3-1 Chemistry 281, Winter 2015 LA Tech CTH 277 10:00-11:15 am Instructor: Dr. Upali Siriwardane E-mailE-mail: upali@latech.edu Office: 311 Carson.

Chapter-3-6Chemistry 281, Winter 2015 LA Tech

Loose packing

Simple cube SC

Body-centered cubic BCC

Packing and Geometry

Page 7: Chapter-3-1 Chemistry 281, Winter 2015 LA Tech CTH 277 10:00-11:15 am Instructor: Dr. Upali Siriwardane E-mailE-mail: upali@latech.edu Office: 311 Carson.

Chapter-3-7Chemistry 281, Winter 2015 LA Tech

The Unit CellThe basic repeat unit that build up the whole solid

Page 8: Chapter-3-1 Chemistry 281, Winter 2015 LA Tech CTH 277 10:00-11:15 am Instructor: Dr. Upali Siriwardane E-mailE-mail: upali@latech.edu Office: 311 Carson.

Chapter-3-8Chemistry 281, Winter 2015 LA Tech

Unit Cell Dimensions

The unit cell angles are defined as:

a, the angle formed by the b and c cell

edges

b, the angle formed by the a and c cell edges

g, the angle formed by the a and b cell

edges

a,b,c is x,y,z in right handed cartesian

coordinates

a g b a c b a

Page 9: Chapter-3-1 Chemistry 281, Winter 2015 LA Tech CTH 277 10:00-11:15 am Instructor: Dr. Upali Siriwardane E-mailE-mail: upali@latech.edu Office: 311 Carson.

Chapter-3-9Chemistry 281, Winter 2015 LA Tech

Bravais Lattices & Seven Crystals Systems

In the 1840’s Bravais showed that there are only fourteen different space lattices.

Taking into account the geometrical properties of the basis there are 230 different repetitive patterns in which atomic elements can be arranged to form crystal structures.

Page 10: Chapter-3-1 Chemistry 281, Winter 2015 LA Tech CTH 277 10:00-11:15 am Instructor: Dr. Upali Siriwardane E-mailE-mail: upali@latech.edu Office: 311 Carson.

Chapter-3-10Chemistry 281, Winter 2015 LA Tech

Fourteen Bravias Unit Cells

Page 11: Chapter-3-1 Chemistry 281, Winter 2015 LA Tech CTH 277 10:00-11:15 am Instructor: Dr. Upali Siriwardane E-mailE-mail: upali@latech.edu Office: 311 Carson.

Chapter-3-11Chemistry 281, Winter 2015 LA Tech

Seven Crystal Systems

Page 12: Chapter-3-1 Chemistry 281, Winter 2015 LA Tech CTH 277 10:00-11:15 am Instructor: Dr. Upali Siriwardane E-mailE-mail: upali@latech.edu Office: 311 Carson.

Chapter-3-12Chemistry 281, Winter 2015 LA Tech

Number of Atoms in the Cubic Unit Cell• Coner- 1/8• Edge- 1/4• Body- 1• Face-1/2• FCC = 4 ( 8 coners, 6 faces)• SC = 1 (8 coners)• BCC = 2 (8 coners, 1 body) Face-1/2

Coner- 1/8Edge - 1/4Body- 1

Page 13: Chapter-3-1 Chemistry 281, Winter 2015 LA Tech CTH 277 10:00-11:15 am Instructor: Dr. Upali Siriwardane E-mailE-mail: upali@latech.edu Office: 311 Carson.

Chapter-3-13Chemistry 281, Winter 2015 LA Tech

Close Pack Unit Cells

CCP HCP

FCC = 4 ( 8 coners, 6 faces)

Page 14: Chapter-3-1 Chemistry 281, Winter 2015 LA Tech CTH 277 10:00-11:15 am Instructor: Dr. Upali Siriwardane E-mailE-mail: upali@latech.edu Office: 311 Carson.

Chapter-3-14Chemistry 281, Winter 2015 LA Tech

Simple cube SC Body-centered cubic BCC

Unit Cells from Loose Packing

SC = 1 (8 coners) BCC = 2 (8 coners, 1 body)

Page 15: Chapter-3-1 Chemistry 281, Winter 2015 LA Tech CTH 277 10:00-11:15 am Instructor: Dr. Upali Siriwardane E-mailE-mail: upali@latech.edu Office: 311 Carson.

Chapter-3-15Chemistry 281, Winter 2015 LA Tech

Coordination NumberThe number of nearest particles surrounding a

particle in the crystal structure.

Simple Cube: a particle in the crystal has a coordination number of 6

Body Centerd Cube: a particle in the crystal has a coordination number of 8

Hexagonal Close Pack &Cubic Close Pack: a particle in the crystal has a coordination number of 12

Page 16: Chapter-3-1 Chemistry 281, Winter 2015 LA Tech CTH 277 10:00-11:15 am Instructor: Dr. Upali Siriwardane E-mailE-mail: upali@latech.edu Office: 311 Carson.

Chapter-3-16Chemistry 281, Winter 2015 LA Tech

Holes in FCC Unit Cells

Tetrahedral Hole (8 holes)

Eight holes are inside a face centered cube.

Octahedral Hole (4 holes)

One hole in the middle and 12 holes along the edges ( contributing 1/4) of the face centered cube

Page 17: Chapter-3-1 Chemistry 281, Winter 2015 LA Tech CTH 277 10:00-11:15 am Instructor: Dr. Upali Siriwardane E-mailE-mail: upali@latech.edu Office: 311 Carson.

Chapter-3-17Chemistry 281, Winter 2015 LA Tech

Holes in SC Unit Cells

Cubic Hole

Page 18: Chapter-3-1 Chemistry 281, Winter 2015 LA Tech CTH 277 10:00-11:15 am Instructor: Dr. Upali Siriwardane E-mailE-mail: upali@latech.edu Office: 311 Carson.

Chapter-3-18Chemistry 281, Winter 2015 LA Tech

Octahedral Hole in FCC

Octahedral Hole

Page 19: Chapter-3-1 Chemistry 281, Winter 2015 LA Tech CTH 277 10:00-11:15 am Instructor: Dr. Upali Siriwardane E-mailE-mail: upali@latech.edu Office: 311 Carson.

Chapter-3-19Chemistry 281, Winter 2015 LA Tech

Tetrahedral Hole in FCC

Tetrahedral Hole

Page 20: Chapter-3-1 Chemistry 281, Winter 2015 LA Tech CTH 277 10:00-11:15 am Instructor: Dr. Upali Siriwardane E-mailE-mail: upali@latech.edu Office: 311 Carson.

Chapter-3-20Chemistry 281, Winter 2015 LA Tech

Structure of MetalsCrystal Lattices

A crystal is a repeating array made out of metals. In describing this structure we must distinguish between the pattern of repetition (the lattice type) and what is repeated (the unit cell) described above.

Page 21: Chapter-3-1 Chemistry 281, Winter 2015 LA Tech CTH 277 10:00-11:15 am Instructor: Dr. Upali Siriwardane E-mailE-mail: upali@latech.edu Office: 311 Carson.

Chapter-3-21Chemistry 281, Winter 2015 LA Tech

PolymorphismMetals are capable of existing in more than one form at a time

Polymorphism is the property or ability of a metal to exist in two or more crystalline forms depending upon temperature and composition. Most metals and metal alloys exhibit this property.

Uranium  is  a  good example of

   a    metal    that exhibits

polymorphism.

Page 22: Chapter-3-1 Chemistry 281, Winter 2015 LA Tech CTH 277 10:00-11:15 am Instructor: Dr. Upali Siriwardane E-mailE-mail: upali@latech.edu Office: 311 Carson.

Chapter-3-22Chemistry 281, Winter 2015 LA Tech

AlloysSubstitutional

Second metal replaces the metal atoms in the lattice

Interstitial

Second metal occupies interstitial space (holes) in the lattice

Page 23: Chapter-3-1 Chemistry 281, Winter 2015 LA Tech CTH 277 10:00-11:15 am Instructor: Dr. Upali Siriwardane E-mailE-mail: upali@latech.edu Office: 311 Carson.

Chapter-3-23Chemistry 281, Winter 2015 LA Tech

Properties of AlloysAlloying substances are usually metals or metalloids. The

properties of an alloy differ from the properties of the pure metals or metalloids that make up the alloy and this difference is what creates the usefulness of alloys. By combining metals and metalloids, manufacturers can develop alloys that have the particular properties required for a given use.

Page 24: Chapter-3-1 Chemistry 281, Winter 2015 LA Tech CTH 277 10:00-11:15 am Instructor: Dr. Upali Siriwardane E-mailE-mail: upali@latech.edu Office: 311 Carson.

Chapter-3-24Chemistry 281, Winter 2015 LA Tech

Structure of Ionic SolidsCrystal Lattices

A crystal is a repeating array made out of ions. In describing this structure we must distinguish between the pattern of repetition (the lattice type) and what is repeated (the unit cell) described above.

Cations fit into the holes in the anionic lattice since anions are lager than cations.

In cases where cations are bigger than anions lattice is considered to be made up of cationic lattice with smaller anions filling the holes

Page 25: Chapter-3-1 Chemistry 281, Winter 2015 LA Tech CTH 277 10:00-11:15 am Instructor: Dr. Upali Siriwardane E-mailE-mail: upali@latech.edu Office: 311 Carson.

Chapter-3-25Chemistry 281, Winter 2015 LA Tech

Basic Ionic Crystal Unit Cells

Page 26: Chapter-3-1 Chemistry 281, Winter 2015 LA Tech CTH 277 10:00-11:15 am Instructor: Dr. Upali Siriwardane E-mailE-mail: upali@latech.edu Office: 311 Carson.

Chapter-3-26Chemistry 281, Winter 2015 LA Tech

Cesium Chloride Structure (CsCl)

Page 27: Chapter-3-1 Chemistry 281, Winter 2015 LA Tech CTH 277 10:00-11:15 am Instructor: Dr. Upali Siriwardane E-mailE-mail: upali@latech.edu Office: 311 Carson.

Chapter-3-27Chemistry 281, Winter 2015 LA Tech

Miller Indices

Miller indices are used to specify directions and planes

• These directions and planes could be in lattices or in

crystals

• The number of indices will match with the dimension of the

Lattice or the crystal

• (h, k, l) represents a point on a plane

• To obtain h, k, l of a plane Identify the intercepts on the a- , b- and c- axes of the

unit cell.

Page 28: Chapter-3-1 Chemistry 281, Winter 2015 LA Tech CTH 277 10:00-11:15 am Instructor: Dr. Upali Siriwardane E-mailE-mail: upali@latech.edu Office: 311 Carson.

Chapter-3-28Chemistry 281, Winter 2015 LA Tech

Miller Indices

Eg. intercept on the x-axis is at a, b and c ( at the point (a,0,0) ), but the surface is parallel to the y- and z-axes - strictly

therefore there is no intercept on these two axes but we shall consider the intercept to be at infinity ( ∞ ) for the

special case where the plane is parallel to an axis.

The intercepts on the a- , b- and c-axes are thus

Intercepts :    1 , ∞ , ∞

Take the reciprocals of the fractional intercepts: 1/1 , 1/ ∞, 1/ ∞

• (h, k, l) for this plane becomes 1,0,0

Page 29: Chapter-3-1 Chemistry 281, Winter 2015 LA Tech CTH 277 10:00-11:15 am Instructor: Dr. Upali Siriwardane E-mailE-mail: upali@latech.edu Office: 311 Carson.

Chapter-3-29Chemistry 281, Winter 2015 LA Tech

Rock Salt (NaCl)

© 1995 by the Division of Chemical Education, Inc., American Chemical Society.

Reproduced with permission from Soli-State Resources.

Page 30: Chapter-3-1 Chemistry 281, Winter 2015 LA Tech CTH 277 10:00-11:15 am Instructor: Dr. Upali Siriwardane E-mailE-mail: upali@latech.edu Office: 311 Carson.

Chapter-3-30Chemistry 281, Winter 2015 LA Tech

Sodium Chloride Lattice (NaCl)

0,0,1 0,0,2

1,1,12,2,2

Page 31: Chapter-3-1 Chemistry 281, Winter 2015 LA Tech CTH 277 10:00-11:15 am Instructor: Dr. Upali Siriwardane E-mailE-mail: upali@latech.edu Office: 311 Carson.

Chapter-3-31Chemistry 281, Winter 2015 LA Tech

CaF2

0,0,1 0,0,4 0,0,2 0,0,4

0,0,20,0,2 0,0,4

Page 32: Chapter-3-1 Chemistry 281, Winter 2015 LA Tech CTH 277 10:00-11:15 am Instructor: Dr. Upali Siriwardane E-mailE-mail: upali@latech.edu Office: 311 Carson.

Chapter-3-32Chemistry 281, Winter 2015 LA Tech

Calcium Fluoride

© 1995 by the Division of Chemical Education, Inc., American Chemical Society.

Reproduced with permission from Solid-State Resources.

Page 33: Chapter-3-1 Chemistry 281, Winter 2015 LA Tech CTH 277 10:00-11:15 am Instructor: Dr. Upali Siriwardane E-mailE-mail: upali@latech.edu Office: 311 Carson.

Chapter-3-33Chemistry 281, Winter 2015 LA Tech

Zinc Blende Structure (ZnS)

0,0,1 0,0,4 0,0,40,0,2

Page 34: Chapter-3-1 Chemistry 281, Winter 2015 LA Tech CTH 277 10:00-11:15 am Instructor: Dr. Upali Siriwardane E-mailE-mail: upali@latech.edu Office: 311 Carson.

Chapter-3-34Chemistry 281, Winter 2015 LA Tech

Lead Sulfide

© 1995 by the Division of Chemical Education, Inc., American Chemical Society.

Reproduced with permission from Solid-State Resources.

Page 35: Chapter-3-1 Chemistry 281, Winter 2015 LA Tech CTH 277 10:00-11:15 am Instructor: Dr. Upali Siriwardane E-mailE-mail: upali@latech.edu Office: 311 Carson.

Chapter-3-35Chemistry 281, Winter 2015 LA Tech

Wurtzite Structure (ZnS)

Page 36: Chapter-3-1 Chemistry 281, Winter 2015 LA Tech CTH 277 10:00-11:15 am Instructor: Dr. Upali Siriwardane E-mailE-mail: upali@latech.edu Office: 311 Carson.

Chapter-3-36Chemistry 281, Winter 2015 LA Tech

Antifluorite Structure

Page 37: Chapter-3-1 Chemistry 281, Winter 2015 LA Tech CTH 277 10:00-11:15 am Instructor: Dr. Upali Siriwardane E-mailE-mail: upali@latech.edu Office: 311 Carson.

Chapter-3-37Chemistry 281, Winter 2015 LA Tech

Radius ratio rule states

As

the size (ionic radius, r+

) of a cation increases,

more anions of a

particular size can pack around it.

Thus, knowing the size of the ions, we should be able to predict

a priori

which type of crystal packing

will be observed.

We can account for the relative size of both ions by using the RATIO of

the ionic radii:

ρ = r+

r−

Radius ratio rule

Page 38: Chapter-3-1 Chemistry 281, Winter 2015 LA Tech CTH 277 10:00-11:15 am Instructor: Dr. Upali Siriwardane E-mailE-mail: upali@latech.edu Office: 311 Carson.

Chapter-3-38Chemistry 281, Winter 2015 LA Tech

Radius Ratio Rules

r+/r- Coordination Holes in Which

Ratio Number Positive Ions Pack

0.225 - 0.414 4 tetrahedral holes FCC

0.414 - 0.732 6 octahedral holes FCC

0.732 - 1 8 cubic holes BCC

Page 39: Chapter-3-1 Chemistry 281, Winter 2015 LA Tech CTH 277 10:00-11:15 am Instructor: Dr. Upali Siriwardane E-mailE-mail: upali@latech.edu Office: 311 Carson.

Chapter-3-39Chemistry 281, Winter 2015 LA Tech

Radius Ratio AppplicationsSuggest the probable crystal structure of (a) barium fluoride; (b) potassium bromide; (c) magnesium sulfide. You can use tables to obtain ionic radii.

a) barium fluoride; Ba2+= 142 pm F- = 131 pm

b) potassium bromide; K+= 138 pm Br- = 196 pm

c) magnesium sulfide; Mg2+= 103 pm S2- = 184 pm

a) Radius ratio(barium fluoride): 142/131 =1.08

b) Radius ratio(potassium bromide): 138/196=0.704

c) Radius ratio(magnesium sulfide): 103/184= 0.559

Page 40: Chapter-3-1 Chemistry 281, Winter 2015 LA Tech CTH 277 10:00-11:15 am Instructor: Dr. Upali Siriwardane E-mailE-mail: upali@latech.edu Office: 311 Carson.

Chapter-3-40Chemistry 281, Winter 2015 LA Tech

Radius Ratio Appplicationsa) Radius ratio(barium fluoride): 142/131 =1.08

b) Radius ratio(potassium bromide): 138/196=0.704

c) Radius ratio(magnesium sulfide): 103/184= 0.559

• Barium fluoride: 142/131 =1.08 (0.732-1) CN 8 FCC fluorite• Potassium bromide: 138/196=0.704 (0.414-0.732) CN 6 FCC K+ in

octahedral holes• Magnesium sulfide: 103/184= 0.559 (0.414-0.732) CN 6 FCC

r+/r- Coordination Holes in Which

Ratio Number Positive Ions Pack

0.225 - 0.414 4 tetrahedral holes FCC

0.414 - 0.732 6 octahedral holes FCC

0.732 - 1 8 cubic holes BCC

Page 41: Chapter-3-1 Chemistry 281, Winter 2015 LA Tech CTH 277 10:00-11:15 am Instructor: Dr. Upali Siriwardane E-mailE-mail: upali@latech.edu Office: 311 Carson.

Chapter-3-41Chemistry 281, Winter 2015 LA Tech

Radius Ratio Applications• Barium fluoride: 142/131 =1.08 (0.732-1) CN 8 FCC

• Potassium bromide: 138/196=0.704 (0.414-0.732) CN 6 FCC K+ in octahedral holes

• Magnesium sulfide: 103/184= 0.559 (0.414-0.732) CN 6 FCC

Page 42: Chapter-3-1 Chemistry 281, Winter 2015 LA Tech CTH 277 10:00-11:15 am Instructor: Dr. Upali Siriwardane E-mailE-mail: upali@latech.edu Office: 311 Carson.

Chapter-3-42Chemistry 281, Winter 2015 LA Tech

Unit Cells dimensions and radius

a = 2r or r = a/2

Page 43: Chapter-3-1 Chemistry 281, Winter 2015 LA Tech CTH 277 10:00-11:15 am Instructor: Dr. Upali Siriwardane E-mailE-mail: upali@latech.edu Office: 311 Carson.

Chapter-3-43Chemistry 281, Winter 2015 LA Tech

Summary of Unit Cells

Volume of a sphere = 4/3pr3

Volume of sphere in SC = 4/3p(½)

3 = 0.52

Volume of sphere in BCC = 4/3p((3)½

/4)3

= 0.34

Volume of sphere in FCC = 4/3p( 1/(2(2)½

))3

= 0.185

Page 44: Chapter-3-1 Chemistry 281, Winter 2015 LA Tech CTH 277 10:00-11:15 am Instructor: Dr. Upali Siriwardane E-mailE-mail: upali@latech.edu Office: 311 Carson.

Chapter-3-44Chemistry 281, Winter 2015 LA Tech

Density CalculationsAluminum has a ccp (fcc) arrangement of atoms. The radius

of Al = 1.423Å ( = 143.2pm). Calculate the lattice parameter of the unit cell and the density of solid Al (atomic weight = 26.98).

Solution:

4 atoms/cell [8 at corners (each 1/8), 6 in faces (each 1/2)]

Lattice parameter: a/r(Al) = 2(2)1/2

a = 2(2)1/2 (1.432Å) = 4.050Å= 4.050 x 10-8 cm

Density = 2.698 g/cm3