Top Banner
Chapter 20 the heart
91

Chapter 20 the heart. Anatomy review Electrical activity of the whole heart (EKG) Electrical activity of the heart cells The Cardiac Cycle Cardiac Input.

Dec 28, 2015

Download

Documents

Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Chapter 20 the heart. Anatomy review Electrical activity of the whole heart (EKG) Electrical activity of the heart cells The Cardiac Cycle Cardiac Input.

Chapter 20

the heart

Page 2: Chapter 20 the heart. Anatomy review Electrical activity of the whole heart (EKG) Electrical activity of the heart cells The Cardiac Cycle Cardiac Input.

Anatomy review

Electrical activity of the whole heart (EKG)

Electrical activity of the heart cells

The Cardiac Cycle

Cardiac Input and Output (dynamics)

Page 3: Chapter 20 the heart. Anatomy review Electrical activity of the whole heart (EKG) Electrical activity of the heart cells The Cardiac Cycle Cardiac Input.

Heart review

4 chambers2 atria2 ventricles

4 valves2 AV valves2 semilunar valves

2 circuitssystemicpulmonary

receivesend

Page 4: Chapter 20 the heart. Anatomy review Electrical activity of the whole heart (EKG) Electrical activity of the heart cells The Cardiac Cycle Cardiac Input.

fig. 20-9

external heart anatomy

Page 5: Chapter 20 the heart. Anatomy review Electrical activity of the whole heart (EKG) Electrical activity of the heart cells The Cardiac Cycle Cardiac Input.

fig. 20-6

internal heart anatomy

Page 6: Chapter 20 the heart. Anatomy review Electrical activity of the whole heart (EKG) Electrical activity of the heart cells The Cardiac Cycle Cardiac Input.

100 keys (pg. 678)

“The heart has four chambers, two associated with the pulmonary circuit (right atrium and right ventricle) and two with the systemic circuit (left atria and left ventricle). The left ventricle has a greater workload and is much more massive than the right ventricle, but the two chambers pump equal amounts of blood. AV valves prevent backflow from the ventricles into the atria, and semilunar valves prevent backflow from the aortic and pulmonary trunks into the ventricles.”

Page 7: Chapter 20 the heart. Anatomy review Electrical activity of the whole heart (EKG) Electrical activity of the heart cells The Cardiac Cycle Cardiac Input.

cardiac conduction system

modified cardiac muscle cells

•SA node (sinoatrial node)wall of RA

•AV node (atrioventricular node)between atrium and ventricle

•conducting cellsAV bundle (of His)conducting fibersPurkinje fibers

Page 8: Chapter 20 the heart. Anatomy review Electrical activity of the whole heart (EKG) Electrical activity of the heart cells The Cardiac Cycle Cardiac Input.

fig. 20-12a

conducting system of heart

Page 9: Chapter 20 the heart. Anatomy review Electrical activity of the whole heart (EKG) Electrical activity of the heart cells The Cardiac Cycle Cardiac Input.

prepotential

cannot maintain steady resting potentialgradually drift toward threshold

SA node 80-100 bpm

AV node 40-60 bpm

Page 10: Chapter 20 the heart. Anatomy review Electrical activity of the whole heart (EKG) Electrical activity of the heart cells The Cardiac Cycle Cardiac Input.

fig. 20-12b

Page 11: Chapter 20 the heart. Anatomy review Electrical activity of the whole heart (EKG) Electrical activity of the heart cells The Cardiac Cycle Cardiac Input.

…it controls the heart rate(pacemaker)

but heart rate is normally slower than 80-100 bpm

(parasympathetics)

if SA node is damaged, heart can still continue to beat, but at a slower rate

because SA node is faster…

Page 12: Chapter 20 the heart. Anatomy review Electrical activity of the whole heart (EKG) Electrical activity of the heart cells The Cardiac Cycle Cardiac Input.

if heartbeat is slower than normal…

… bradycardia

if heartbeat is faster than normal…

… tachycardia

Page 13: Chapter 20 the heart. Anatomy review Electrical activity of the whole heart (EKG) Electrical activity of the heart cells The Cardiac Cycle Cardiac Input.

impulse conduction

fig. 20-13

Page 14: Chapter 20 the heart. Anatomy review Electrical activity of the whole heart (EKG) Electrical activity of the heart cells The Cardiac Cycle Cardiac Input.

impulse conduction

SA nodeatria get signal - contractsignal to AV Node

AV node sends signalto ventricles (time delay)

ventricles contractafter atria are done

damage to any part of conducting system may result in abnormalities (EKG)

Page 15: Chapter 20 the heart. Anatomy review Electrical activity of the whole heart (EKG) Electrical activity of the heart cells The Cardiac Cycle Cardiac Input.

ECG’sEKG’s

electrocardiagram

recording of the electrical activity of the heart (from the surface of the body)

fig 20-14

Page 16: Chapter 20 the heart. Anatomy review Electrical activity of the whole heart (EKG) Electrical activity of the heart cells The Cardiac Cycle Cardiac Input.

ECG’s

different components:

P wave

QRS complex

T wave

depolarization of the atria

depolarization of the ventriclesbiggerstronger signal

repolarization of the ventricles

Page 17: Chapter 20 the heart. Anatomy review Electrical activity of the whole heart (EKG) Electrical activity of the heart cells The Cardiac Cycle Cardiac Input.

ECG’s

fig 20-14 EKG

Page 18: Chapter 20 the heart. Anatomy review Electrical activity of the whole heart (EKG) Electrical activity of the heart cells The Cardiac Cycle Cardiac Input.

ECG’s

to analyze:

size of voltage changesduration of changestiming of changes

intervals

Page 19: Chapter 20 the heart. Anatomy review Electrical activity of the whole heart (EKG) Electrical activity of the heart cells The Cardiac Cycle Cardiac Input.

ECG’s

fig 20-14 EKG

Page 20: Chapter 20 the heart. Anatomy review Electrical activity of the whole heart (EKG) Electrical activity of the heart cells The Cardiac Cycle Cardiac Input.

intervals:

ECG’s

P-R interval

from start of atrial depolarization

to start of QRS complex

if longer than 200 msec can mean damage to conducting system

time for signal to get from atrium to ventricles

Page 21: Chapter 20 the heart. Anatomy review Electrical activity of the whole heart (EKG) Electrical activity of the heart cells The Cardiac Cycle Cardiac Input.

intervals:

ECG’s

Q-T interval

time for ventricular depolarization and

repolarization(ventricular systole)

if lengthened, may indicate, [ion] disturbances, medications, conducting problems, ischemia, or myocardial damage.

Page 22: Chapter 20 the heart. Anatomy review Electrical activity of the whole heart (EKG) Electrical activity of the heart cells The Cardiac Cycle Cardiac Input.

intervals:

ECG’s

T-P interval

from end of ventricular repolarization

to start of next atrial depolarization

the time the “heart” is in diastolethe “isoelectric line”

Page 23: Chapter 20 the heart. Anatomy review Electrical activity of the whole heart (EKG) Electrical activity of the heart cells The Cardiac Cycle Cardiac Input.

T-P interval

fig 20-14 EKG

Page 24: Chapter 20 the heart. Anatomy review Electrical activity of the whole heart (EKG) Electrical activity of the heart cells The Cardiac Cycle Cardiac Input.

intervals:

ECG’s

abnormalities cardiac electrical activity

= cardiac arrhythmias

some are not dangerous

others indicate damage to heart

Page 25: Chapter 20 the heart. Anatomy review Electrical activity of the whole heart (EKG) Electrical activity of the heart cells The Cardiac Cycle Cardiac Input.

100 keys (pg. 688)

“The heart rate is normally established by cells of the SA node, but that rate can be modified by autonomic activity, hormones, and other factors. From the SA node the stimulus is conducted to the AV node, the AV bundle, the bundle branches, and Purkinjie fibers before reaching the ventricular muscle cells. The electrical events associated with the heartbeat can be monitored in an electrocardiagram (ECG).”

Page 26: Chapter 20 the heart. Anatomy review Electrical activity of the whole heart (EKG) Electrical activity of the heart cells The Cardiac Cycle Cardiac Input.

99 % of heart is contractile cells

similar to skeletal muscle

AP leads to Ca2+ around myofibrils Ca2+ bind to troponin on thin filaments initiates contraction (cross-bridges)

Electrical activity of the heart cells

but there are differences…nature of APlocation of Ca2+ storageduration of contraction

Page 27: Chapter 20 the heart. Anatomy review Electrical activity of the whole heart (EKG) Electrical activity of the heart cells The Cardiac Cycle Cardiac Input.

The action potential

Electrical activity of the heart cells

resting potential of heart cells~ -90mV

threshold is reached near intercalated discs

signal is AP in an adjacent cell(gap junctions)

Page 28: Chapter 20 the heart. Anatomy review Electrical activity of the whole heart (EKG) Electrical activity of the heart cells The Cardiac Cycle Cardiac Input.

The action potential

Electrical activity of the heart cells

review skeletal muscle

fig. 20-15

Page 29: Chapter 20 the heart. Anatomy review Electrical activity of the whole heart (EKG) Electrical activity of the heart cells The Cardiac Cycle Cardiac Input.

The action potential

Electrical activity of the heart cells

once threshold is reached the action potential proceeds in three steps.

Page 30: Chapter 20 the heart. Anatomy review Electrical activity of the whole heart (EKG) Electrical activity of the heart cells The Cardiac Cycle Cardiac Input.

The action potential - step 1

Electrical activity of the heart cells

rapid depolarization (like skeletal muscle)

Na+ into cell through voltage-gated channels

(fast channels)

Page 31: Chapter 20 the heart. Anatomy review Electrical activity of the whole heart (EKG) Electrical activity of the heart cells The Cardiac Cycle Cardiac Input.

The action potential - step 2

Electrical activity of the heart cells

the plateau

Na+ channels closeCa2+ channels open for a “long” time

(slow calcium channels)Ca2+ in balances Na+ pumped out

Page 32: Chapter 20 the heart. Anatomy review Electrical activity of the whole heart (EKG) Electrical activity of the heart cells The Cardiac Cycle Cardiac Input.

The action potential - step 3

Electrical activity of the heart cells

repolarization

Ca2+ channels begin closingslow K+ channels begin openingK+ rushes out restoring resting pot.

Page 33: Chapter 20 the heart. Anatomy review Electrical activity of the whole heart (EKG) Electrical activity of the heart cells The Cardiac Cycle Cardiac Input.

The action potential - step 3

Electrical activity of the heart cells

Na+ channels are still inactivecell will not respond to stimulus

= refractory period

repolarization

Page 34: Chapter 20 the heart. Anatomy review Electrical activity of the whole heart (EKG) Electrical activity of the heart cells The Cardiac Cycle Cardiac Input.

fig. 20-15a

Page 35: Chapter 20 the heart. Anatomy review Electrical activity of the whole heart (EKG) Electrical activity of the heart cells The Cardiac Cycle Cardiac Input.

The role of calcium

Electrical activity of the heart cells

extracellular Ca2+ enters cells during the plateau phase (20%)

Ca2+ entering triggers release of Ca2+ from sarcoplasmic reticulum

... heart is highly sensitive to changes in [Ca2+] of the ECF

Page 36: Chapter 20 the heart. Anatomy review Electrical activity of the whole heart (EKG) Electrical activity of the heart cells The Cardiac Cycle Cardiac Input.

The role of calcium

Electrical activity of the heart cells

in skeletal muscle, refractory period ended before peak tension developed…

…summation was possible

…tetanus.

in cardiac muscle refractory period lasts until relaxation has begun…

…no summation…no tetanus.

Page 37: Chapter 20 the heart. Anatomy review Electrical activity of the whole heart (EKG) Electrical activity of the heart cells The Cardiac Cycle Cardiac Input.

Clinical note: Heart attacks

blockage of coronary vessels

myocardium without blood supply…

…cells die(infarction)

myocardial infarction (MI) = heart attack

Page 38: Chapter 20 the heart. Anatomy review Electrical activity of the whole heart (EKG) Electrical activity of the heart cells The Cardiac Cycle Cardiac Input.

Clinical note: Heart attacks

blockage of coronary vessels

due to:CAD (coronary artery disease)

(plaque in vessel wall)

blocked by clot (thrombosis)

Page 39: Chapter 20 the heart. Anatomy review Electrical activity of the whole heart (EKG) Electrical activity of the heart cells The Cardiac Cycle Cardiac Input.

Clinical note: Heart attacks

blockage of coronary vessels

as O2 levels fall, cardiac cells will:

accumulate anaerobic enzymesdie and release enzymes

LDHSGOTCPKCK-MB

lactose dehydrogenase

serum glutamic oxaloacetic transaminase

creatine phosphokinase

cardiac muscle creatine phosphokinase

Page 40: Chapter 20 the heart. Anatomy review Electrical activity of the whole heart (EKG) Electrical activity of the heart cells The Cardiac Cycle Cardiac Input.

to here 3/26lec # 31

Page 41: Chapter 20 the heart. Anatomy review Electrical activity of the whole heart (EKG) Electrical activity of the heart cells The Cardiac Cycle Cardiac Input.

Clinical note: Heart attacks

anticoagulants (aspirin)clot-dissolving enzymes

quick treatment will help reduce damage due to blockage

Page 42: Chapter 20 the heart. Anatomy review Electrical activity of the whole heart (EKG) Electrical activity of the heart cells The Cardiac Cycle Cardiac Input.

Clinical note: Heart attacks

risk factors:

smokinghigh blood pressurehigh blood cholesterolhigh [LDL]diabetesmalesevere emotional stressobesitygenetic predispositionsedentary lifestyle

any 2more than

doublesyour risk

of MI

Page 43: Chapter 20 the heart. Anatomy review Electrical activity of the whole heart (EKG) Electrical activity of the heart cells The Cardiac Cycle Cardiac Input.

The cardiac cycle

contraction(systole)

relax(diastole)

fluid (blood) moves

always moves from higher pressure…

…toward lower pressure

Page 44: Chapter 20 the heart. Anatomy review Electrical activity of the whole heart (EKG) Electrical activity of the heart cells The Cardiac Cycle Cardiac Input.

fig. 20-16

Page 45: Chapter 20 the heart. Anatomy review Electrical activity of the whole heart (EKG) Electrical activity of the heart cells The Cardiac Cycle Cardiac Input.

The cardiac cycle

atrial systoleatrial diastole

ventricular systoleventricular diastole

generic heart rate 75 bpm

together

Page 46: Chapter 20 the heart. Anatomy review Electrical activity of the whole heart (EKG) Electrical activity of the heart cells The Cardiac Cycle Cardiac Input.

fig. 20-17

Page 47: Chapter 20 the heart. Anatomy review Electrical activity of the whole heart (EKG) Electrical activity of the heart cells The Cardiac Cycle Cardiac Input.

The cardiac cycle

atrial systole (100 msec)

blood in atria is pushed through AV valves into ventricles

“tops off” the ventriclesblood in ventricles is called EDV

(end diastolic volume)

(follows path of least resistance)

1+2

3… end of atrial systoleventricular diastole begins

Page 48: Chapter 20 the heart. Anatomy review Electrical activity of the whole heart (EKG) Electrical activity of the heart cells The Cardiac Cycle Cardiac Input.

The cardiac cycle

ventricular systole (270 msec)

pressure start to rise in ventriclewhen it is greater than pressure in atria, the AV valves will close

(chordae tendineae and papillary m.)

pressure continues to build until it can force open the semilunar valves

“lubb”

…3

4

Page 49: Chapter 20 the heart. Anatomy review Electrical activity of the whole heart (EKG) Electrical activity of the heart cells The Cardiac Cycle Cardiac Input.

The cardiac cycle

ventricular systole (270 msec)

up until now, ventricles have been contracting but no blood has flowed:

isovolumetric contraction

ventricular volume has not changedbut the pressure has increased

4

Page 50: Chapter 20 the heart. Anatomy review Electrical activity of the whole heart (EKG) Electrical activity of the heart cells The Cardiac Cycle Cardiac Input.

The cardiac cycle

ventricular systole (270 msec)

when pressure in ventricle is greater than pressure in the arteries, the semilunar valves will open

ventricular ejection

stroke volume

some blood left behindend systolic volume (ESV)

5

Page 51: Chapter 20 the heart. Anatomy review Electrical activity of the whole heart (EKG) Electrical activity of the heart cells The Cardiac Cycle Cardiac Input.

The cardiac cycle

ventricular systole (270 msec)

as pressure drops below that of arteries, the semilunar valves will close again

“Dupp”

6

Page 52: Chapter 20 the heart. Anatomy review Electrical activity of the whole heart (EKG) Electrical activity of the heart cells The Cardiac Cycle Cardiac Input.

The cardiac cycle

ventricular diasatole (430 msec)

semilunar valves are shutAV valves are shut too (temporarily)

isovolumetric relaxation

7

when pressure gets below atrial pressure, AV valves will openand ventricle will begin to fill passively

8

Page 53: Chapter 20 the heart. Anatomy review Electrical activity of the whole heart (EKG) Electrical activity of the heart cells The Cardiac Cycle Cardiac Input.

fig. 20-17

Page 54: Chapter 20 the heart. Anatomy review Electrical activity of the whole heart (EKG) Electrical activity of the heart cells The Cardiac Cycle Cardiac Input.

Heart sounds

lubbDUPP

lubbDUPP

auscultation

stethoscope

Page 55: Chapter 20 the heart. Anatomy review Electrical activity of the whole heart (EKG) Electrical activity of the heart cells The Cardiac Cycle Cardiac Input.

Heart sounds

lubb

closing of the AV valvesas ventricular contraction begins

Page 56: Chapter 20 the heart. Anatomy review Electrical activity of the whole heart (EKG) Electrical activity of the heart cells The Cardiac Cycle Cardiac Input.

Heart sounds

DUPP

closing of the semilunar valvesas ventricular relaxation begins

Page 57: Chapter 20 the heart. Anatomy review Electrical activity of the whole heart (EKG) Electrical activity of the heart cells The Cardiac Cycle Cardiac Input.

Heart dynamics

cardiac output

heart rate

stroke volume

variation &adjustments

Page 58: Chapter 20 the heart. Anatomy review Electrical activity of the whole heart (EKG) Electrical activity of the heart cells The Cardiac Cycle Cardiac Input.

Heart dynamics definitions

EDV end diastolic volume

ESV end systolic volume

Stroke volume

ventricle is fullbeginning to contract

ventricle is done contracting(a little blood left inside)

SV = EDV - ESV

Page 59: Chapter 20 the heart. Anatomy review Electrical activity of the whole heart (EKG) Electrical activity of the heart cells The Cardiac Cycle Cardiac Input.

Heart dynamics definitions

cardiac output (CO)

CO = HR (heart rate) x SV

how much blood the heartpumps in a minute

both the SV and the HR can vary

Page 60: Chapter 20 the heart. Anatomy review Electrical activity of the whole heart (EKG) Electrical activity of the heart cells The Cardiac Cycle Cardiac Input.

Heart dynamics

both the SV and the HR can vary

fig. 20-20

Page 61: Chapter 20 the heart. Anatomy review Electrical activity of the whole heart (EKG) Electrical activity of the heart cells The Cardiac Cycle Cardiac Input.

Heart dynamics

variation in HR

autonomics

dual innervation to SA node

Page 62: Chapter 20 the heart. Anatomy review Electrical activity of the whole heart (EKG) Electrical activity of the heart cells The Cardiac Cycle Cardiac Input.

Heart dynamics HR

parasympathetics

releases AChopens K+ channels

lowers the resting potential(hyperpolarize cell)

slows heart rate

controlled by cardioinhibitory centers in the medulla oblongatat

Page 63: Chapter 20 the heart. Anatomy review Electrical activity of the whole heart (EKG) Electrical activity of the heart cells The Cardiac Cycle Cardiac Input.

Heart dynamics HR

parasympathetics

controlled by cardioinhibitory centers in the medulla oblongata

reflexes hypothalamus

Page 64: Chapter 20 the heart. Anatomy review Electrical activity of the whole heart (EKG) Electrical activity of the heart cells The Cardiac Cycle Cardiac Input.

Normal:

Parasympathetics:

fig 20-22

Page 65: Chapter 20 the heart. Anatomy review Electrical activity of the whole heart (EKG) Electrical activity of the heart cells The Cardiac Cycle Cardiac Input.

Heart dynamics HR

sympathetics

releases NEbinds to beta-1 receptors

opens Na+/Ca2+ channelsdepolarize cell

speeds up heart rate

Page 66: Chapter 20 the heart. Anatomy review Electrical activity of the whole heart (EKG) Electrical activity of the heart cells The Cardiac Cycle Cardiac Input.

Heart dynamics HR

sympathetics

controlled by cardioacceleratory centers in the medulla oblongata

reflexes hypothalamus

Page 67: Chapter 20 the heart. Anatomy review Electrical activity of the whole heart (EKG) Electrical activity of the heart cells The Cardiac Cycle Cardiac Input.

Normal:

Sympathetics:

fig 20-22

Page 68: Chapter 20 the heart. Anatomy review Electrical activity of the whole heart (EKG) Electrical activity of the heart cells The Cardiac Cycle Cardiac Input.

Heart dynamics HR

atrial (Bainbridge) reflex

increased venous returnstretches atria

stimulates stretch receptorsstimulates sympathetics

increase HR(and CO)

Page 69: Chapter 20 the heart. Anatomy review Electrical activity of the whole heart (EKG) Electrical activity of the heart cells The Cardiac Cycle Cardiac Input.

Heart dynamics HR

hormones

E, NE, thyoid hormoneaffect SA node

speed up HR

Page 70: Chapter 20 the heart. Anatomy review Electrical activity of the whole heart (EKG) Electrical activity of the heart cells The Cardiac Cycle Cardiac Input.

to here 3/30/07lec# 33

Page 71: Chapter 20 the heart. Anatomy review Electrical activity of the whole heart (EKG) Electrical activity of the heart cells The Cardiac Cycle Cardiac Input.

Heart dynamics

stroke volume (SV)

remember

SV = EDV - ESV

Page 72: Chapter 20 the heart. Anatomy review Electrical activity of the whole heart (EKG) Electrical activity of the heart cells The Cardiac Cycle Cardiac Input.

Heart dynamics SV

EDV

the amount of blood in the ventricle at the end of its diastolic phase, just before contraction begins.

Page 73: Chapter 20 the heart. Anatomy review Electrical activity of the whole heart (EKG) Electrical activity of the heart cells The Cardiac Cycle Cardiac Input.

Heart dynamics SV

EDV

affected by the filling time&

venous return

preload

Page 74: Chapter 20 the heart. Anatomy review Electrical activity of the whole heart (EKG) Electrical activity of the heart cells The Cardiac Cycle Cardiac Input.

Heart dynamics SV

EDV

preload the degree of stretching of the ventricle during diastole

preload is proportional to EDV

preload affects heart muscles ability to generate tension

Page 75: Chapter 20 the heart. Anatomy review Electrical activity of the whole heart (EKG) Electrical activity of the heart cells The Cardiac Cycle Cardiac Input.

Heart dynamics SV

EDV

preload

Page 76: Chapter 20 the heart. Anatomy review Electrical activity of the whole heart (EKG) Electrical activity of the heart cells The Cardiac Cycle Cardiac Input.

Heart dynamics SV

EDV

preload

“more in = more out”

Frank-Starling principle

Page 77: Chapter 20 the heart. Anatomy review Electrical activity of the whole heart (EKG) Electrical activity of the heart cells The Cardiac Cycle Cardiac Input.

fig. 20-23

Page 78: Chapter 20 the heart. Anatomy review Electrical activity of the whole heart (EKG) Electrical activity of the heart cells The Cardiac Cycle Cardiac Input.

Heart dynamics SV

ESV

preload

contractility

afterload

Page 79: Chapter 20 the heart. Anatomy review Electrical activity of the whole heart (EKG) Electrical activity of the heart cells The Cardiac Cycle Cardiac Input.

Heart dynamics SV

ESV

contractility

amount of force generated with a contraction

increase

decrease

+ inotropic action

- inotropic action

Page 80: Chapter 20 the heart. Anatomy review Electrical activity of the whole heart (EKG) Electrical activity of the heart cells The Cardiac Cycle Cardiac Input.

Heart dynamics SV

ESV

contractility

factors that influence:

ANShormones

Page 81: Chapter 20 the heart. Anatomy review Electrical activity of the whole heart (EKG) Electrical activity of the heart cells The Cardiac Cycle Cardiac Input.

Heart dynamics SV

ESV

contractility

ANS

sympathetic NS

NE, E

+ inotropic effect

parasympathetic NS

ACh

- inotropic effect

Page 82: Chapter 20 the heart. Anatomy review Electrical activity of the whole heart (EKG) Electrical activity of the heart cells The Cardiac Cycle Cardiac Input.

fig. 20-23

Page 83: Chapter 20 the heart. Anatomy review Electrical activity of the whole heart (EKG) Electrical activity of the heart cells The Cardiac Cycle Cardiac Input.

Heart dynamics SV

ESV

contractility

hormones(and drugs)

NE, E, glucagon,thyroid hormones

+ inotropic effect

dopamine,dobutamineisoproterenol

digitalis

Page 84: Chapter 20 the heart. Anatomy review Electrical activity of the whole heart (EKG) Electrical activity of the heart cells The Cardiac Cycle Cardiac Input.

Heart dynamics SV

ESV

contractility

hormones(and drugs)

propanololtimololetc.,

(beta-blockers)

- inotropic effect

verapamilnifedipine

(Ca2+ blocker)

(hypertension)

Page 85: Chapter 20 the heart. Anatomy review Electrical activity of the whole heart (EKG) Electrical activity of the heart cells The Cardiac Cycle Cardiac Input.

fig. 20-23

Page 86: Chapter 20 the heart. Anatomy review Electrical activity of the whole heart (EKG) Electrical activity of the heart cells The Cardiac Cycle Cardiac Input.

Heart dynamics SV

ESV

preload

contractility

afterload the amount of tension needed to open semilunar valves and eject blood

Page 87: Chapter 20 the heart. Anatomy review Electrical activity of the whole heart (EKG) Electrical activity of the heart cells The Cardiac Cycle Cardiac Input.

Heart dynamics SV

ESV

afterload the amount of tension needed to open semilunar valves and eject blood

greater afterloadlonger isovolumetric contraction

less ejected, larger ESV

Page 88: Chapter 20 the heart. Anatomy review Electrical activity of the whole heart (EKG) Electrical activity of the heart cells The Cardiac Cycle Cardiac Input.

Heart dynamics SV

ESV

afterload

restrict blood flow

constrict peripheral vesselscirculatory blockage

inc. afterload

Page 89: Chapter 20 the heart. Anatomy review Electrical activity of the whole heart (EKG) Electrical activity of the heart cells The Cardiac Cycle Cardiac Input.

fig. 20-23

Page 90: Chapter 20 the heart. Anatomy review Electrical activity of the whole heart (EKG) Electrical activity of the heart cells The Cardiac Cycle Cardiac Input.

Summary

Heart rate

EDV

ESV

SV = EDV-ESV

hormonesvenous return

filling timevenous return

preloadcontractilityafterload

Page 91: Chapter 20 the heart. Anatomy review Electrical activity of the whole heart (EKG) Electrical activity of the heart cells The Cardiac Cycle Cardiac Input.

100 keys (pg. 703)

“Cardiac output is the amount of blood pumped by the left ventricle each minute. It is adjusted on a moment-to-moment basis by the ANS, and in response to circulating hormones, changes in blood volume, and alternation in venous return.

Most healthy people can increase cardiac output by 300-500 percent.”