Top Banner
457 chAPTeR 16. Invasive Pests—Insects and Diseases Donald A. Duerr and Paul A. Mistretta 1 key FiNDiNGS • Nonnative pest species have increasing impacts in the South regardless of climate change, patterns of land ownership, or changes in the composition of vegetation. • “New” nonnative invasive insects and diseases will have serious impacts on southern forests over the next 50 years. Some species such as emerald ash borer, laurel wilt, and thousand cankers disease are expanding rapidly; they threaten the ecological viability of their hosts throughout large areas of the South. • Given the trend in introductions of nonnative insect pests and plant pathogens over the last 100 years, we can expect additional introductions of previously undocumented pests (insects, fungal pathogens, plant parasitic nematodes, etc.) from foreign countries that will have serious consequences for some native forest plant species. • When host material for a given insect or disease is projected to increase over the next 50 years as a result of climate change or management choice, we can expect more pest activity; for example, more pine acreage enables more southern pine beetle damage. Conversely, if host material decreases, the overall impact of pests utilizing that host material will likely decrease. • Very few indisputable projections can be made about the effects of climate change on native or naturalized pests. Although climate-change-induced host abundance is expected to increase the activity of some pests, others (such as gypsy moth) may become less active with warmer temperatures despite relatively similar levels of host availability. • The scientific literature and the body of expert opinion are inconclusive in predicting the effects of climate change on many pests’ activity levels, often even lacking historic trend data. However, based on anecdotal reports from professionals, and in the absence of other data, we generally assume that pest activity levels over the next 50 years will be similar to the past 50 years with respect to impact on preferred hosts. 1 Donald A. Duerr is the Staff Entomologist and Paul A. Mistretta is a Staff Pathologist and Regional Pesticide Specialist, Southern Region, U.S. Department of Agriculture Forest Service, Atlanta, GA 30309. • A significant source of uncertainty in projecting pest impacts is the adequacy of prevention and suppression methods: how effective are existing methods, compared with those that might be available in the future; how willing and able are land managers or landowners to adopt management/control methods; how much funding is available compared to the amount needed for implementation. • Under the influence of climate warming host plants, pests and pest complexes are expected to migrate northward and to higher elevations. Because migration rates differ among the affected species, migrating plants are expected to form new associations, which will then affect the pests, their host populations, and the interactions among them. Unexpected pests very likely will become important, while some that are currently active will be less severe in their new habitats. As host plants “migrate” to the north an increase in the incidence of decline syndrome of plants in their previous range is expected. • Although not expected to be a significant problem in the next 50 years, the migration of lower elevation plants to higher elevations could ultimately eliminate or at least severely restrict the host ranges of current high elevation plant associations. Pests that act on a restricted host base, such as the balsam woolly adelgid and butternut canker, could become far more significant ecologically in areas of relict host populations. • Climate change will lead to extra uncertainty in decision making, especially in areas where the changes cause increased variability in local (fragmented) climate regimes that exceed historical variability of local weather patterns. iNTRoDucTioN An important part of the southern forested landscape is the array of insect and disease pests that significantly affect the management of forest resources on a relatively broad scale. The list of 21 key pests that were documented less than a decade ago (Ward and Mistretta 2002) has already expanded to 30. The goal of this chapter is to project the behavior of insect and disease pests that we anticipate will affect forest resources over the next 50 years, based on changing climate, Chapter 16. invasive Pests—insects and Diseases
52

Chapter 16. invasive Pests—insects and Diseases

Jan 02, 2017

Download

Documents

doannhu
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Chapter 16. invasive Pests—insects and Diseases

457chAPTeR 16. Invasive Pests—Insects and Diseases

DonaldA.DuerrandPaulA.Mistretta1

key FiNDiNGS

•NonnativepestspecieshaveincreasingimpactsintheSouthregardlessofclimatechange,patternsoflandownership,orchangesinthecompositionofvegetation.

• “New”nonnativeinvasiveinsectsanddiseaseswillhaveseriousimpactsonsouthernforestsoverthenext50years.Somespeciessuchasemeraldashborer,laurelwilt,andthousandcankersdiseaseareexpandingrapidly;theythreatentheecologicalviabilityoftheirhoststhroughoutlargeareasoftheSouth.

•Giventhetrendinintroductionsofnonnativeinsectpestsandplantpathogensoverthelast100years,wecanexpectadditionalintroductionsofpreviouslyundocumentedpests(insects,fungalpathogens,plantparasiticnematodes,etc.)fromforeigncountriesthatwillhaveseriousconsequencesforsomenativeforestplantspecies.

•Whenhostmaterialforagiveninsectordiseaseisprojectedtoincreaseoverthenext50yearsasaresultofclimatechangeormanagementchoice,wecanexpectmorepestactivity;forexample,morepineacreageenablesmoresouthernpinebeetledamage.Conversely,ifhostmaterialdecreases,theoverallimpactofpestsutilizingthathostmaterialwilllikelydecrease.

•Veryfewindisputableprojectionscanbemadeabouttheeffectsofclimatechangeonnativeornaturalizedpests.Althoughclimate-change-inducedhostabundanceisexpectedtoincreasetheactivityofsomepests,others(suchasgypsymoth)maybecomelessactivewithwarmertemperaturesdespiterelativelysimilarlevelsofhostavailability.

•Thescientificliteratureandthebodyofexpertopinionareinconclusiveinpredictingtheeffectsofclimatechangeonmanypests’activitylevels,oftenevenlackinghistorictrenddata.However,basedonanecdotalreportsfromprofessionals,andintheabsenceofotherdata,wegenerallyassumethatpestactivitylevelsoverthenext50yearswillbesimilartothepast50yearswithrespecttoimpactonpreferredhosts.

1DonaldA.DuerristheStaffEntomologistandPaulA.MistrettaisaStaffPathologistandRegionalPesticideSpecialist,SouthernRegion,U.S.DepartmentofAgricultureForestService,Atlanta,GA30309.

•Asignificantsourceofuncertaintyinprojectingpestimpactsistheadequacyofpreventionandsuppressionmethods:howeffectiveareexistingmethods,comparedwiththosethatmightbeavailableinthefuture;howwillingandablearelandmanagersorlandownerstoadoptmanagement/controlmethods;howmuchfundingisavailablecomparedtotheamountneededforimplementation.

•Undertheinfluenceofclimatewarminghostplants,pestsandpestcomplexesareexpectedtomigratenorthwardandtohigherelevations.Becausemigrationratesdifferamongtheaffectedspecies,migratingplantsareexpectedtoformnewassociations,whichwillthenaffectthepests,theirhostpopulations,andtheinteractionsamongthem.Unexpectedpestsverylikelywillbecomeimportant,whilesomethatarecurrentlyactivewillbelesssevereintheirnewhabitats.Ashostplants“migrate”tothenorthanincreaseintheincidenceofdeclinesyndromeofplantsintheirpreviousrangeisexpected.

•Althoughnotexpectedtobeasignificantprobleminthenext50years,themigrationoflowerelevationplantstohigherelevationscouldultimatelyeliminateoratleastseverelyrestrictthehostrangesofcurrenthighelevationplantassociations.Peststhatactonarestrictedhostbase,suchasthebalsamwoollyadelgidandbutternutcanker,couldbecomefarmoresignificantecologicallyinareasofrelicthostpopulations.

•Climatechangewillleadtoextrauncertaintyindecisionmaking,especiallyinareaswherethechangescauseincreasedvariabilityinlocal(fragmented)climateregimesthatexceedhistoricalvariabilityoflocalweatherpatterns.

iNTRoDucTioN

Animportantpartofthesouthernforestedlandscapeisthearrayofinsectanddiseasepeststhatsignificantlyaffectthemanagementofforestresourcesonarelativelybroadscale.Thelistof21keypeststhatweredocumentedlessthanadecadeago(WardandMistretta2002)hasalreadyexpandedto30.

Thegoalofthischapteristoprojectthebehaviorofinsectanddiseasepeststhatweanticipatewillaffectforestresourcesoverthenext50years,basedonchangingclimate,

Chapter 16. invasive Pests—insects and Diseases

Page 2: Chapter 16. invasive Pests—insects and Diseases

458The Southern Forest Futures Project

humanactivity,andbiologicfactors.Ourprimaryfocusisonclimatechangeanditssub-elementsoftemperaturerégime(dominatedbytemperatureextremes),overallpatternofsolarradiation,andrainfallpattern.Allavailableclimatechangescenariospredictanenvironmentinwhichweexpectvegetationchangestooccur(Iversonandothers1999).Concurrentwithecologicalchangeswillbeashiftinthepeststhatfunctionwithinanalteredvegetativelandscapeunderchangedtemperature,rainfall,andotherclimaticconditions.Theimpactsonpestactivity,inturn,mayinfluencethedirectionorscopeofotherchangesinforesttypeandstructure.

Thefocusofthischapteristhe30speciesofpestinsectsorfungalpathogensthatcausediseasesprojectedtobeoffutureconcern,withemphasisonthefollowingkeyissues:

•Thehistoricalandforecastedfuturespreadofhighthreatinsectsanddiseases

•Otherpestsinvadingsouthernforestsandotherhighthreatspeciespoisedtoentertheregion

•Expectedconsequencesofthespreadofhigh-threatpestspeciesforforestproductivity,ecosystemcompositionandbiodiversity,threatenedandendangeredspeciesandtheirhabitats,watershedandsoilhealth,carbonstorage,andfiredynamics

• Potentialseverityofpestspeciesthreatsrelativetootherthreatsandtofutureforestsustainability

•Forestspeciesorpopulationsthatarelikelytobelostordramaticallydegradedbypests;theresultingchangesinthecompositionofsouthernforestsoverthenext50years;andthedegreeofcertaintyintheseoutcomes

•Adaptivestrategiesandmethodsforinvasivepestmanagementthatcouldmitigatetheeffectsofpredictedfutureoutbreaks

meThoDS

Inresponsetotheissuesdevelopedabove,wepresentabriefextractofrelevantinformationaboutthepeststhatarewellestablishedinsouthernforests(WardandMistretta2002);weaddmoredetaileddescriptionsofseveralnewpestsorpestcomplexesthathaveemergedinthepastfewyears;weapplytheresultsofpastresearchonpestsandpestmanagementtoexpectedchangesinsouthernforestsoverthenext50years;weidentifymanagementstrategiesforrespondingtopestsinachangingenvironment;andweidentifyresearchneededtoimproveourknowledgeaboutpestswiththeirhostsandtheirinteractionswiththeirchangingenvironment,therebyenablingamorequantitativeapproachtoforecastinginthefuture.

DATA SouRceS

Informationforthischapterisderivedfromtwoprimarysources,selecteditemsfromtheextensivebodyofpublishedscientificliterature,andtheexperienceoftheauthorsandtheircolleaguesinStateandFederalagencies,universities,andotherpublicorprivateorganizationsthatareengagedeitherinresearchorfield-basedpestmanagementactivities.AdditionalinformationaboutforestpestsandtheircontrolisreadilyavailablefromStateandFederalforestryagenciesorontheInternet(twogoodstartingpointsarehttp://fhpr8.srs.fs.fed.us/andhttp://www.na.fs.fed.us/spfo/pubs/fth_pub_pages/fidl.htm).Also,appendixCcontainsadditionalresources(References)notcitedherebutwhichprovidevaluableadditionalbackgroundforunderstandingthebiologyandecologyofthepestsdiscussed.

ReSulTS

ThescientificliteratureonclimatechangeandotherenvironmentalconsiderationsissummarizedinappendixC,whichalsoprovidesthebackgroundinformationonourapproachtopestmodelingandfutureprojectionofimpacts.BelowweaddressthepestsprojectedtoinfluencetheforestsoftheSouthoverthenext50years,theirpotentialdamage,potentiallyeffectivemanagementstrategies,andresearchneededtobetterunderstandandmanagethem(table16.1).

Ofthe30forestpestsintheSouthdiscussedbelow,21arewellestablishedand9arerelativenewcomers.Pestsareroughlyevenlydividedbetweenthoseaffectingsoftwoodsandthoseaffectinghardwoods.

insect Pests of Softwoods

Balsam woolly adelgid—Impactsofbalsamwoollyadelgid,Adelgespiceae,werefirstdocumentedin1957onFraserfirintheSouthernAppalachians.Thefivemajorareasofhigh-elevation,spruce-firforestinNorthCarolina,Tennessee,andVirginiaarehighlyvaluedfortheirscenicandrecreationvalues,attractingseveralmillionvisitorsannually(WardandMistretta2002).Inaddition,severalspeciesoffloraandfaunarelyonmaturespruce-firhabitatforsurvival,andmanyarefoundonlyinthisenvironment.ThebalsamwoollyadelgidhasinfestedFraserfirinallfiveareas.Damagecausedbytheadelgidhasdegradedsceneryandrecreationvalueandputthishabitatofdependanttreespeciesatgreatrisk.

Page 3: Chapter 16. invasive Pests—insects and Diseases

459chAPTeR 16. Invasive Pests—Insects and Diseases

Table 16.1—Important insect and disease pests of southern forests

Pest Pest’s scientific name

Type of pests / abiotic factors origin

Forest type or species affected

Annosum root disease Heterobasidion annosum Fungus Native Pines in the loblolly-shortleaf and longleaf–slash forest types

Asian longhorned beetle Anoplophora glabripennis Insect China Most hardwoods, but especially maples.

Baldcypress leafroller Archips goyerana Insect Native Baldcypress in oak-gum-cypress forest type

Balsam woolly adelgid Adelges piceae Insect Europe Fraser fir in the spruce-fir forest type

Bark beetles (other than southern pine beetle)

Ips avulsus, I. calligraphus, I. grandicolli, & Dendructonus terebrans

Insect Native Pine in the loblolly-shortleaf and longleaf–slash forest types

Beech bark disease Nectria coccinea var. faginata, N. galligena (fungi); 2 (at least) insect vectors

Complex of insects and fungi

Unknown American beech in the oak-hickory forest type

Brown spot needle disease

Scirrhia acicola Fungus Native Longleaf pine in the longleaf–slash forest type

Butternut canker Sirococcus clavigignenti-juglandacearam

Fungus Unknown Butternut in the oak-hickory forest type

Chestnut blight Cryphonectria parasitica Fungus Asia American chestnut, chinquapins, several species of oak in the oak-hickory forest type

Dogwood anthracnose Discula destructiva Fungus Unknown Dogwood in the oak-hickory forest type

Dutch elm disease Ophiostoma ulmi (formerly called Ceratocystis ulmi) & Ophiostoma novo-ulmi (fungi); two bark beetles

Complex of fungi and insects

Europe All elm species

Emerald ash borer Agrilus planipennis Insect Asia All ash species

Forest tent caterpillar Malacosoma disstria Insect Native Hardwoods in the oak-gum-cypress forest type

Fusiform rust Cronartium fusiforme f. sp. fusiforme

Fungus Native Loblolly and slash pines in the loblolly-shortleaf and longleaf slash types

Gypsy moth Lymantria dispar Insect Europe and Asia

Hardwoods (all types)

(Continued)

Page 4: Chapter 16. invasive Pests—insects and Diseases

460The Southern Forest Futures Project

Table 16.1—(continued) Important insect and disease pests of southern forests

Pest Pest’s scientific name

Type of pests / abiotic factors origin

Forest type or species affected

Hardwood borers Various Insect Native All species of hardwoods

Hemlock woolly adelgid Adelges tsugae Insect Asia Hemlocks

Laurel wilt Raffiella lauricola (fungus), Xyleborus glabratus (insect)

Complex of an insect and fungus

Asia Lauraceae, especially Redbay

Littleleaf disease Phytophthora cinnamomi, Pythium sp.

Tree decline complex; fungi and site factors

Southeast Asia (likely)

Shortleaf and loblolly pines in the loblolly-shortleaf forest type

Loblolly pine decline As a minimum: various fungi (Lophodermium spp.) and insects (Hylastes spp.)

Tree decline complex; insect and fungi

Unknown Pines

Nantucket pine tip moth Rhyacionia frustrana Insect Native Pines

Oak decline Armillaria sp., and other secondary fungi

Tree decline complex; site conditions and fungi

Mixed Oaks

Oak wilt Ceratocystis fagacearum Fungus Native Oaks in the oak-hickory forest type

Pine reproduction weevils Hylobius pales, Pachylobius picivorus

Insect Native Pines

Sirex woodwasp Sirex noctilio (insect), Amylostereum areolatum (fungus)

Complex of an insect and fungus

Europe, Asia, northern Africa

Pines

Soapberry borer Agrilus prionurus Insect Mexico Western soapberry

Southern pine beetle Dendroctonus frontalis Insect Native Pines

Sudden oak death Phytophthora ramorum Fungus Unknown Oaks

Texas leafcutting ant Atta texana Insect Central and South America

Pine (reproduction)

Thousand cankers disease

Geosmithia sp. (fungus), Pityophthorus juglandis (insect)

Complex of an insect and fungus

Unknown Black walnut

Page 5: Chapter 16. invasive Pests—insects and Diseases
Page 6: Chapter 16. invasive Pests—insects and Diseases

462The Southern Forest Futures Project

hemlocktoserveascoverandnestinghabitatforbirdsandsmallmammals.

Giventheadelgid’scurrentrateofspread,itcouldinfestnearlytheentiresouthernrangeofeasternhemlockandCarolinahemlockwithinthenext50years.Someisolatedareaswithintheinfestedrangeandsomeareasofhemlocksthatareseparatedfromthemainrange(innorthwesternAlabama,forexample)mayescapeinfestation.Inalllikelihood,withinthenext50yearshemlockwoollyadelgidwillkillmostofthehemlocksthatarealivetodayintheSouth.ThelossofhemlockwillbeoneofthemajorimpactscausedbynonnativeinvasivespeciestoSouthernforestsinthenext50years.

Anumberofsuppressiontacticsshowsomepromiseforpreventingthelossofsignificantnumbersofhemlocksoverthenext50years.Treatmentoftreeswithimidacloprideffectivelycontrolshemlockwoollyadelgidsforseveralyears(Cowlesandothers2006).Distributionoftheinsecticideintotreecrownsismoreeffectivewithsoildrenchorinjectionthanwithsteminjection(Dillingandothers2010).Dinotefuranisalsobeingusedwithsuccess.Currentinsecticidetreatmentsareappliedtoindividualtreesandfunctionprimarilyasatemporaryprotectionmeasureforarelativelysmallnumberoftrees.Atthistime,insecticideapplicationoverlargeareasisneitherlogisticallyfeasiblenorcost-effective.Severalbiologicalcontrolagents(beetlepredators)havebeenandarebeingreleased,andsomearesuccessfullyestablishing(Mauselandothers2010).Moretimeislikelyneededbeforeconclusiveimpactsofbiologicalcontrolagentsonthehealthofhemlockforestscanbeshown.Establishmentofacomplexofnaturalenemiesinagivenareaisdesiredtoachievelong-termsuccess.InJune2009,researchersandforesthealthprofessionalsbeganevaluatingtheefficacyofLecanicilliummuscarium,aninsect-killingfungusthatisregisteredasabio-pesticideinEurope(Grassano2008).

Researchandworkisbeingdoneonhemlockhostresistanceandex-situconservationofhemlockseedlingsandgeneticdiversity(Bentzandothers2002,Jettonandothers2008,Jettonandothers2010,Montgomeryandothers2009,Poolerandothers2002).Theseeffortsmayallowscientistsandlandmanagerstoreintroduceadelgid-resistanthemlocksinthefuture.

Climatechangeisunlikelytoreversethespreadofhemlockwoollyadelgids.Inthenorthernpartofthehemlockwoollyadelgidrange,lowminimumwintertemperaturescansignificantlyknockbackpopulationsandappeartolimitspread.Therefore,wecanassumethatclimatewarmingwouldlikelypromoteanorthwardexpansionoftheadelgid(Paradisandothers2008).Thesouthernrangeofhemlockiscurrentlynotbenefittingfrommuchcoldwinter

knockback—awarmingclimatewouldpresumablyonlyexacerbatethesituation.

Nantucket pine tip moth—TheNantucketpinetipmoth,Rhyacioniafrustrana,isoneofthemostcommonforestinsectsintheSouth(Berisford1988).Althoughitisusuallyconsideredasouthernpest,itsrangeincludesmostoftheeasternhalfoftheUnitedStates.

MostcommercialpinespeciesaresusceptibletoattackbytheNantucketpinetipmoth,butthereareconsiderabledifferencesinrelativesusceptibility.Amongthesouthernpines,longleafnurseryseedlingsandallagesofshortleaf,loblolly,andVirginiapinesarehighlysusceptible,whileslashandolderlongleafpinesarehighlyresistant.

Damageisnormallytransitoryornegligibleinforeststandsbutcanbesevereforseedlingsandsaplingsyoungerthan5years,resultingindeformitiesandlossofgrowth.

Basedonthewarmerandpossiblydrierclimatethatisexpectedoverthenext50years,theactivityanddamagelevelsofNantucketpinetipmotharelikelytoincreaseintheSouthandextendtonorthernareas(Midwest,NewEngland)wheretipmothhasnotbeenmuchofamanagementconcern.Activitymayincreaseandcontinueintothewintermonths,ascouldthenumberofgenerationsperyear.Nantucketpinetipmothsareprimarilyaprobleminyoungloblollymonocultures.Totheextentthatlandmanagersincreasetheplantingofloblollymonoculturesinthenext50years,damagefromtheNantucketpinetipmothislikelytoincrease.

Anumberofeffective,chemicalcontroloptionsexistforthispest(Asaroandothers2003).Ifpopulationlevelsaremonitoredinatimelyandregularfashion,andarefollowedupbyappropriateinsecticideapplications,tipmothdamagecanbeminimized.Chemicalcontroloptionsareeffective,especiallythenewsystemicinsecticides.However,theyareoftenprohibitivelyexpensiveandwillprobablynotbeadoptedundermostcommonlyacceptedclimatescenariosunlesstipmothpopulationpressurebecomesquitehigh.

Other bark beetles—Althoughthesouthernpinebeetleisthemostdamaginginsectinsouthernpineforests,itisonlyoneoffivepinebark-beetlespeciesofconcernforforestmanagersintheSouth.Theothersarethesix-spinedengraver,Ipscalligraphus,thesouthernpineengraver,Ipsgrandicollis,thesmallsouthernpineengraver,Ipsavulsus,andtheblackturpentinebeetle,Dendructonusterebrans.Thesebeetlesareusuallyconsideredsecondarypestsbecausetheynormallyinfestonlystressed,weakened,damaged,ordownedpines.Theyalsocolonizepinesthathavebeenattackedbysouthernpinebeetlesoranotherbarkbeetlespecies.HostspeciesintheSouthincludeloblolly,shortleaf,Virginia,longleaf,easternwhite,pitch,slash(P.

Page 7: Chapter 16. invasive Pests—insects and Diseases

463chAPTeR 16. Invasive Pests—Insects and Diseases

elliotii),andsand(P.clausa)pines.Bothpurepineandoak-pinestandsmaybeaffected(ConnerandWilkinson1983,SmithandLee1972,USDAForestService1985a).

Attacksbyblackturpentinebeetlesmaycontinueforseveralmonthsbutinfestationisnotalwaysfatal.Multipleattacksaroundtheentirecircumferenceofthetreearerequiredtocausemortality(SmithandLee1972,Staebenandothers2010,USDAForestService1985a).

Thesmallsouthernpineengraverandthesix-spinedengraverarethemostaggressiveandmaykillsmallgroupsoftrees.Lossesmaybeextensiveduringperiodsofdrought(ConnerandWilkinson1983,USDAForestService1985a).

Thesecondarybarkbeetlesplayavitalroleinshapingforeststructureandmayhaveagreaterimpactonregulatingpinestandsthansouthernpinebeetles(Paineandothers1981,Thatcher1960a).Theyattackweakenedorseverelystressedtreesandthosereachingsenescence.Largeinfestationsdeveloponlyoccasionally,usuallyafterwidespreadenvironmentalstress,suchasthatcausedbydrought,stormdamage,orwildfire.Theiractionservestothinthepineforests,reducingcompetition,leavingthestrongertrees,anddecreasingtheriskofsouthernpinebeetle(SPB)outbreaks.

Theimpactofthesebeetlesdependslargelyonmanagementactivities(Coulsonandothers1986).Engraversalsobreedindownedmaterial,soitisdifficulttosubstantiallyreducepopulations,butpreventionmethods(suchasloweringplantingdensities,thinningstands,andcuttingandremovinggroupsofinfestedtrees)canreducedamage.

Inunmanagedstands,theyattacksingletreesorsmallgroupsofpinesandreducepinebasalarea.Theyprovideopeningsforpinereproductionorforestablishedhardwoodstogrow.Theeffectsareoftennotnoticeableexceptduringperiodsofextendeddrought,afterstormdamage,orattheendofSPBepidemics.

Increasedtemperatureanddecreasedprecipitationwouldstresspinesandcouldthereforeincreasetheimpactsofthesebarkbeetles,butitisunlikelythattheywillbecomeprimarypeststhatkilllargeareasoftrees.Thesefourbarkbeetlespeciesmaymovenorthwardaswintersbecomewarmer.

Pine reproduction weevils—Palesweevil(Hylobiuspales)andpitch-eatingweevil(Pachylobiuspicivorus)aretwoofthemostdamaginginsectpestsofpineseedlingsintheSoutheasternUnitedStates.Insouthernforests,theyarefoundwhereverpineoccurs.Adultweevilsofbothspeciesareattractedtonewlyharvestedsites,wheretheybreedinloggingslash,stumps,andoldrootsystems;theycauseeconomiclossesbyfeedingonthebarkandoftenkillingplantedseedlings.Ifseedlingsareplantedonoradjacentto

siteswithfreshstumpsordamagedtrees,itiscommontohave30to60percentweevil-causedmortalityamongfirst-yearseedlings,withinstancesof90percentormoremortalityrecorded(Thatcher1960b).Athirdspecies,theeasternpineweevil(Pissodesnemorensis),isgenerallylesscommonbutisknowntokillterminalandlateralbranchesandgirdlethestemsofsmalltrees(Doggettandothers1977,Nordandothers1984).Thereproductionweevilsarealmostneveraprobleminforestmanagementunlessseedlingshavebeenplantedonoradjacenttositeswithfreshstumpsordamagedtrees.Forestersusuallyavoidthisproblemoncutoversitesbydelayingplantingorbyplantingtreatedseedlings.

Palesandpitch-eatingweevilspreferloblolly,shortleaf,pitch,andeasternwhitepines.Theyalmostneverattacklongleafandslashpines,butonrareoccasionshavebeenobservedfeedingonhardwoods.Althoughtheeasternpineweevilpreferscedar,italsoattacksmostsouthernyellowpines,suchasloblolly,slash,andshortleaf.Palesandeasternpineweevilsmayserveasvectorsforvariouspathogenicfungi.

Thefutureoutlookfortheactivityanddamagelevelsofreproductionweevilsissimilartotherecentpast.AwarmerclimatemayallowtheseinsectstoextendtheirrangesnorthintoCanada.Warmersouthernwintermonthsmayallowthemtoincreaseand/orprolongactivityandtoproducemoregenerationsperyear.Decreasedprecipitationmayreducetheiractivity.Theimpactsofthesepestsaremoredependentonstandmanagement(andwhetherseedlingsweretreatedwithinsecticides)thanonclimaticconditions.Ifpinesareplantedandthenleftunmanagedoverthenext50years,wecanexpectincreaseddamagefrompinereproductionweevils.

Sirex woodwasp—Sirexwoodwasp,Sirexnoctilio,isnativetoEurope,AsiaandnorthernAfricaandhasbeenintroducedtoNorthAmerica,SouthAmerica,NewZealand,Australia,andSouthAfrica.InAustralia,SouthAfrica,andSouthAmerica,itisconsideredanimportantpest,causingsignificantmortality(Oliveiraandothers1998)instandsplantedwithNorthAmericanpines,especiallyMontereypine(P.radiata)andloblollypine.HaugenandHoebeke(2005)reportthatotherknownsusceptiblepinesincludeslash,shortleaf,ponderosa(P.ponderosa),lodgepole(P.contorta),andjack(P.banksiana).

Femalescanproduceupto450eggsanddepositthem(mostlysingly)belowthesurfaceofthebarkclosetothecambium.Thefemalealsodepositsmucusandabasidiomycetesymbioticfungus,Amylostereumareolatum,whichgrowsrapidlyandexcreteswood-digestingenzymes.Whenthelarvaehatchtheyboreintothewood,butfeedonwoodalreadycolonizedbythefungus.Thefungusandmucusacttogethertokillthetreeandcreateanenvironmentsuitableforthedevelopmentofthelarvae.

Page 8: Chapter 16. invasive Pests—insects and Diseases

464The Southern Forest Futures Project

SirexwoodwasphasnotcausedwidespreadmortalityintheNorthAmericanareaswhereitisestablished,norhaveanypopulationsbeenreportedintheSouth.Howeverwithinthenext50years,itisverylikelythatnaturalorhuman-aidedspreadwillintroducethispesttosouthernforests.ManyoftheSouth’smostimportantpinespeciesaresusceptibletoSirexandmanytreeswillsuccumbifattacksareasaggressiveastheyareinSouthAmericaandAustralia.Althoughthisscenariocouldresultincatastrophicecologicalandeconomiclosses,thecomplexityofsouthernforests(mixedstands,highbiodiversity,manypossiblecompetitors,predatorsandparasitoids)contrastswiththemonoculturepineplantationsinothercountrieswherethepesthasbeenmostdamaging.Manystudiesareunderwaytoassessthepotentiallevelofdangertosouthernforests.AnationalriskmapforSirexhasbeendeveloped(seehttp://www.fs.fed.us/foresthealth/technology/invasives_sirexnoctilio_riskmaps.shtml)andriskmapsspecifictotheSouthareindevelopment.

IftheSirexwoodwaspbecomesestablishedintheSouthandactsasaprimary“treekiller,”effectivepreventionandsuppressiontechniquesareavailable,includingthecurrentpracticeofthinningstandstoincreasegrowthandvigorandreducesusceptibilitytobarkbeetles.Inothercountries,Sirexwoodwasphasbeensuccessfullymanagedusingbiologicalcontrolagents.Thekeyagentisaparasiticnematode,Deladenussiricidicola,whichinfestsSirexwoodwasplarvae,andultimatelysterilizestheadultfemales.Infestedadultfemaleslayinfertileeggsthatarefilledwithnematodes,whichfurtherspreadsthenematodepopulation.Thenematodescaneffectivelyregulatethewoodwasppopulationbelowdamaginglevels.AsSirexwoodwaspestablishesinnewareas,thisnematodecanbeeasilymass-rearedinthelaboratoryandintroducedbyinoculatingitintoinfestedtrees.BiologicalcontrolemployingthesenematodesisbeingevaluatedforuseinU.S.forests.Ifeffective,itshouldprovideagoodcontroloptionforsouthernlandownersandlandmanagers.

Theeffectsofchangesintemperature,carbondioxide,andprecipitationonSirexwoodwaspactivityandaggressivenessareunknown.IfpineacreageincreasesthroughouttheSouthorincertainareasoftheSouth,susceptibilityoftheseareastoattackwillincrease.

Southern pine beetle—Southernpinebeetle(SPB),Dendroctonusfrontalis,isthemostdestructiveinsectpestofpineforestsintheSouth(ThatcherandConner1985).Populationsbuildrapidlyduringperiodicoutbreaksandkilllargenumbersoftrees.Forexample,duringtheoutbreakof1999to2002,SPBkilledmorethanamillionacresofpinesvaluedatgreaterthan$1.5billion.However,duringperiodsoflowactivity,SPBpopulationsmaybesolowthat

itisdifficulttolocateasingleinfestedtree(ThatcherandBarry1982,Thatcherandothers1980)orcapturebeetlesinpheromonetraps(BillingsandUpton2010).

TheSPB,whichattacksallspeciesofpines,prefersloblolly(Pinustaeda),shortleaf(P.echinata),Virginia(P.virginiana),slash(P.elliottii)pond(P.serotina),andpitch(P.rigida)pinesbutseldomattackslongleafpine(P.palustris).SPBhasbeenobservedtosuccessfullyinfesteasternwhite(P.strobus)andTableMountain(P.pungens)pines.Maturetreesinpure,densestandshavelongbeenconsideredmostsusceptibletoSPBattack,butinrecentyearsunthinnedpineplantationshaveincreasinglysupportedSPBinfestations(CameronandBillings1988).Attacksarerarefortreesyoungerthan5yearsorsmallerthan2inchesindiameteratbreastheight(d.b.h.).

Duringoutbreaks,SPBactivitypeaksinearlysummerinStatesontheGulfofMexicoandinlatesummerandearlyautumnfarthernorth.

Inthelastfivedecades,largeacreagesofpineplantationshavebeenestablishedintheSouth.Even-aged,single-speciesplantationsbecomeincreasinglysusceptibletoSPBinfestationsastheyage.MillionsofacresofpineacrosstheSouthareathighhazardforSPBattackasshownbyregionalandStatemaps(Nowak[N.d.]).SPBhazardmapsandinformationabouttheirdevelopmentcanbeviewedat:http://www.fs.fed.us/foresthealth/technology/nidrm_spb.shtml.

SPBimpactsoverthenext50yearsareexpectedtobesignificant,especiallyifthepineacreageincreasesintheSouth,high-susceptibilityspeciesareplantedindenseplantations,andtheplantationsareleftunthinned.Awarmer,drierclimateislikelytoincreaseSPBactivityandimpacts.WarmertemperatureswilllikelyallowanincreaseinthenumberofSPBgenerationsperyearaswellastheportionoftheyearthatthebeetlesareactive.ThenorthernedgesofthesouthernregionandpinestandsthatarefarthernorththanthehistoricalSPBrange(suchasintheLakeStates,NewEngland,andCanada)arealmostcertaintoexperienceSPBactivityandimpactsthatareunprecedentedoratleastsignificantlygreaterthaninthepast.

ThereissomeuncertaintyanddebateaboutthepotentialeffectsofawarmerclimateonSPB(Tranandothers2007),andgeneralpredictionsaredifficulttomake.Anincreaseintemperature(particularlywarmerwinters)wouldallowmoregenerationsperyear.Gan(2004)andRiveraRojasandothers(2010)predictoutbreakstobecomemorefrequentasclimatechanges,althoughlackoflandscape-scaledataonhostabundanceanddistributionmayhaveledGantooverestimatefutureSPBactivity.Veryhighsummertemperaturesmayincreasebroodmortality,reducespotgrowthrates,andhinderpredation.Warmerwintertemperaturesmaydisrupt

Page 9: Chapter 16. invasive Pests—insects and Diseases

465chAPTeR 16. Invasive Pests—Insects and Diseases

synchronizationofthelifecyclesrequiredforconcentratedspringemergencethatfavorsinitiationoflarge,newinfestations(BillingsandKibbe1978).

Theimpactofoutbreaksinthe1980swasmagnifiedbyanabundanceofcontiguousmaturestandsofsawtimber,manyofwhichhavebeenreplacedwithyoungplantations,atleastonnon-Federallands.Ifincreasedforestfragmentation,ayoungerageclassdistribution,andmorethinningofplantationsoccurinthenext50years,SPBimpactscouldbelowerinthefuture,despiteincreasesintemperatures.AndalthoughitisgenerallyacceptedthatincreasedtemperatureswillincreaseSPBactivityanddamage,otherfactors(forexampleforestcomposition,forestmanagement,directsuppression,etc.)maybemoremeaningfulindeterminingfutureSPBactivityanddamage(Friedenbergandothers2008).

Similartotemperature’seffectonSPB,thepotentialofmoistureregimetoincreaseordecreaseSPBproblemsisopentoconjectureandnotfullyunderstood.SomeexpertsbelievethatdroughtisamajorenhancerofSPBoutbreaks,whereasotherspointtotoomuchmoistureasaprimaryfacilitatingfactor.Ifthefrequencyofprecipitationextremes(yearsofextremewetnessordyness)increasesthroughouttheSouthoverthenext50years,itisprobablethatpineswillbecomestressedandincreasedSPBactivityanddamagewillresult.

Inadditiontotheeffectsthatforestcomposition,temperature,andmoisturewillhaveontheSPBoutlook,forestmanagementwillplayadefiningrole.Plantingtheproperspeciesforagivensite,lowerplantingdensities,andthinningofpinestandscanincreasestandvigorandresiliencyandpossiblyreduceSPBdamage.Whenoutbreaksdooccur,damagecanbeminimizedbyearlydetectionandmonitoringofspots,followedbypromptdirectsuppressionofactivespots(Billings1980).

Texas leafcutting ant—TheTexasleafcuttingant,Attatexana,targetsfirst-andsecond-yearpineplantationsineasternTexasandwestcentralLouisiana.Inlocalareaswheretheantsareabundant,itisnearlyimpossibletoestablishpineplantationsunlesstheantcoloniesareeliminated.TheannuallossofpineseedlingstoTexasleafcuttingantsisnearly12,000acres(Cherret1986,TexasForestService1982).

Awarmerclimatemayleadtoanincreaseand/orcontinuationofleafcuttingantactivityduringwintermonths.Decreasedprecipitationwouldlikelyhavetheoppositeeffect.Becausethisanthasastrongpreferenceforwell-drained,deepsandysoils(Moser1984,Vilela1986),climate-inducedspreadbeyonditscurrentdistributionisunlikely.Althoughleafcuttingantsarelimitedbyaveragelowtemperatures(warmertemperatureswouldlessenthislimitingfactor),their

spreadintonew,northernareasisgoingtobelimitedduetothelackofpreferredsoilsfortheant.ThereisapossibilitythatawarmerclimatewouldallownorthwardmovementintoareasofOklahomaandArkansasthathavedeep,sandysoils.Anewfipronilcontrolproduct,PTM™wasregisteredin2009,andaninsecticidalbaitisonthehorizon.RegularandconsistentapplicationoftheseproductshasthepotentialtoreducetheimpactsofTexasleafcuttingantsfromhistoricallevels.

insect Pests of hardwoods

Asian longhorned beetle—Asianlonghornedbeetle,Anoplophoraglabripennis,wasdiscoveredattackinghardwoodtreesintheUnitedStatesinthemid-1990s.Tunnelingbybeetlelarvaegirdlestreestemsandbranches.Repeatedattacksleadtodiebackofthetreecrownand,eventually,deathofthetree.ThebeetleprobablytravelledtotheUnitedStatesinsidesolidwoodpackingmaterialfromChina.ThispestbeetlehasbeeninterceptedatportsandfoundinwarehousesthroughouttheUnitedStatesandiscurrentlyinfestingtreesinNewYorkCity,NewJersey,Worcester(MA),andToronto(Ontario,Canada).ItwassuccessfullyeradicatedfromtheChicagoareafollowingalengthyandaggressivecampaignofdetectionandremovalofinfestedtrees(AntipinandDilley2004).

ThisbeetleisaseriouspestinChina,whereitkillshardwoodtreesinroadsideplantings,shelterbelts,andplantations.IntheUnitedStatesthebeetleprefersmaplespecies,includingboxelder(A.negundo),Norway(A.platanoides),red(A.rubrum),silver(A.saccharinum),andsugar(A.saccharum)maples.Otherpreferredhostsarebirches(Betulaspp.),Ohiobuckeye(Aesculusglabra),elms(Ulmusspp.),horsechestnut(Aesculushippocastanaeum),andwillows(Salixspp.).Occasional-to-rarehostsincludeashes,Europeanmountainash(Sorbussp.),Londonplanetree(Platanussp.),mimosa(Albiziajulebrissin),andpoplars(Populusspp.).AcompletelistofhosttreesintheUnitedStateshasnotbeencompiled.

Asianlonghornedbeetlesproduceonegenerationperyear.AdultbeetlesareusuallypresentfromJulytoOctober,butcanbefoundlaterinthefalliftemperaturesarewarm.Adultsusuallystayonthetreesfromwhichtheyemergedordisperseshortdistancestoanewhosttofeedandreproduce.Eachfemaleusuallyproduces35to90eggs(ormore)duringherlifetime.Eggshatchin10to15days.Thelarvaefeedunderthebarkinthelivingtissueoftheirhostandthenboredeepintothewoodtopupate.Adultsemergebyboringatunnelandcreatingalargeroundexitholeinthetree(USDAForestServiceandAnimalandPlantHealthInspectionService2008).

Currently,theonlyeffectivemeanstoeliminateAsianlonghornedbeetleistoremoveinfestedtreesanddestroy

Page 10: Chapter 16. invasive Pests—insects and Diseases

466The Southern Forest Futures Project

thembychippingorburning.Topreventfurtherspreadoftheinsect,quarantinesareestablishedtopreventtransportationofinfestedtreesandbranchesfromthearea.Earlydetectionofinfestationsandrapidtreatmentresponsearecrucial.Systemicinsecticidescanprovideprotectionforindividualtreesorsmallnumbersoftrees,butindividualtreetreatmentisnotfeasibleinforestedsettings.

ThefutureimpactofAsianlonghornedbeetlesonsouthernforestsisunknownforseveralreasons.First,thepestmayormaynotspreadintotheSouthoverthenext50years.Significanteradicationandcontainmenteffortsarebeingpursuedinareaswheretreesareunderattack.Althoughthebeetledispersesslowly—itdoesnotflygreatdistancesandtendstoremaininthesameareauntilhostsareexhausted—itmaybespreadgreatdistancesinfirewoodorbymovementofotherinfestedmaterial.

Awidevarietyofsouthernhardwoodtrees(especiallymaples)isatrisk.Itisunlikely,however,thatvastareasofhardwoodswouldbekilledwithinthenext50yearsbecausethebeetletakesseveralyearstokillhosttreesanditisaslowdisperser.Ifspotinfestationsarediscoveredearlyenough,thebeetlecanbeeradicatedbeforeitbecomeswidelyestablished.Successfuleradicationeffortsrequiremuchtime,funding,personnel,andstrengthofwill.

EffectsofsouthernclimateonAsianlonghornedbeetlearecompletelyunknown.ExtremeheatinsomepartsoftheSouthmayinhibitactivityandsuccess.However,thereisalsothepossibilitythatwarmertemperatureswouldleadtoquickercompletionofthebeetle’slifecycle,whichwouldmeanlargerpopulationsandmoredamagetosoutherntrees.

Baldcypress leafroller—Formerlynamedthefruittreeleafroller,thebaldcypressleafroller,Archipsgoyerana,periodicallydefoliatesbaldcypressinLouisianaandMississippi.Kruse(2000)describesthebaldcypressleafroller,andsummarizesitsbiologyanditseffectsonitshost.Thisnativeinsectcausesgrowthreductionanddieback,butonlycausesmortalitywhenmultipleotherstressorsareatwork.

Thebaldcypressleafrollerwasfirstrecordedin1983inLouisiana,whereitfeedsalmostexclusivelyonbaldcypress.Itannuallydefoliatesanaverageof35,000acresintheoak-gum-cypressforesttype.Althoughthisinsectismainlyapestoffloodedbaldcypress,itcanmoveintodrieruplandandurbansettingsduringperiodsofheavyinfestation.

Baldcypresstreesofallsizesdisplaycanopydiebackandsignificantreductionsindiametergrowthresultingfromrepeatedannualdefoliation.Pole-sizedtosmallsawtimber-sizedtreesgrowingonforestedgesorindensestandsaremostseverelyaffected.Inareaswherechronicsaltwater

intrusionisaproblem,treesdieafterasfewastwoconsecutiveyearsofdefoliation.

Temperatureandprecipitationchangesareunlikelytodirectlyaffectbaldcypressleafroller’sactivityandimpacts.However,highersealevelsresultingfromwarmertemperatureswouldfurtherstressbaldcypresstreesbecauseofincreasedsaltwaterintrusion,significantlyincreasingthelikelihoodthatdefoliationwoulddamageandkillhosttrees.HumanalterationstosouthernLouisiana’shydrology,greatersaltwaterintrusion,nutriafeeding,defoliationbybaldcypressleafroller,andotherstressorsareallcombiningtothreatenthebaldcypressresourceinsouthernLouisiana.Althoughunlikelytodisappearinthenext50years,thisresourceisexpectedtocontinuetobecompromised.

Emerald ash borer—Emeraldashborer,Agrilusplanipennis,isadevastating,wood-boringbeetlenativetoAsia.ItwasfirstfoundinfestingtreesinNorthAmericainsoutheasternMichiganandadjacentareasofOntario,Canada,in2002(Various2010).WithinthecoreinfestedareaofMichigan,Indiana,andOhio,morethan50millionashtreesareestimatedtobedead,dying,orinfested(Smithandothers2009).Elsewhere,theemeraldashboreralreadyhaskilledtensofmillionsofashtrees,andcontinuestoposeaseriousthreattotheashresourceofNorthAmerica.

TheemeraldashborerwasfirstfoundintheUnitedStatesin2002,butitwaslikelyintroducedintotheareaaroundDetroitintheearly1990s(Kovacsandothers2009),probablyinsolidwoodpackingmaterialfromAsia.Soonafterdetection,fivecountiesinMichiganwereplacedunderquarantine.However,intheyearsbeforedetection,infestedmaterial—suchasnurserystock,unprocessedashlogs,firewood,andotherashcommodities—wasmostlikelymovedtomanyareasaroundtheUnitedStates.InadvertentmovementbyhumanscontinuesintothepresentinspiteofFederalandStatequarantinesrestrictingtheexportofpotentiallyinfestedmaterialsoncetheborerisdetectedinacounty(U.S.DepartmentofAgricultureAnimalandPlantHealthInspectionService2003,2006).Surveysmadein2003foundinfestationsin12countiesinMichiganand3countiesinnorthernOhio.Byearly2011infestationswerelocatedinanadditional13States:Indiana,Illinois,Iowa,Maryland,Pennsylvania,Missouri,Virginia,WestVirginia,Wisconsin,Kentucky,Minnesota,andNewYork(fig.16.2).InCanada,infestationsnowoccurinseveralareasofOntarioandQuebec(USDAAnimalandPlantHealthInspectionService2011).

Sinceitsintroduction,theemeraldashborerhashadasignificantnegativeimpactontheecologyandeconomyofinfestedareas,withall16speciesofNorthAmericanashappearingtobesusceptible.AshtreesareanimportantpartoftheruralandurbanforestsoftheUnitedStates,valuedatmorethan$282billion(USDAAnimalandPlantHealth

Page 11: Chapter 16. invasive Pests—insects and Diseases
Page 12: Chapter 16. invasive Pests—insects and Diseases

468The Southern Forest Futures Project

detectinfestationsearlyenoughtoeffectivelycontrolthemandpreventtheirspread.

Thereareanumberofeffectivechemicalcontroloptionsavailabletoprotectindividualtreesfrominfestation(Hermsandothers2009).Unfortunately,availabletime,funding,equipment,andexpertiselimitthenumberoftreesthatcanbeprotectedtourban/suburbansettingsandaverysmallnumberofhighvaluetreesinforestedsettings.Withtheemeraldashborerdestroyingeveryashinitspath,onepracticaloptionmaybetodelineateandprotectsmallpocketsofexceptionalashresourceas“ashconservationareas.”

Severallarvalandeggparasitoidsarebeinginvestigatedforuseasbiologicalcontrolagents(USDAAnimalandPlantHealthInspectionServiceandothers2010).Althoughresultsarepreliminary,itisreasonabletoexpectthatbiologicalcontrolagentswouldmitigatepopulationsbutwouldnotcontrolorcompletelystopthespreadandimpactsofthisinsectinvader.

Theeffectsofchangesinclimate—suchasincreasesintemperature,precipitation,andcarbondioxide—onemeraldashborerareuncertain.Warmertemperatureswouldlikelyresultinmorerapidlifecyclecompletionresultinginincreasedpopulationgrowthandimpacts.However,theextremeheatofsouthernsummerscouldactuallyinhibitactivityandreducetheamountofashmortality.TherangeofashtreesintheSouthisexpectedtoshrinkastheclimatewarms;betweenclimatestressandtheemeraldashborerinfestations,theSouthislikelytolosemillionsofashtreesinthenext50years.

Forest tent caterpillar—Foresttentcaterpillar,Malacosomadisstria,occursthroughoutmostoftheUnitedStatesandCanada,whereitdefoliatesavarietyofhardwoods(BatzerandMorris1978,Drooz1985,Fitzgerald1995,USDAForestService1985b).IntheSouth,itheavilydefoliateswatertupelo(Nyssaaquatica),sweetgum(Liquidambarstyraciflua),blackgum(N.sylvatica),andvariousoakspecies(Quercusspp.).ThemostpersistentandextremeoutbreaksintheSouthoccuronhosttreesinbottomlands,forestedwetlands,andriparianareas.Whenpopulationsreachepidemiclevels,thecaterpillarsoftenspreadtourbanandsuburbanareaswheretheydefoliateshadetreesandornamentalplants.

OutbreaksoccurinseveralSouthernStates,wheremorethan500,000acrescanbedefoliatedinasingleseason;defoliationdoesnotcausesignificantamountsoftreemortalityandthereforecontrolpracticesarerarelycosteffective.However,significantlossoftreegrowthisoftenanoutcome,andrepeated,heavydefoliationofstandsmaycausesignificantdieback.Ifneeded,controltechniquesareavailableand

haveproveneffectivebutdependontheavailabilityofbothfundingandtechnicalexpertise.

Tentcaterpillarimpactsoccurmainlyinthebottomlandhardwood-cypressforesttypes(mappedasoak-gum-cypressandelm-ash-cottonwood),buttheyoccasionallyoccurinuplandnorthernhardwoodforesttypes(mappedasmaple-beech-birch,oak-hickory,andoak-pine).

Changesintemperatureandprecipitationareunlikelytoincreasedefoliationbyforesttentcaterpillars.Ifclimatechangesignificantlystressestheforesttypesmostvulnerabletotentcaterpillardefoliation,theadditiveeffectofmultiplestressorscouldmeanhastenedorincreasedtreemortality.

Gypsy moth—Gypsymoth,Lymantriadispar,isnativetoEuropeandAsia.In1869,LeopoldTrouvelotintroducedtheEuropeanstrainofthegypsymoth.Sincethen,ithasspreadacrossthelandscapeoftheeasternUnitedStates,defoliatingvastacreagesofforest(USDAAnimalandPlantHealthInspectionService2010b).TheinsectwasfoundinnortheasternVirginiaintheearly1980s.Atitscurrentrateofspread,specialistspredictthatasignificantportionoftheSouthwillbeinfestedinthenext50years.

Theimpactofrepeatedgypsymothdefoliationonthehealthofoakforestsissignificant(CampbellandSloan1977).Repeatedseveredefoliationofoaksweakenstreestosuchanextentthattheymaybeattackedandkilledbysecondarypestorganisms,suchasthetwo-linedchestnutborer(Agrilusbilineatus)andArmillariarootrot(causedbyArmillariamellea).Extendeddroughtintensifiesthedeathrate.

Gypsymothcaterpillarsfeedonawiderangeoftreesandshrubs(Liebholdandothers1995,Zhu1994)butpreferoaks.Speciesareattackedpreferentiallywithoutrespecttoforesttype.Highlyfavoredspeciesincludesweetgum,northernredoak(Quercusrubra),andAmericanbasswood(Tiliaamericana).Speciesoflimitedsuitabilityincludepines,maples(Acerspp.),ash(Fraxinusspp.),Americanbeech(Fagusgrandifolia),andcherry(Prunusserotina).Speciesthatarenotfavoredorareavoidedincludeblackgum,yellow-poplar(Liriodendrontulipifera),blacklocust(Robiniapseudoacacia),baldcypress(Taxodiumdistichum),magnolia(Magnoliagrandiflora),andtupelo(Nyssasylvatica).Asgypsymothmovessouthandwest,itwillencounterlowerconcentrationsofoakandcovehardwoods,andforestsusceptibilitywilldecreaseinmanybutnotallareas.However,withitswidehostrangeitshouldstillpersist.

Themostimportantdiseaseagentsaffectinggypsymothsarethegypsymothnucleopolyhedrosisvirus(LdMNPV)andthegypsymothfungus,Entomophagamaimaiga(AndreadisandWeseloh1990,Hajekandothers1990).

Page 13: Chapter 16. invasive Pests—insects and Diseases

469chAPTeR 16. Invasive Pests—Insects and Diseases

TheSlowtheSpreadProgramdecreasesthegypsymoths’rateofspreadfromapproximately25milesayearto7to10milesperyear(Sharovandothers2002).Iftheprogramcontinues,wecanexpectthegypsymothtomove350to500milesfartherintotheSouthoverthenext50years,comparedtototalinfestationwithin25to30yearswithouttheprogram.

Gypsymothscanalsobeartificiallyspreadbyhumanactivities;continuedvigilancetodetectanderadicatetheresultingsmallinfestationshelptopreventthemoth’srapidspreadintoallareasoftheSouth.Inaddition,methodsexisttosuppressareasofhighpopulationsininfestedareasandtoeradicate“satellite”infestationsinadvanceofthemoth’smovingfront;thesemethodsincludeaerialapplicationsofBt(Bacillusthuringiensis)ordimilin(insecticides),orpheromoneflakes(todisruptmating).

Temperaturechangesaloneareunlikelytohaveadramaticeffectongypsymothmovementorimpacts.Therangeofgypsymothinfestationisexpectedtoexpandregardlessofchangesinclimate,andataratefasterthancanbeattributedtoanypotentialclimatechange-causedhostrangeexpansion.Ifwarmertemperaturescausetheoak-hickoryforesttypetodisplaceborealforestsathigherelevationsintheSouth,gypsymothimpactswilllikelyincreaseintheseareas.

However,onehypothesisisthatgypsymothspreadanddamagewilldecreaseastemperatureswarm,therebyreducingtheextentofsouthwardspread.Gypsymothsneedacoldsnaptosynchronizehatches(avoidsdifferentlifestagesfromoccurringatthesametime)andthusimprovematingefficiency.2Ifthishypothesisiscorrect,asthemothmovesfarthersouthandasthetemperatureswarm,winterswouldnotbecoldenoughorthenecessarycoldsnapwouldcometoolateintheyeartosynchronizethespringhatch.

Adrierclimatewouldlikelyincreasegypsymothimpactsbecauseitwouldstresshosttreesanddiscouragebuild-upofthemoth’sfungalpredator,whichthrivesduringwettersprings.

BecausethegypsymothisstillspreadingintotheSouth,barringunforeseencircumstanceswecansaywithcertaintythatitsimpactswillincreaseoverthenext50years.Howsevereandwidespreadtheimpactswillbe,however,isdependentonmanyfactorsincluding:thecontinuationofactiveprogramstoslowthespread,suppressanderadicategypsymoth;theamountandhealthofhardwoodforeststhemothencountersinthefuture;andpotentialunknowntemperatureandmoistureeffectsonthemoth,itshosts,anditsnaturalenemies.

2JohnGhent,USDAForestService,ForestHealthProtection,200W.T.WeaverBlvd.,Asheville,NC28804,828-257-4328,[email protected]:May11,2010.

Hardwood borers—InsectborersareimportantpestsofhardwoodtreesthroughouttheSouth.Theytunnelinthebark,trunks,terminals,androots,causingavarietyofdefectsinwood,stemdeformity,reductionofseedproduction,andtreedecline.

SomeofthemajordamagingborersintheSouth(Solomon1995)arethecarpenterworm(Prionoxystusrobiniae),redoakborer(Enaphalodesrufulus),whiteoakborer(Goestigrinus),redheadedashborer(Neoclytusacuminatus),poplarborer(Saperdacalcarata),oaktimberworm(Arrhenodesminutus),Columbiantimberbeetle(Corthyluscolumbianus),andambrosiabeetle(Xyleboruscelsus).Borersthatareendemictoanareadonotnormallycausediebackandmortality,butinabnormallylargenumberstheycontributetotreedeclineandstanddegradation.Excessivenumbersofgrowthdefectscausedbyborersaffectbetween25and88percentofallhardwoodlogs(WardandMistretta2002).

Intheearly2000s,prolongeddroughtscompromisedthevigorofoaksinnorthernArkansas,leadingtoamassiveredoakboreroutbreak.Althoughtheywerenottheprimarycauseoftheoakmortalityinthatarea,theborerssoonbecamethemostdestructiveagentinthedeclinecomplex.Morethan340,000acresofoakandmixed-oak-pineforestwereseverelyimpacted,withanestimatedlossof500millionboardfeet(morethan$29million)ofoak.

Temperaturechangebyitselfisunlikelytohavemucheffectonhardwoodborerpopulations.Assecondaryinsectpests,theseborersareexpectedtohaveincreasedimpactaspopulationsofhardwoodageanddecline,especiallyduringperiodsofdroughtstress.HardwoodboreractivityanddamageislikelytoincreasethroughouttheSouthoverthenext50yearsifcurrentpredictionsoffutureclimatechangeproveaccurate.

Soapberry borer—Soapberryborer,Agrilusprionurus,anativeofMexico,wasfirstconfirmedineasternTravisCounty,Texas,in2003.Itinfestsandkillswesternsoapberry(Sapindussaponariavar.drummondii),itsonlyknownhost.Reportsbylandownersandarboristsindicatethattheinsecthadprobablybeeninfestingsoapberrytreesforseveralyearspriortobeingidentified.InfestedtreeswereobservedinTravisandMcLennancountiesasearlyas1998.ByJanuary2009,infestationshadbeenreportedin18Texascounties,includingareasnearFortWorth,Dallas,Waco,CollegeStation,Austin,Houston,andCorpusChristi.ByDecember2010,thenumberofcountieshadincreasedto43(Billings2011).3TodatenoinfestationshavebeenobservedinadjacentStates,althoughinfestationsinRobertsCountyintheTexaspanhandleand

3R.Billings,TexasForestService,ForestHealthunit,200TechnologyWay,Suite1281,CollegeStation,TX77845-3424,979-458-6650,[email protected]:March8,2011.

Page 14: Chapter 16. invasive Pests—insects and Diseases
Page 15: Chapter 16. invasive Pests—insects and Diseases

471chAPTeR 16. Invasive Pests—Insects and Diseases

WichitaCountyontheTexas-OklahomabordersuggestthattheinsectmayalreadybeinOklahoma(fig.16.3).

AssoapberryborerpopulationsexpandrapidlyinTexas,thiswood-boringbeetleiskillingallsoapberrytreeslargerthan2inchesd.b.h.Methodsofpreventionandcontrolarebeinginvestigated.Amongthemostpromisingisinjectionofasystemicinsecticide(emamectinbenzoate,registeredforthecontrolofinsectsonconifersandhardwoods,includingthepreventionofemeraldashborer)intouninfestedsoapberrytreesorthoseinearlystagesofattack.Test-injectiontreesarestillbeingmonitored,butearlyresultslookpromising.

Regardlessofclimatechange,itislikelythatwithin50yearstheinsectwillthreatenwesternsoapberrypopulationsthroughoutthetree’sentirerange,whichextendsfromnorthernMexicotoMissouri,andwesttoArizona.

Diseases of Softwoods

Annosum root disease—Annosumrootdisease(ARD),causedbythefungusHeterobasidionannosum(recentlyproposedtoberenamedH.irregulare(OtrosinaandGarboletto2010),producessignificantlossesofconifersacrosstheSouth.Onsandy,well-drainedsites,thisdiseasecausesgrowthlossandmortality.Itismostoftenassociatedwiththinningofloblolly,longleaf,shortleaf,slash,andwhitepineplantations.Thefunguscommonlyinfectsfreshstumpsandthengrowsthroughrootgrafts(rootsthatcomeintophysicalcontactandthengrowtogether,sharingwaterandnutrients)andinfectsresidualtreesonthesite.SlashandloblollypinesarethemostcommonlyplantedspeciesintheSouthandarebothverysusceptibletoARD(Robbins1984,Stambaugh1989).

AsurveyintheSouthdocumented:44to60percentoccurrenceofthisrootdisease;and2to3percentmortalityinplantedpine.Radialandheightgrowtharesignificantlylessfordiseasedpines(Applegate1971,Froelichandothers1977,Morris1970).

TheprimaryriskfactorsassociatedwithARDaretheamountofhosttypeavailable,thesoiltypeandcondition,andthetiminganddegreeofmanagementactivity.Riskdecreasesasclaycontentinthesurfacelayerofsoilincreases,aconditionthatenablesriskmapping(WardandMistretta2002).IntheSouth,riskofARDishighormoderatelyhighonanestimated163.5millionacres,notallcurrentlyforested(Hoffardandothers1995).

TherangeofARDalreadyextendsthroughoutsouthernforestsandintotheborealforestsoftheNorth,makingspreadunlikely.Indeed,itsrangecoulddecreasewitheffortsbymanylandmanagementagenciestorestorethelesssusceptiblelongleafpinetoitspreviousrange

whileconcurrentlypotentialdrought/temperaturerelateddiebackinthesouthernmostpartoftheloblolly/slashpinerangefurtherdecreaseitsrange.Increasedtemperatures,reducedrainfall,andincreasedhostgrowth(frommorecarbondioxideintheatmosphere)wouldallproducesomeincreasesindiseaseactivityresultingfromincreasedhostsusceptibility,butwouldnotsignificantlyincreasefungusvirulence.Itisimprobablethatclimatewarming/dryingwouldaffectpinesusceptibilityonwell-drained,sandysitesandforestedoldfarmfieldssinceonthesesitespotentiallyaffectedpinesarealreadyhighlysusceptibletothedisease.

Managementfordiseasepreventionusingboraxasastumptreatmentinuninfectedstandsshouldcontinuetobeeffective.Dependingontherateoftemperatureincrease,insolation(thermaltreatmentofthestumpsbythesun)maybeeffectiveinpreventinginfectionviastumpsfurthernorththanthe35thparallel,whichisthecurrentlyacceptednorthernlimitofitseffectiveness.

LossofareabyhostspeciesfavoredbyH.annosumshouldleadtoaslightoveralllossofthenegativeimpactofthisdiseaseoverthenext50years.

Brown spot needle disease—Brownspotneedledisease,causedbythefungusScirrhiaacicola,isconsideredthemostdamagingdiseaseoflongleafpine.Itprimarilyaffectsseedlingsbydelayingtheonsetofheightgrowthandcausinglossofpotentialwoodproductionandmortality(ifinfectionissevere).Brownspotissomewhatadiseaseofopportunity:thegrassesthatcompetewithlongleafseedlingsalsomaintainahumidmicroclimatethatcontributessignificantlybothtoinfectionoftheseedlingandtothegeneralsuccessofthedisease.

ThisdiseaseoccursfromVirginiatoTexas,primarilyontheCoastalPlain.Itismoresevereincertaingeographicareas(WardandMistretta2002).Useofcontrolledfirestoremovecompetinggrassesandeliminatedampnessishighlyeffectiveforcontrollingthediseaseandencouragingearlygrowthofseedlings,providedstepsaretakentoavoidsubsequentcolonizationbycompetingnon-nativessuchascogongrass.

Atpresent,longleafpineoccupiesonlyabout5millionacresofitsformer60millionacrerange.Recentrestorationeffortshaveledtotheproductionofhealthierseedlingsforplantingandplantingsuccesshasimprovedonsiteswherelongleafwasoncethedominantspecies(Cordellandothers1989,Kais1989).Overthenext50years,theemphasisonlongleafpinerestorationshouldhaveagreaterimpactonthisdiseasethanclimatewarming.LongleafpineiswelladaptedtosummertemperaturesintheSouthanditisunclearthatincreasesevenashighas1oCwouldhavesignificantimpactonthesouthernextentofthelongleafpinerange.Highertemperaturesmightslightlyfavorincreaseingrowthand

Page 16: Chapter 16. invasive Pests—insects and Diseases

472The Southern Forest Futures Project

longersummerheatspellsmighttriggerearlyonsetofheightgrowthfromthegrassstagetothecandlestage,endingthepotentialforbrown-spotdamagesooner.Reductionsinrainfall,dew,andfogshouldfavorthelongleafpineoverthefungalpest.Noshiftinaggressivenessofinfectionorvirulenceofthepathogenisforeseen.

Weanticipateasignificantincreaseintheincidenceofbrownspotdisease.Thisexpectationisbasedmoreonincreasedout-plantingoflongleafpineseedlingsthanonclimateinfluences.Thus,althoughclimatechangeisnotexpectedtosignificantlychangethediseaseprofile(itsvirulenceorhostspectrum),humaninterventiontoincreasethequantityofhosttreescouldresultinincreasedincidence.

Fusiform rust—Fusiformrust,causedbythefungusCronartiumfusiformef.sp.fusiforme,occursprimarilyonslashandloblollypines.Itisconsideredthemostdestructivediseaseofsouthernpines,causingtheproductionofcigar-shapedgallsthataregenerallyfatalifformedonthemainstemofthehost(Andersonandothers1980,Czabator1971).

Extensiveplantingofsusceptibleslashandloblollypinessincethe1930shasresultedinanepidemicoffusiformrust,whichnowextendsthroughoutitsavailablehostrangeintheSouth;infectedtreesbeingfoundthroughoutthesouthernpineregion(WardandMistretta2002).LossesaremostseriousonCoastalPlainsitesfromLouisianatosoutheasternSouthCarolina.Severalvariablesincludingweather,amountofinoculum,abundanceofoaks(thealternatehost),andsusceptibilityoftheindividualpinespeciesgovernincidenceofthedisease.Effectivestrategiesareavailableformanagingfusiformrustimpactinplantationsandforestsincludingavoidanceofover-fertilizingseedlingsinthenursery,silviculturalmanipulationofyoungstandstofavorhealthysaplings,andfavoringthedeploymentofgeneticallyscreenedresistantseedlingsinareasofhistorichighrustincidence.

Increaseindiseaserangeinthisregionundertheinfluenceofawarmer,drierclimatechangescenarioisnotaconcernsincethediseaseisalreadydistributedhost-rangewidewithintheregion.However,increasedtemperatureandcarbondioxideintheatmospherecouldcausethepathogentobecomemorevirulentonitscurrenthostbase.Althoughthereissomedisagreementontheeffectofprojectedwarmer,drierclimateregimesonthegeographicrangesforthepinehosts,itisanticipatedthatanylossesofpineincoastalareaswouldbematchedbygainsinthePiedmontandinthelowerreachesoftheAppalachianMountains.

Althoughresearchonrustfungiisinconclusiveandprimarilybasedoncerealgrainsandotherfieldcrops,resultssuggestthattherewouldbegreaterincidenceoffusiformrustsimplyasafunctionofhealthierfungusandhosttrees(Chakrabortyandothers1998).Wealsoanticipatethat

loblollypineatleastwillbeplantedinareasnorthofitscurrentrange;andthattherust,whichinfectsjuveniletissue,willrapidlyfollowintothesenewlyplantedareas.

Overthenext50yearsgiventhegeneralavailabilityofoakalternatehostsforthefungusandtheonlyslightpredictedmigrationofpinefromcoastalareasupwardintotheAppalachianMountains,weexpectthatthepathogenwillsuccessfullyfullycolonizetheextendedrangeofitshosts.Thepotentialeffectofoutplantingrustresistantseedlingsinconjunctionwithpotentialgeographicrangeandclimateshiftsisuncertainatthepresenttime.Iftheresistanceismaintainedinthefaceofchangingconditions,areductionoftheimpactofthisdiseasewouldbeexpectedtooccur.

Littleleaf disease—LittleleafdiseaseisthemostseriouspestofshortleafpinesintheSouth.Itiscausedbyacomplexoffactorsincludinganonnativefungus(Phytophthoracinnamomi),lowsoilnitrogen,erodedsoils,poorinternalsoildrainage,andaplowpan—acompactedlayerofsoilthathasbecomelessporousthanthesoilaboveorbelow,generallytheresultoftillingorotherfarmingoperations(CampbellandCopeland1954).Often,nativenematodes(microscopicroundworms)andnativespeciesofPythium(alsoafungus)areassociatedwiththedisease.Infectedtreeshavereducedgrowthratesandcommonlydiewithin12yearsofsymptomonset.

P.cinnamomiisdistributedthroughout(andwellbeyond)therangecurrentlyoccupiedbyshortleafandloblollypineintheSouth.Shortleafpineisthemostseriouslydamagedsoftwoodhost,withloblollypineaffectedtoalesserextent;Americanchestnutwasitsprimaryhardwoodhost.LittleleafdiseasehasalsobeenreportedonVirginia,pitch,slash,andlongleafpines.AffectedpinestandsarefoundonthePiedmontfromVirginiatoMississippi.ThediseasehasitsgreatestimpactinAlabama,Georgia,andSouthCarolina(WardandMistretta2002,fig.17.10),withadditionalscatteredpocketsoccurringineasternTennesseeandsoutheasternKentucky.Notethat,althoughthefungus’rangeexceedstherangeofitspinehosts,littleleafdiseaseisfurtherrestrictedinwithinthatlargerrangegenerallybysiteconditions.

Thefungushasamobilesporeandneedswatertospreadfromandinfectedhosttouninfectedpotentialhosts;however,thediseasethrivesunderdryconditionsthatstressthehost.Controlstrategiesareavailablebutmost—suchassanitationthinningandsalvagingdeadmaterials—relyontreatmentafterinfectionwhendamageisimminentoralreadyoccurring.

Becauseofitsspecificsiterequirements,spreadintouninfectedsouthernforestsisnotexpected.Further,rehabilitatingsitesbybreakingupoftheplowpansthat

Page 17: Chapter 16. invasive Pests—insects and Diseases

473chAPTeR 16. Invasive Pests—Insects and Diseases

favorthisdiseaseshouldresultinbetterwaterrelationsandareductionininfections.Anincreaseinatmosphericcarbondioxidewouldresultinincreasedgrowthofthehostandgreaterdiseaseexpressioninaffectedtrees.Lossestothisdiseaseshouldcontinueatthesamerateonaffectedsites.However,itsrangeshouldcontractifincreasedtemperaturescauseitshoststomigratenorth,anditsimpactshoulddecreaseovertimeassitesarerehabilitated.

Loblolly pine decline—Reportsofsparse,yellowingcrowns,andlowannualwoodproductioninthepinesofcentral-to-northernAlabamadatebacktothelate1960s(BrownandMcDowell1968,Brownandothers1969).Sincetheearly1990s,localizedincidentsofdecliningpineshavebeenoccurringthroughoutAlabamaandintosouthwesternGeorgia,withadditionalsymptomsincludingrootmortalityanddiscolorationofmanyofthesurvivingrootlets(Hessandothers2003).Recentliteraturesuggeststhepresenceoffungi—includingLeptographiumserpens,L.terebrantis,andL.lundbergii–intherootsofaffectedtrees(Eckhardtandothers2004b);butwhethertheyareprimarypathogensorsimplytakingadvantageofalreadysignificantlyweakenedtreesisstilluncertain.Abarkbeetle,Hylastessp.,hasbeenfoundintherootsystemsofmanydecliningpines,andissuspectedofvectoringthefungusfrominfectedtouninfectedtrees(Eckhardtandothers2004a).Informationislackingonwhethertheyselectweakenedtreestoattackorareindiscriminateintheirattacks(whichwouldsuggestthathealthytreesmaybeabletoovercomesuccessfulinoculation).

Thesymptomsofthedeclineprimarilyoccurinloblollypinesolderthan40years,firstbecomingapparentintreesinthe40to50yearageclass.Mortalitycanoccurbeginningaslittleastwotothreeyearsafterfirstsymptomexpression.LittleisknownaboutthepotentialrangeandseveritybeyondthatfromfieldsurveysincentralnorthernAlabama(Hessandothers2005)andFortBenning,Georgia(Menardandothers2006).Nevertheless,thereisstrongspeculationthatbothabioticandbioticfactorsareinvolvedinpredisposingaffectedstandstodecline.Thesefactorsincludeclimate,wildfire,andhumandisturbancessuchaspreviousagriculture.Coincidently,manyuplandsitesinnorthernandcentralAlabamawereoriginallyconvertedfromsubsistencefarmingtoloblollypineplantationbecauseofloblolly’sout-plantingsuccessrateanditsrapidgrowth.Onetheoryisthatmanyofthesesitesaresimplyunabletosustainsuchrapidgrowthoverthelong-term.

Despitetheuncertaintiesaboutthecausesandprogressionofthisdiseasecomplex,managementstrategiesareinplacethatcanbeimplementedwiththeexpectationofimprovingresistanceoffuturestandsonaffectedsites.Thesestrategiesstartwithapplyingariskratingmodelthatusesdigitalelevationmapsandmappedshapefilesforthesitesin

questioncombinedwithdataonlandformandroothealthofthetreesinthestand.Ifthemodelpredictshazardtoloblollypine,therecommendedalternativespeciesislongleafpine.Forexistingloblollypinestandsonhighhazardsites,therecommendationistothinthembetweenages20and40(Hessandothers2003).Apreviousrecommendation,toallowahigh-risksitetorevertbacktonativehardwoods(Loomis1976,Miller1979),isstillaviable(butseldomadopted)managementoption.

Treedeclineislikelytoincreaseinawarmeranddrierclimate,regardlessofinputsfromdiseaseandinsectvectors.Thisresponsetochangingclimateisamajorfactorinthenorthwardmovementprojectedforthesouthernpines.Increasingincidenceofdeclineshouldeventuallydiminishasnewadaptedecosystemsformintheregion,butthisisnotexpectedtooccurwithinthenext50years.

Diseases of hardwoods

Beech bark disease—Beechbarkdiseaseiscausedbyacomplexoftwoormoreagentsworkinginconcert.Thebeechscale,Cryptococcusfagisuga,attacksthebarkofAmericanbeech,creatinginfectioncourtswhicharesubsequentlycolonizedbythefungusNectriacoccineavar.faginata.Thisfunguscausescankersthatgrowtogetherandgirdlehosttrees.

WhilethebeechscaleisnowacommonpestoftheAmericanbeech,itisnonnative,havingbeenintroducedthroughtheCanadianProvinceofNovaScotiainthelate1800s.Thereisspeculationthatthefungusisalsoanintroducedspecies.Discussiononthatpointissomewhatpointlesssinceanativefungus,N.galligena,isalsocapableofincitingcankersandkillinghostsafterenteringthroughscale-damagedbark.Thescaleisconsideredthepivotalintroductionthatallowedtheinvasivespreadofthisdiseasecomplex(HoustonandO’Brien1983,SouthernAppalachianManandtheBiosphere1996).

Thisdiseasecomplex,firstidentifiedinsouthernforestsintheearly90s,continuestospreadalongabroadfrontandisexpectedtooccupytherangeofitshost(WardandMistretta2002).Intheearlyphaseofitscycle,morethanhalfoftheAmericanbeechtrees10inchesd.b.h.orlargerarekilled.Openingscreatedbydeathorremovalofthebeechresultindensestandsofroot-sprouts,whichproducestandsdominatedbybeechbutlackinganyofitsnormalassociates.Inthesecondphaseofthecycle,revegetatedbeechstandsareattackedlessseverely,resultingincankeredsurvivorsratherthaninextensivemortality.Treesinfectedinthisphasearerarelygirdled,buttheyaregenerallyseverelydeformed.

SincethisdiseasecomplexaffectsonlyAmericanbeech,thereisadirectrelationshipbetweentheamountofbeech

Page 18: Chapter 16. invasive Pests—insects and Diseases

474The Southern Forest Futures Project

inastandandtheintensityofthedisease.Houston(1997)reportsthatstandageanddensity,treesize,andspeciescompositionaffectdiseaseseverity,especiallyinforestsaffectedforthefirsttime.

Beechbarkdiseaseisenabledbyaninsectvector,sotheprojectionoffutureconditioniscomplicatedbeyondthatofasimplepathogenorinsectdrivenpestsystem.Vectormediationcorrespondstoavailabilityofsporesandhostsusceptibility,andisexpectedtomaintainsynchronicitysufficienttocauseaslightincreaseininfection.Temperatureintoleranceofthehostshouldreducethehost’sgeographicrangeinthefaceofclimatechange.Increasesincarbondioxideshouldincreasehostgrowthallowingaslightincreaseindiseasevirulence.

Ultimately,however,thereductioninavailablehosttreesshouldresultinanoveralldecreaseofsignificanceofbeechbarkdiseaseinsouthernforestsdespitetheprobabilitythatindividualtreeswillexperienceaslightincreaseindiseaseseverity.

Butternut canker—ButternutisbeingkilledthroughoutitsrangeinNorthAmericabyafungus,Sirococcusclavigignenti-juglandacearum,whichcausesmultiplecankersonthemainstemandbranchesofhosttrees.Butternutcankerhasbeenfoundin55countiesintheSouthextendingnorthfromnorthernAlabamaalongtheAppalachianMountainsintoNorthCarolina,Tennessee,Virginia,andKentucky,withscatteredoccurrencesthroughoutKentuckyandTennessee(WardandMistretta2002).ButternutnumbershavebeendramaticallyreducedandthespeciesisnowlistedasaspeciesofSpecialConcerninKentuckyandasThreatenedinTennessee(USDANaturalResourcesConservationService2011).InbothstatesthespeciesislistedasG4/S3.G4indicatesaplantwhichis“…apparentlysecureglobally,thoughitmaybequiterareinpartsofitsrange…”whileS3indicates“…rareanduncommoninthestate…”(USDANaturalResourcesConservationService2008,2009).

DetailedexaminationofcankersindicatesthatbutternutcankerhasbeenpresentintheUnitedStatessincetheearly1960s.Itsoriginisunknownbutitsrapidspreadthroughoutthebutternutrange,itshighlyaggressivenatureoninfectedtrees,thescarcityofresistanttrees,thelackofgeneticdiversityinthefungus,andtheageoftheoldestcankers(40years)supportthetheorythatitisarecentintroduction.DatafromforestinventoriesshowadramaticdecreaseinthenumberoflivebutternuttreesintheUnitedStates(77percentlossinNorthCarolinaandVirginia).

Becausebutternutmakesuplessthan0.5percentofthetreesintheSouth,theoverallcurrentimpactofitslosstotheforestedecosystemintheSouthisconsideredbysometobe

minor.However,asbutternuttreesdie,theyarereplacedbyotheralreadypresentspecies,contributingtoareductionofbiodiversity.

ClimatechangewouldlikelyraisetemperaturesatthehigherelevationsoftheAppalachiansandtheCumberlandPlateau.Thiscoupledwithdrierconditionswouldsignificantlyreducetherangeofbutternutatitssouthernedge.Althoughthehighertemperaturesandpredictedincreasesinatmosphericcarbondioxidecouldincreasethehosttrees’growth,drierconditionsresultingfromreducedprecipitationwouldactagainstthisincrease.OverallweexpecttoseemorecankeringandmortalityoccurringonfewerbutternuttreesintheSouth.

Chestnut blight—Introductionofthechestnutblightfungus,Cryphonectriaparasitica,fromAsia,probablyinthemiddle-to-late1890s,ledtoapermanentchangeinforestecosystems.TheAmericanchestnut(Castaneadentata)wasessentiallylost,notonlyasavaluabletimberspeciesbutalsoasthemostimportantproducerofhardmastforwildlife.Oaksandotherspeciesfilledthevoidsinforeststandsleftbythedeathofchestnut(Hepting1974,Oakandothers1998).Thefunguscontinuestosurviveoninfectedsproutsfromoldchestnutrootstock,variousoaks,andsomeotherhardwoods(Boyce1961).

Nocontrolwasfoundtostoptherapiddevastationcausedbythisblight,andthereislittlechancethatthepathogenwilldisappearorthattheAmericanchestnutwillnaturallyrecoveritspreeminentpositionineasternforests.Researchersintohypovirulencehavediscoveredadiseasethatweakenstheblightfungus,resultinginlessdamagetotheinfectedtree(Anagnostakis1978).Field-testingisunderwayonageneticallyengineeredvirusthatcausesahypovirulentreactionandhasthepotentialtoefficientlyspreadhypovirulencethroughoutthefungalpopulation.

AttemptstocrossAmericanchestnutswithorientalvarietiesandthenbackcrosstotheAmericanparentappeartoofferaviablemethodofmaintainingresistantchestnutinforests(Schlarbaum1988).SelectivelybreedingchestnutsasdescribedhasproducedchestnuthybridclonesthatareundergoingfieldevaluationbytheAmericanChestnutFoundation.Iftheseedlingsovercomeboththeblightandanotherdisease(causedbyPhytophthoracinnamomi)thatwasdevastatingchestnutsatthetimechestnutblightwasintroduced,aseriouseffortcanbemadetoreintroducechestnutintotheAmericanforests.Itistooearlyyettopredicttheoutcomeofthiseffort.However,evenifthehybridsareresistanttothedisease,largeareasofforestlandcannotberestoredtochestnutinthenext50yearsbecausetheseedlingsthatwouldbeneededforthateffortarenotexpectedtobeavailableinlargeenoughquantities.Further,ifclimatechangeisconsidered,theimpactsonchestnut

Page 19: Chapter 16. invasive Pests—insects and Diseases

475chAPTeR 16. Invasive Pests—Insects and Diseases

deployedintherestorationeffortwouldprobablybesimilartothosepredictedforoakssufferingfromoakdecline.

Dogwood anthracnose—Dogwoodanthracnoseiscausedbyanintroducedfungus,Disculadestructiva.ItwasfirstreportedintheUnitedStatesonfloweringdogwood,Cornusflorida,in1978andonwesternfloweringdogwood,C.nuttallii,in1979.Forthepastthreedecades,floweringdogwoodshavebeendecliningataratethatthreatensimportantculturalaspectsofsouthernsociety.Insomeareas,theyhavebeenallbuteliminatedfromtheforestecosystemabove3,000feet(WardandMistretta2002).

Theeasternfloweringdogwoodisasmalltreevaluedbothasasignofspringforruralcommunitiesandforestvisitors,andasanimportantsourceofsoftmastforover100differentspeciesofwildlifethatfeedonitsberries(Kasper2000).Itistypicallyanunderstorytreefoundgrowingwithotherhardwoodssuchasoakandhickory.Severeinfectionisrestrictedtofullyshadedunderstorytreesathigherelevations(above3,000feet)andtothoseonshadedsiteswithanorthernexposure.Thehazardofsevereinfectionandmortalityisgreatestinshaded,moist,andcoolareas.

TherangeofthisdiseasestretchessouthwardintoSouthCarolinaandAlabamaandwestwardintocentralTennesseeandscatteredwesternKentuckycounties(WardandMistretta2002)withactivityconcentratedintheAppalachianMountains.ThesouthernmostlimitofthedogwoodanthracnoserangerelativetoavailablehosttreessuggeststhatthisdiseaseistemperaturelimitedintheSouth.Whetherthislimitationfunctionsatthetimeofsporepropagationordisseminationandhostinfection,orwhetheritactsdirectlytolimitdiseasesuccessisunclear.

Anyprojectedincreaseintheincidenceorvirulenceofdogwoodanthracnosebasedonincreasedhostandfungalgrowthresultingfromhighercarbondioxidelevelsintheatmosphereshouldbeeclipsedbythetemperatureincreasesandpossiblerainfallreductionsprojectedtooccurunderclimatechange.Increasedtemperatureandaridityencroachingathigher-than-currentelevationsintheAppalachianMountainsshoulddiminishtheimportanceofthisdiseaseintheregion,especiallyifithasreachedatemperaturebarrierfarthersouth.Arecolonizationofsomeareascurrentlydenudedofdogwoodbythisdiseasemightbepossible.

Dutch elm disease—TheDutchelmdiseasepathogenisvectoredbyoneoftwobarkbeetlesandcanbecausedbyeitheroftwocloselyrelatedspeciesoffungi:Ophiostomaulmi(formerlycalledCeratocystisulmi);andOphiostomanovo-ulmi,whichismoreaggressiveincausingdisease(Brasier1991).ThesefungiwerefirstintroducedtotheUnitedStatesondiseasedelmlogsfromEuropepriorto

1930.Itisunknownwhenthemoreaggressivespeciesbecameestablished;howeveritwaspossiblypresentasearlyasthe1940sto1950s,andmostlikelycausedmuchofthedevastatingelmmortalitythroughthe1970s.Thelessaggressivespeciesisbecomingincreasinglyrareinnature,andtheaggressivespeciesisthoughttobetheprimarycauseofcurrentmortality.Althoughsomelocalresurgencehasbeenobserved,thereisnoevidencethatthepathogenhasfurtherchanged.Localizedresurgenceismorelikelytheresultofdecreasedmonitoringandsanitationvigilance,abuildupinpopulationsoftheinsectvectors,orhighdensitiesofsusceptiblehosttreesinthewild(Frenchandothers1980,Haugen2007,Hubbes1999).

NativespeciesofNorthAmericanelmsvaryintheirsusceptibilitytoDutchelmdisease.Americanelm(Ulmusamericana)isgenerallyhighlysusceptibleTothediseasewhilewingedelm(U.alata),Septemberelm(U.serotina),slipperyelm(U.rubra),rockelm(U.thomasii),andcedarelm(U.crassifolia)rangefromsusceptibletosomewhatresistant.Nonativeelmsareimmune,butsomeindividualsorcultivarshaveagreaterresistanceorahighertolerancetoinfection(andthereforemayrecoveroratleastsurvive).ManyEuropeanandAsiaticelmsarelesssusceptiblethanAmericanelm(Haugen2007).

Inadditiontogeneticfactorspresentinsomecultivarsandspecies,physicalfactorsaffecttreesusceptibility.Thesefactorsincludeseasonoftheyear,climaticconditions(suchasdrought),andvitalityofthetree.Waterconductingelementsaremostsusceptibletoinfectionbecausetheyareproducedinthespring,makingsusceptibilityhighestfromfirstleafingtomidsummerandlowestduringdroughtconditions.Vigorouslygrowingtreesaregenerallymoresusceptiblethanslowergrowingtrees(D’Arcy2005).

Rootsofthesameorcloselyrelatedtreespeciesgrowingincloseproximityoftencrosseachotherinthesoilandeventuallyfuse(becomegrafted).Thefunguscanmovefrominfectedtreestoadjacenttreesthroughthesegraftedroots.Infectionsthatoccurthroughrootgraftscanspreadveryrapidlythroughoutthetree,becausethefungusiscarriedupwardinthesap.Rootgraftspreadisasignificantcauseoftreedeathinurbanareaswhereelmsarecloselyspaced(Frenchandothers1980,Haugen2007).

Currentmanagementoptionsinurban,suburban,andotherhighvaluesettingsincludesanitizingtoreduceinsectvectors,applyinginsecticidestokillinsectvectors,disruptingrootgrafts;injectingtreeswithfungicide,eradicatingthefungusfromnewlyinfectedtrees(pruning),andplantingresistantortoleranttrees(Frenchandothers1980,HaugenandStennes1999,Newhouseandothers2007,Schefferandothers2008).

Page 20: Chapter 16. invasive Pests—insects and Diseases

476The Southern Forest Futures Project

Althoughthemosteffectiveactionispromptremovalofstressed,dead,anddyingelms,thisintensityoftreatmentisoftennotfeasible(Haugen2007).

Despitethepresenceofseveralelmspecies(Americanelm,wingedelm,andslipperyelm,atleast)verylittleDutchelmdiseasecanbefoundinareasbelownorthernNorthCarolina,Tennessee,andArkansas.Itappearsthateitherthebeetlesorthefungiinvolvedintransmitting/causingthediseasearetemperaturelimited.Barringsignificantchangesinitspathogen/vectorcombination,increasingtemperatureandmigrationofthehostslightlytothenorthisexpectedtodiminishthedisease’soverallimpactintheSouth.

Laurel wilt—Laurelwiltisaninsect-vectoreddiseasethatiscurrentlydecimatingtheredbay(Perseaborbonia)populationofthesouthernCoastalPlain.ThisdiseasewasfirstidentifiednearPortWentworth,Georgia,in2003andhassubsequentlyspreadnorth,south,andinland(west)fromthatlocation(fig.16.4).Itiscausedbyanintroducedandonlyrecentlyclassifiedfungus,Raffaelealauricola,(Harringtonandothers2008)thatisvectoredfromhosttohostbyanambrosiabeetle(Xyleborusglabratus,alsoanintroducedspecies).Thebeetlecarriesthefungusinpoucheslocatednearitsmandibles.Whenthebeetleboresintothesapwoodthefungusinoculatesthexylem.Onceinoculated,thehostrapidlydevelopsavascularwilt;itsleavesdiegenerallydownwardfromthetop,andthewoodbeneaththebarkbecomesdiscoloredfromstreaking(Fraedrichandothers2008).Infectedhostsdisplayrapiddieback(wiltedleavesanddiscoloredsapwood)andmayormaynotexhibitextrusionoffrass(thefinepowderysawdustandexcrementthatinsectspassaswasteafterdigestingplantmaterial)fromtheinsect’sentryholes.

Severaladditionalhostshavebeenidentifiedforthisvectoreddiseaseincludingswampbay(Perseapalustris),sassafras(Sassafrasalbidum),avocado(Perseaamericana),camphor(Cinnamomumcamphorate),pondberry(Linderamelissifolia),andpondspice(Litseaaestivalis).Redbay,however,isthefavoredhostfortheambrosiabeetleandtothepresenttheseverestdamagehasbeenlimitedtoredbay(Hanulaandothers2008).

Atthepresenttimethereisnoeffectivecontrolknownforthisdiseaseforforestandwoodlanduse.Whilepreliminaryresultsusingpropiconazole(afungicide)showpromiseforpreventingthediseaseintreatedtrees,thenecessityofretreatingthemandthecostoftreatmentsuggeststhatinthefutureusemaybelimitedtotheprotectiononlyofhighvaluetrees(Mayfield2008).Researchintochemicaltreatment,centeredoncontrolofthevector,isongoingbuthasyettoidentifyachemicaleffectiveforthispurpose.Managementrecommendationsemphasizeearlysanitation(removal)ofkilledmaterialbutwiththestrongconcurrent

recommendationthatthedeadmaterialsnotbemovedoffsite,orifmovedoffsitethennotoutoftheknowninfested/infectedarea.Further,itisrecommendedthatwheneverpossiblematerialthathasbeencutdownshouldbechippedorburiedratherthanleftintact(Mayfield2008).

Basedonthecurrentrateofspread(estimatedtobeabout20milesperyear),theknowndistributionofredbay,andregionalclimateprojections,KochandSmith(2008b)haveextrapolatedprobablespreadofthisdiseasethrough2040(fig.16.5).Accordingtotheirprojection,thediseasecomplexwillhavereacheditsnorthernextent(hostbased)by2020,andwillreachthewesternextentofitshostrangeineasternTexasby2040.Thebasisoftheirprojectionsisthecombinationofredbay’snaturalrangeandclimaticbarriersthataffectthevectorandfungus,whichwilllikelystallfurtherprogressofthediseaseintheSouth.Theircaveatisthatprojectionsarelimitedtotheredbayhost.

Unansweredatthispointintimeiswhetherthisfungus/vectorcomplexcouldbecomeestablishedinotherpartsofthecountryonotherlauraceoushosts(suchastheCalifornialaurel)shouldfungus-carryingbeetlesbeintroducedintopotentialnewhostranges.Further,potentialforaffectingthespreadofandpossiblycontrollingsomeofthelossthroughimplementationoftheRecoveryPlanforLaurelWiltonRedbayandOtherForestSpecies(Mayfieldandothers2009)isasyetanunknownfactorinthemanagementofthisdisease.

Unfortunately,in2009,laurelwiltwasdetectedintheSandHillCraneNationalWildlifeReserveinsouthernMississippi—alocationthatwasnotpredictedbyKochandSmith(2008b)forinfectionuntilabout2017—apparentlythroughhumanintroduction.Regardlesswhetherthisisanewintroductionormovementfromtheeastcoastinfectedarea,ithasreducedby8yearsthedisease’sexpectedarrivalinTexas.

Ofconcerniswhetherthediseasemightexpanditshostrangeundertheinfluenceofclimatechangeorthroughamodificationofthefungus/vectorcomplexthatwouldallowanewinsectvectortobecomeinvolved.Ifeitheroccurs,thereisstrongpotentialforcurrentlyunpredictedinvolvementofnewhostsandunpredictedspread;newnessofthiscomplexintheSouthleadstoextremeuncertaintywhenattemptingtoprojectfuturebehavior.

Giventherapidandseveredamagedonetotheinfectedhostscoupledwithpredictedshiftsincoastalvegetationresultingfromprojectedtemperatureincreasesandpossiblydecreasingprecipitation,thepotentialofthisdiseasetospreadbeyonditsprojectedrangeishighlyuncertain.

Oak decline—Becauseofthehistoryofwoodsgrazing,widespreadwildfire,andexploitiveloggingforwood

Page 21: Chapter 16. invasive Pests—insects and Diseases
Page 22: Chapter 16. invasive Pests—insects and Diseases
Page 23: Chapter 16. invasive Pests—insects and Diseases

479chAPTeR 16. Invasive Pests—Insects and Diseases

oakdeclineepisodescontinuetooccurintheregion(primarilyinArkansasandVirginia)wherepredisposingconditions,incitingevents,andcontributingfactorsarecoincident(Gysel1957,Oakandothers1988,Starkeyandothers2000).

Withincreasedtemperatureand(possibly)lessrainfallbeingpredicted,oakdeclineisexpectedtoincrease,possiblysignificantly.Declineresultingfromthestressesimposedshouldbecontributorytoeliminationofoakinsomedrierareas,anditisuncertainwhatcommunityofplantswouldreplacetheoakonthesesites.

Oak wilt—OakwiltisavascularwiltdiseaseofoaksthatisfoundonlyinNorthAmerica.Thecausalfungus,Ceratocystisfagacearum,wasfirstidentifiedinWisconsinin1942.ScientistsbelievedthediseasetobenativetoNorthAmericaandtohavebeenpresentlongbeforeitsdiscovery(MacDonald1995,TainterandBaker1996).Recently,strongspeculationhasbeenvoicedthatthefungusisactuallyanonnativeintroduction,possiblyfromSouthAmericawhereitoccurswithoutcausingdisease(Juzwickandothers2008).Oakwiltoccursin21CentralandEasternStates(RexrodeandBrown1983);9ofthe13SouthernStatesareknowntoharborthedisease,butseveremortalityislimitedtoarecentoutbreakincentralTexas(WardandMistretta2002).

Oakwiltcausesaffectedtreestowiltandusuallytodie.Allspeciesofoakaresusceptible,butspeciesintheredoakgroup—northernred(Quercusrubra),scarlet(Q.coccinea),andblack(Q.velutina)oak—aremostreadilykilled.Oaksinthewhiteoakgroup—white(Q.alba),post(Q.stellata),andchestnut(Q.prinus)oaks—areinfectedbutmortalityoccursmuchlessfrequentlyandmoreslowly.Liveoaks(Q.virginiana)dieatarategenerallyintermediatebetweenredandwhiteoaks.

Sap-feedingbeetlescancarryfungalsporestonearbyhealthytrees,thefunguscancolonizeneighboringuninfectedtreesbygrowingthroughrootgrafts,andhumanmediatedtransmissionisalsopossible(movinginfectedfirewoodwithintactbarkallowsfruitingofthefungusinareascurrentlynotinfected).

Itisunclearwhetherthenorth-to-southprogressofthediseasewashaltedbyatemperaturebarrierthatlimitsmigrationofthefungus.TheexistenceofsuchabarriercouldmeanthattheTexasoutbreakistheresultofarelativelyrecentadaptationofthefungustoahighertemperatureregimeoranadaptationtothehosts(liveoak)attackedinthatarea.RegardlessofwhatcausedtherecentsurgeinoakwiltactivityinTexas,itsrapidspreadraisesthepracticalquestionofwhetherthefunguscannowspreadthroughouttheuninfectedareasfromLouisianatoGeorgiaandFlorida.Weanticipatethatthisquestionmaybeansweredwithinthe

next10to20yearsasthediseaseappearstobespreading(orbeingspreadbyhumans)atafairlyrapidrate.

Increasingsoiltemperaturemightprovideafurtherbarriertospread,ifindeedtemperaturehasbeenabarrier.Predictingthedirecteffectsoftemperatureandatmosphericcarbondioxideonthisdiseasewillrequireanunderstandingofthepathogen-hostmechanismsatplay:whetherdamagetotherootsystemissufficienttocausesymptomsanddeath,orwhetherthefungusmustgrowfromtherootsystem(wheremostofthetransmissionisoccurring)intoandthroughoutthevascularsystemabovegroundtocausethesameeffect.

Littlecanbesaidwithanydegreeofcertaintyaboutpossibleinsecttransmissionofthisdisease.Consistentbutinefficienttransmissionbysap-feedingbeetles(NitidulidsandScolytids)isanacceptedmodeofspread.Shotholeborershavealsobeensuggested,butthese,andotherpossibleinsects,arelessaccepted.Longerperiodsofactivityoftheseinsects,resultingfromthelengtheningofsummers(alreadybeingobserved),couldgreatlyincreasetransmission.However,thisincreasecouldonlyoccuriffruitingmatsofthefungus(which,inTexas,isassociatedwithcoolerandmoisterfall,winterandspringconditions;nottheanticipatedconditions)werepresentduringthetimeinwhichtheinsectsareactive.UnlessincreasedtemperaturetriggersmorematformationthanhasbeenhistoricallyreportedinCentralTexas(unlikely),itisnotexpectedthatadditionalinsectswouldbecomesignificantcarriersofthefungustouninfectedtrees.Possiblelossofsomecoastalforesttosavannashouldhaveonlyaslightimpact:simplyreducingthenumberofhostslessensdiseaseincidence.

Managementofthisdiseasehasproventobeexpensiveandisgenerallyreservedforhighvalue(aestheticallydesirable)trees.Giventheapparentadaptationofthefungustowarmertemperaturesandrelativelydryconditions,andthelimitationsofcontroltacticsavailable,thereisahighprobabilityofsignificantoaklossinpreviouslyunaffectedareasalongtheGulfofMexicoandinGeorgiawithin50years.However,iftheapparentadaptationtowarmeranddrierconditionsprovesinadequateforcontinueddiseasespread,wewouldexpectanoverallslightlesseningoftheimpactofoakwiltintheSouth.

Sudden oak death—FirstreportedinCaliforniain1995,suddenoakdeath(SOD)isnowawell-establishedpestwithafairlylimitedrangeinCaliforniaandOregon.However,despitethisrelativelylimitedcurrentrange,itisbelievedthatifintroducedintotheeasternoakforesttheconsequencescouldbedire.

Literaturerelatingtothisdiseaseisextensive,buthasrecentlybeenreviewed(Kliejunas2010)andmuchofwhat

Page 24: Chapter 16. invasive Pests—insects and Diseases

480The Southern Forest Futures Project

followshasbeenextractedfromorcrosscheckedwiththatreviewtolimitthenumberofcitationsincludedhere.Thispublication,whichincludesa58pagebibliographyofrelevantliterature,isavailableontheinternetathttp://www.fs.fed.us/psw/publications/documents/psw_gtr234/.

SuddenoakdeathiscausedbyPhytophthoraramorum,afungus,whichcausesseveralnonspecificsymptomsdependingonthehostandhostpartaffected.Symptomsincludestemorbolecankers,twigblight(dieback),andleafblight.Individualplantspeciescandisplaymorethanoneoronlyonesymptomtype(seehttp://rapra.csl.gov.uk/background/hosts.cfmforlinkstoimagesofsymptomsonavarietyofhosts).

Cankersappearinthephloem(tissuesthatcarrysugarsawayfromtheleavesofatree)whichmaybediscoloredabrightred,andspreaduntiltheyreachthexylem(tissuesthatcarrywaterandmineralsupfromtheroot;woodfiber).Cankersaresunken,“bleed”sap,andaregenerallyrestrictedtothelowerportionofthetreetrunk.Theamountofbleedingisvariableevenonasingletreeandmayberelatedtoenvironmentallyavailablewaterandtheageofthecanker.Declinesymptoms(lossofleaves)andcrowndeathfirstappearatthetopofthetreeandspreadrapidlydownthroughthecrownoftenresultingintreedeath(Garbelottoandothers2001).

Thelistofhostscurrentlyreportedforthispestisextensive.Asof2010thelistincludes45provenregulatedhostsplusanother82associatedhostsregulatedinthenurserytrade(USDAAnimalandPlantHealthInspectionService2010a).HostswithstemorbranchcankeringincludeCaliforniatanoak(Lithocarpusdensiflora),coastliveoak(Quercusagrifolia),Californiablackoak(Quercuskelloggii),andShreve’soak(Quercusparvulavar.shrevei).Inaddition,fieldandgreenhouseinoculationexperiments(Rizzoandothers2002)confirmthatthefunguscancauseavarietyofleafandbranchsymptoms,butgenerallynotstemcankering,onrhododendronandazalea(Rhododendronspp.),madrone(Arbutusmenziesii),huckleberry(Vaciniumovatum),manzanita(Arctostaphylossp.),Californiabaylaurel(Umbellulariacalifornica),buckeye(Aesculuscalifornica),bigleafmaple(Acermacrophyllum),toyon(Heteromelesarbutifolia),Californiacoffeeberry(Rhamnuscalifornica),honeysuckle(Lonicerahispidula),andalonglistofotherplants.

Althoughfewofthesespeciesoccurineasternforests,severalofthemcanbefoundinsignificantnumbers.EarlyresultsbyRizzoandothers(2002)showthatnorthernredoakandpinoak(Q.palustirs)aresusceptibletoinfection.InCaliforniagreenhousetests,seedlingsofbotheasternoakspeciesdevelopedlesionsalmosttwiceaslongasthoseformedontheoakseedlingsfromPacificcoastalareasandroughlyequaltothoseformedontanoak(consideredthemostsusceptiblespeciesinCalifornia).Theseresultssuggest

that,allconditionsbeingequal,thesespeciesshouldbehighlysusceptibletosuddenoakdeath.

Kliejunas(2003)ratedtheriskposedbythisdiseaseasveryhigh,butcautionsthatthedegreeofuncertaintyrelatedtofuturediseaseriskisalsohighbasedonlackofknowledgeaboutthehostrange.Notingtheabsenceofcontrolmeasures,hisriskassessmentpredictsrapidspreadbywind,water,andhumantransportofinfectedplants;andsuggeststhepotentialforsevereeconomicandecologiclosses,reductionsinbiodiversity,andindirectimpactsonsensitiveorcriticalhabitatforat-riskplantandanimalcommunities.

Basedonpasthistorywithinvasivespecies,itiseasytoprojectthatitisnotamatterof“if,”but“when,”suddenoakdeathwillgainafootholdineasternoakforests(seealternativehypothesisbelowas“Note”).Ifthediseasereachessouthernforests,therolethatclimatewouldplayisfarfromcertain.Alsouncertain,lackingbasicepidemiologicalresearch,isthepotentialeffectsoneasternspecies;thesecouldrangefrominsignificanttopotentiallycatastrophic(rivalingtheeffectsofchestnutblight).

Suddenoakdeathappearstohavethepotentialtodevastatetheeasternoakpopulation,evenabsentclimatechangeconsiderations(Kliejunas2010,chapter4).Increasedtemperaturesandatmosphericcarbondioxidecouldbeexpectedtoincreasegrowthofboththepathogenanditshost,atleastintheshortterm.Thateffectwouldbesomewhatcounteractedbyreductionsinprecipitationandincreasedozoneinconjunctionwiththewarmertemperatures.Nevertheless,onceacclimatedtotheeasternforest,thediseasewouldprobablyspreadevenfasterthanithasinCalifornia.

Usingthedistributionofknownorlikelyhosts,climateconditionsadequateforthesurvivalandpropagationofthepathogen,andprobablepathwaysofintroductionofthediseaseoutsideofitscurrentrangeKochandSmith(2008a;fig.16.6)projectapotentialrangeforthisdisease.VerysimilarpotentialrangeisindicatedbyDEFRA,Fowlerandothers,andMargaryandothers.KellyandothersandVenetteandCohenproposesomewhatdifferentpotentialrangesbutbothincludesignificantSouthernforestareas(Kliejunas2010,chapter4).

Climate-inducedlossesofnativeoaksattheirsouthernmargins(Iversonandothers1999)wouldreducethepotentialincidenceofdisease,butonlyslightly,andwouldnotslowtheprogressofthediseaseinotherpartsofitspotentialrange.Sturrockandothers(2011)statethat,basedonCLIMEXprojections,changingclimatewilldecreasesubstantiallytheareaintheEasternUnitedStatesfavorableorveryfavorableforP.ramorum.

Page 25: Chapter 16. invasive Pests—insects and Diseases
Page 26: Chapter 16. invasive Pests—insects and Diseases

482The Southern Forest Futures Project

counties(withsuspecttreesoccurringinsimilarsettingsinanadditional10counties);asyetnowoodlandorforestsurveyshavebeenconducted.AlthoughtheTennesseeinfectionswerethefirstreportedeastoftheGreatPlains,theymayhavebeenoccurringsincethe1990s.Thefullextentofthisinfectionisasyettobedetermined.

Symptomsofthediseaseincludeafoliagewiltinwhichtheleavesprogressrapidlyfromgreenthroughyellowandthentobrown.Wiltingprogressesfromthetopofthecrowndownwardasbranchesdie.IntheWest,thediebackandultimatedeathofinfectedtreestakesaboutthreeyears.Symptomsatfirst(andcertainlywhenobservedatadistance)resemblethosecausedbydrought.Closerinspectionofdeadbranchesrevealsmanybeetleentryholesthroughthebarkandmany(oftensmall)cankersjustunderthebark.Ascankersincreaseinnumberandeachgrowsbiggeruntiltheareasofdeadtissuecoalesceandgirdlethebranch.Inthelaterstagesofdiebackthebeetlesmayattacktheboleofthetreeacceleratingitsdeath(Seyboldandothers2010).

Controlmeasuresforthousandcankersdiseasehavebeenproposedbutnotyetevaluated.BecausethecurrentrangeofthefungalpestisgenerallyhotteranddrierthanTennessee’sclimate,thediseaseishighlyunlikelytoencountertemperaturebarriersthatwouldlimititsspreadintosouthernforests.Andpredictedawarmingclimateislikelytohavelittleeffect;thepathogenandvectororiginatedinahotdryareaoftheSouthwestbutbothhavemovedintothecooler,moisterclimateofcentralTennessee.Findingnobarrierstospread,thousandcankersdiseasecouldoccupytheentirerangeofblackwalnutwithin50years,similartotheprojectedspreadoflaurelwilt.

Additional concerns

Althoughwecanmakerelativelyuncertainpredictionsaboutthefutureofknownpests,predictingcurrentlyendemicorganismsthatmaybecomepestsororganismsfromotherlocationsthatmayinvadetheSouthisvirtuallyimpossible.Lovettandothers(2006)predictthatforestpestswillbetheprimarysourceofchangesineasternforestsbutcautionedagainstspeculationonspecificchangesorspecificpestintroductions.

Animportantconsiderationishumancausedchangeintheforestlandbasedrivenbyincreasingandshiftingpopulationsandeconomicconditions.Asshowninchapter5,alloftheCornerstoneFuturesforecastthattotalforestacreagewilldeclineoverthenext50years,onlyplantedpineisexpectedtoexpand,theoak-hickorytypeisexpectedtoremainrelativelystable,butthethreeotherforesttypesconsideredareexpectedtodecline.Additionally,totalforestbiomassisexpectedtoincreaseatfirstbutthendeclinesomewhat.

Ageneralizedimplicationofthesepotentialshiftsisrelativelystraightforward.Becausepestactivityappearstobebasicallyalinearresponsetoavailability,lessbiomasswouldindicateless(inabsoluteterms)lossofbiomasstopests.However,plantedsoftwoodswouldbeexpectedtoshowanincreaseinabsolutelossproportionaltotheincreaseinplantedacreage.

Thepossibleeffectsoffragmentation,parcelization,andurbanizationonpestimpactsandmanagementaresocomplex(andlargelyunknown)thatitisnotprudentorfeasibletoattempttoidentifyspecificinteractions.Generally,parcelization(greaternumberoflandownersonsmallerunitsofland)maycomplicatepestpreventionand/orsuppressionbymakingitmoredifficulttoattaineffectivemanagementonsignificantacreagesduetothegreaternumberoflandownersinvolved.Ontheotherhand,fragmentationandurbanizationwouldinterruptordecreasetheamountandcontinuityofhostspecies,therebypotentiallydecreasingthespreadandimpactsofpests.

Weexpectcontinuingintroduction(throughinternationalanddomesticcommerceandtourism)ofnonnativeinsectsanddiseaseswhichcouldbecomepestsofforesttrees,despiteimpositionofinspectionsandquarantines.Whichorganismsmightbeintroduced,andthenwhichofthesemightbecomepestspeciesisthesourceofsignificantspeculation,butisrelativelyunpredictable.

DiScuSSioN AND coNcluSioNS

Future considerations for Pest-host Relationships

Plannedadaptation(SpittlehouseandStewart2003)shouldreducevulnerabilityforcommercialtreespeciesatselectedsites.However,manyforestspecieswillhavetoadaptautonomouslyandsocietywillhavetoadjusttotheresult(Winnett1998).Forestpestdistributionchangescausedbyclimatechangearelikelycloselytiedtoshiftsinhostdistribution(Sturrock2007).

Someecosystemsareexpectedtobenew:newcommunitiesoftreeandplantspecieswithdifferentsuitesofinsectsandpathogens.Ifforestsdoremainonaparticularsite,similarfunctionaltypesofinsectsandpathogensarelikelytoremain,althoughtheymaybeincludedifferentspeciesthanatpresent(Beukemaandothers2007).Pathogensexpandingtheirrangesandcontacting‘new’hostsandvectorsmaymeanthatnewpathosystemsprobablywillemerge.Interactionsbetweenpathogensmaychange(Sturrock2007).

Page 27: Chapter 16. invasive Pests—insects and Diseases

483chAPTeR 16. Invasive Pests—Insects and Diseases

Climatechangemayamplifytheimpactandaggressivenessofpathogensoralterthebalancebetweenpathogensandtheirnaturalenemies;itmayalsochangethestatusofweak/opportunisticpathogenssuchthattheyareabletoinfectanddamagestressedtreehosts(Sturrock2007).

Treedeclineislikelytoincreaseinawarmeranddrierclimate,regardlessofinputsfromdiseasesandinsects.Theeffectofwarmeranddrierclimateistostresstreesusedtoacoolerandmoisterregime.Thisstressaloneshouldcauseanincreaseintheincidenceofdecliningtrees,butcompoundedbythepresenceofopportunisticinsectsandpathogens,thereisastrongpossibilitythatthisincreaseindecliningtreescouldbesignificant.Increasingincidenceofdeclineshouldeventuallydiminishasnewadaptedecosystemsformintheregion,butthisisnotexpectedtooccurwithinthenext50years.

Almosteverystudyandreviewofclimatechangeeffectsonforestshasacommoncaveat—thecomplexityoftheecosystemsandpestsystems,aboutwhichrelativelylittleisknown(Sturrock2007).ThedifficultyinpredictingthefutureofplantdiseaseishighlightedbyWoodsandothers(2005),whoreportonanendemicneedleblightfungus(Mycosphaerellapini)thatpreviouslyhadonlyminimalimpactonnativeforesttreesinBritishColumbia.However,recently,inapparentresponsetoalocalincreaseinsummerprecipitation,thisdiseasehasbeencausingextensivemortalityoflodgepolepines.Whileadmittingthatestablishingcausalityoftheincreasedvirulenceofthisendemicpathogenisfraughtwithriskofmisinterpretationoftheevidence,theyindicatethelinktoprecipitation(whiledismissingwarmertemperatures)appearstobefargreaterthan“circumstantial.”Nopriorindicationofthisshifttovirulenceappearsintheliterature—theeventwasunprecedented,unpredicted,andpossiblyunpredictable.Inpartialconfirmation,Sturrock(2007)notesthatwetterspringsinsomeregionsmayresultinincreasedfoliagediseaseswithoutventuringtopredictsubsequentpossiblehost/pestscenarios.

Endemicrootrotfungi(Inonotusschweinitzeii,I.tomentosus,orGanodermaspp.),whichcurrentlycauselimiteddamage,orinsectssuchasengraverbeetlesorspeciesofwoodborerscouldbecomeimportantmanagementconcernsorcouldfadeintoobscurityfromamanagementstandpoint.Thefungithatcauselittleleafdisease,suddenoakdeath(BrasierandScott1994),andotherinfectionsarepredictedtoincreasetheiractivityintemperatezonesintheNorthernandSouthernHemispheresastheymigrateawayfromthetropics.UnderchangingclimaticconditionsthesefungiareexpectedtocausemoredamagetoexistingurbanandforesttreehostsintheSouthandtoexpandthenumberofspeciestheycaninfect.Expectedtobeespeciallyprevalentanddamaging

arethose,likethelittleleafdiseasefungus,thatcangrowintemperatureshigherthan28oC(Broadmeadow2005).

Increaseddroughtstressonhostsmaymeanincreasedmortalityfromrootpathogens.PathogenicArmillariaspp.fungimaybeassistedbytheimpairmentofhosttolerancecausedbyclimatechange-inducedstress:thismayenablelesspathogenicfungitobecomemoresuccessfulonstressedtrees(Sturrock2007).Incidenceofoakandbeechdecline,highlycomplexdisorders,islikelytoincreaseifthepredictedfrequencyandseverityofsummerdroughtstressproveaccurate(Broadmeadow2005).

Achangingclimatewithincreasedtemperatures,increasedevapotranspiration,andextremeweathereventswouldincreasethefrequencyandseverityofstressfactors,whichmayleadtomorefrequentforestdeclines(Sturrock2007).Pathogenevolutioncouldbeacceleratedbymutationresultingfromincreasedsunlightorincreasedreproductionrates(shorterlifecyclesunderhighertemperatures)thatcouldleadtohostresistancebeingovercomemorerapidly(CoakleyandScherm1996).

Basedontheseoccurrencesandtrends,thefollowingbasicpatternshaveemergedonwhichwehavebuiltourprojectionsoffutureimpactsofpests:

•Thecurrentemphasisonlongleafpinerestoration,coupledwithincreasingtemperatureanddecreasingrainfallshouldresultinameasurableshiftinthepopulationdistributionofsouthernyellowpinetypes,bothspatiallyandnumerically.

•BorealforestspeciesareexpectedtohavereducedrangesintheSouthduetothecombinedeffectsofincreasedtemperatureanddecreasedavailablewater.

• Pestsassociatedwithsouthernhostspeciesareexpectedtomigratewiththeirhostswithfewexceptions.TheexceptionsarethosepeststhatalreadyoccurthroughouttheSouthandextendintothenorthernpartoftheUnitedStates.

•Althoughlong-termprojectionssuggestthatcoastalsavannahwillreplaceforestsinmanycoastalandcoastal-plainlocations,theprogressofthischangewithinthenext50yearsisnotexpectedtobesevere.

•Mostrootrottingdiseasesareexpectedtorespondaggressivelytothecombinationofwarmersoiltemperatureandreducedprecipitation.Thiscombinationofheatanddroughtisexpectedtoresultinanincreaseindiebackanddeclineamongmanytreespecies,oftenprovidingfurtherstressthatcouldactasaprecursortosuccessfulinvasion/colonizationbyrootrottingfungi.Newlystressedtreesalsomaybecomethefocusofinsectattack.

•Treessufferinglong-termstressmayprovetobemoreresistanttosecondarypestattackbecauseoflowerphysiologicalactivityandreducedavailabilityofresourcesneededbypestorganisms.

Page 28: Chapter 16. invasive Pests—insects and Diseases

484The Southern Forest Futures Project

•Treediseaseswhichaffectprimarilystemandbranchtissuearesubjectdirectlytothepotentialeffectsofwarmertemperaturesandadrierenvironment.Atfirst,warmertemperaturesandincreasedcarbondioxideintheatmosphereareexpectedtohaveastimulatoryeffectonbothhostandpathogen.However,theanticipatedloweravailabilityofwatershouldgenerallyfunctionmoreagainstthehostplantthanthefungiinfectingit,favoringanincreaseindisease.Thisassumesthatthetemperatureincreasedoesnotexceedthethermaldeathpointofthefungusoritsspores.

• Foliageattackingfungiaresubjecttosignificantpressurefromlightandthemicroclimateinthehost’sleaves.Althoughsignificantlossofsporeviabilityiscommonontheuppersurfaceofleaves,anychangeintheamountofsunlightwillnormallyalterthesurvivalrate;moresunlightresultsinlowersporesurvivalandlesssuccessfulinfectionandviceversa.Themicroclimateoftheundersideofleavesisalsocriticaltothesuccessoffoliarpathogens.Loweratmosphericmoistureresultingfromlessrainfall,fog,anddew(withasecondaryeffectofreducedsecretionofliquids)isexpectedtoreducetheeffectivenessofcolonizationbyleaf-infectingfungi.

• Longerandwarmersummertimetemperaturesareexpectedtoincreasepathogenandinsectactivity.Insectpopulationsmayshowsimpleincreasesinnumberduetotheavailabilityofadditionalhostmaterialonwhichtobrowse,ormaybeabletoproduceanadditionalgenerationeachyear.

managing Pests under changing conditions

Manyland-managementdecisionsmadetodayarebasedontheassumptionthattheclimatewillremainrelativelystablethroughoutaforest’slife—anassumptionthatmayhaveworkedwellinthepastbutisbeingchallengedbyclimatechange.Evenwithoutaclearviewofthefutureclimateandforest,itispossibletodevelopadaptivestrategiesnow.Adaptationinforestmanagementrequiresaplannedresponsewellinadvanceoftheimpactsofclimatechange(SpittlehouseandStewart2003).Thisisespeciallyimportantwhentherotationperiodsarelong(LemmenandWarren2004).

Changesinclimate,especiallyiftheyleadtogreatervariabilityamongandwithinregions,tendtoaddextrauncertaintytodecisionmaking(Garrettandothers2006).Burtonandothers(2002)appeartocontesttheconclusionofSpittlehouseandStewart(2003)citedabovewiththeirconclusionthatdevelopmentofadaptationmeasuresforsometimeinthefuture,underanuncertainclimate,inanunknownsocioeconomiccontextisboundtobehighlyspeculative.Notso;reconcilingtheapparentcontradictionhereisthenecessitythatbestprofessionaljudgmentratherthanprovensciencebebroughttobearonplanningforanuncertain,butgenerallypredictedfuture.

Adaptivestrategiesincluderesilienceoptionsandresponseoptions.Mitigationoptionsincludeoptionstosequestercarbonandreduceoverallgreenhousegasemissions(Millarandothers2007).Copingstrategiesforonedisturbancetypeareoftenappropriatemanagementresponsestootherdisturbancetypes.Beforedisturbanceoccursforestscanbemanagedtoreducevulnerabilityortoenhancerecovery.Treescanbeplantedthatarelesssusceptibletodisturbance.Speciesthatpromotedisturbancecanberemoved(Daleandothers2001).Millarandothers(2007)proposethefollowinggeneralizedstrategies:

• Improve resistance in hosts: Fromhigh-valueplantationsneartoharvesttohigh-priorityendangeredspecieswithlimitedavailablehabitat,maintainingthestatusquoforashorttimemaybetheonlyorthebestoption.Resistancepracticesseektoimproveforestdefensesagainstdirectandindirecteffectsofrapidenvironmentalchangesbyreducingtheundesirableorextremeeffectsoffires,insects,anddiseases.Becausetheymayrequireintensiveintervention,theseoptionsarebestappliedonlyintheshort-term.

•Promote resilience to change: Resilientforestsarethosethatnotonlyaccommodategradualchangesrelatedtoclimatebutalsotendtoreturntowardapriorconditionafterdisturbance,eithernaturallyorwithmanagementassistance.Promotingresilienceisthemostcommonlysuggestedadaptiveoptiondiscussedinaclimatechangecontext.Thisprocessmayalsobecomeintensiveaschangesinclimateaccumulateovertime.

•Enable forests to respond to change: Theseadaptationoptionsintentionallyaccommodatechangeratherthanresistit.Treatmentsimplementedwouldmimic,assist,orenableongoingnaturaladaptiveprocessessuchasspeciesdispersalandmigration,populationmortalityandcolonization,communitycompositionanddominancewithincommunities,anddisturbanceregimes.Somepotentialpracticesinclude:(1)Increaseredundancyandbuffers,manageforasynchrony,realignsignificantlydisruptedconditions,anduseestablishmentphasetoresetsuccession;(2)Establish“neo-native”forests,experimentwithrefugia,andpromoteconnectedlandscapes;(3)Developindicatorsasaprerequisiteforanykindofdecisionmakingandsurveillancenetworkstoassessspatialandtemporalevolutionofdiseasesandimproveepidemiologicalmodels;(4)Takeananticipatoryandpreventiveapproachbasedonriskanalysiswhenaddressingdiseasemanagementinforestecosystems(evenmoresothanforcrops),avoidtotalrelianceononeortwocontrolstrategies(asHain[2006]recommendedwhendiscussingtheunsatisfactoryresultsofbalsamwoollyadelgidcontrolefforts),andanticipatesurprisesandthresholdeffects.

•Diseasemanagementoptionscouldbealtered(Coakleyandothers1999)orimposed.Forexample,althoughitisknownthatmovementoffirewood,nurserystock,andevenfamilytrailersandboatsisresponsibleforthetransportofmany

Page 29: Chapter 16. invasive Pests—insects and Diseases

485chAPTeR 16. Invasive Pests—Insects and Diseases

species,thereisnocohesivestrategyforaddressingthisproblem(Moserandothers2009).Otheractionsproposedformanaginginsectsanddiseasesinclude:

•Avoiddisseminationofpestsintoclimaticallyfavorablezoneswheretheycouldfindnaïvehostpopulationsbypracticingstricthygienemeasures,basedonthemostprobabledisseminationpathwaysoforganisms(inseeds,wood,andplants).

•Reducevulnerabilitytofuturedisturbancebymanagingtreedensity,speciescomposition,foreststructure,andlocationandtimingofactivities(Daleandothers2001).

• Increaselight,water,andnutrientavailabilitytotheuninfected/uninfestedtreesanddecreasesusceptibilitytopestattackbypracticingprecommercialthinning,sanitationremoval,orselectiveremovalofsuppressed,damaged,orpoorqualityindividuals(Gottshalk1995,Papadopol2000,WargoandHarrington1991).

•Underplantwithotherspeciesorgenotypesinforestswherethecurrentcompositionisunacceptableasasourceofregeneration(SpittlehouseandStewart2003).

• Shortenrotationstoreducetheperiodofstandvulnerabilitytoinsectordiseaseattack,andreplanttospeedtheestablishmentofbetter-adaptedforesttypes(Gottshalk1995;Parkerandothers2000).

•Usepesticidesinsituationswheresilviculturalorothermeansofpestmanagementareineffective(Parkerandothers2000);however,becausemorphologicalorphysiologicalchangesinthehostresultingfromincreasedcarbondioxideuptakecouldaffectuptake,translocation,andmetabolismofsystemicfungicides(Coakleyandothers1999),incorporateintegratedpestmanagementpractices.

•Expandandimproveexistingmonitoringeffortstoincludeanexpectedincreaseinthenumberofnew,introducedplantdiseases(Sturrock2007).

•Assistinthemigrationofforests,byintroducingcarefullyselectedtreespecies(includingusingbiotechnologytechniquesinsomesituations)inregionsbeyondtheircurrentranges,beingmindfulofthepotentialforunforeseenconsequences.

Withrespecttononnativeinvasivespeciesmanagement,Moserandothers(2009)recommendfivepriorities:(1)promotingeducationandawareness,(2)expandingearlydetectionandactivemanagementandintensifyingenforcementofquarantines,(3)buildingthecapacitytoincreaseunderstandingofandtreatmentsforNNIScontrol,(4)strengtheningthebasicforesthealthcurriculum,and,(5)encouragingcrossagencycollaborationandinvestment.

Althoughtheprocessofplanningandactingtoprepareforafuturemostprobablyaffectedbyclimatechangeisfraught

withuncertainty,notplanningandactingwilllikelyresultingreatereconomicandsocialdisruption.Successcanonlybeachievedifthoseinenvironmentallysensitivemanagementrolesarewellinformedandexercisetheirbestjudgment.

Thesingleconsistentthemethroughouttheliteratureonpestimpactsandclimatechangeisthatminimizingecologicalchange(anddisruption)requiresmaximumpossiblebiodiversity,eitherthroughasystemofprotectedrefugiaorbydirectadaptivemanagementforspecificcharacteristics.

Differingperceptionsofriskandadaptationmayleadtoincreasedtensionamongvariousgroups.Conflictingprioritiesandmandatescouldalsoleadtofutureproblems(LemmenandWarren2004).Inthesesituations,caremustbetakentoadoptadecisionmakingprocessthatidentifiesandevaluatesallissuesandemploysthebestecologicalscience.

kNoWleDGe AND iNFoRmATioN GAPS

Asshouldbeclearfromtheabovediscussionofcurrentknowledgeandfromourprojectionsofthefutureactivityofknownpests,hugeuncertaintydominatesthesubjectofpestmanagementandclimatechange,withsignificantgapsexistinginbaselineknowledgemakinganygeneralizedquantitativemodelingoffutureconditionsimpossible.Althoughsomespecificpestbehaviorshavebeenprojected,mostofthemarequalitative.Lackinggeneralizedandoftenspecificbaselinedataleavesmodeling(quantitativeprojection)adesiredtoolwhosetimehasyettocome.Currentlyunavailabledatathatwouldcontributetoageneralizedprojectionofpotentialfuturepestactivityinforests(Beukemaandothers2007;ChakrabortyandDatta2003;Hain2006;LemmenandWarren2004;Loganandothers2003;MamlstromandRaffa2000;Rogersandothers1994;Scherm2004;and,Seem2004)include:

Informationonhostbiologyandresponsetopests:theroleofchangingsecondarymetabolites(primarilyphenolsorphenol-like)underchangingenvironmentalconditions;thefunctionalcomponentsofrespiration(construction,maintenance,andionuptake)aswellascarboncostsduetorootexudation;theroleofwaterintreehealth;thegenotypicvariabilityandplasticityofhosts;waterbalancethresholdasitaffectsdirectmortalityofhostplants,theeffectsofclimatechangeonhostdefensivemechanisms(physiological,morphological,orother);theimpactofclimatechangeonbiodiversityandtheroleofbiodiversityinecosystemfunctionsandpestmanagement/prevention;and,projections

Page 30: Chapter 16. invasive Pests—insects and Diseases

486The Southern Forest Futures Project

ofhostmigrationandavailabilityundertheinfluenceofclimatechange.

Informationonforestpests:currentdistributionsandrangesofpests;influenceofmycorrhizaeonplanthealthunderclimatechange;directandindirecteffectsofcarbondioxide,ozone,andUV-Bonrootsandroot-surfacemicroflorasundernaturalconditions;knowledgeofinsectsandpathogensfromoutsidetheareasuchasMexicanbarkbeetlesandvariousAsianinsects;mechanismsbywhichchangesincarbondioxideandprecipitationalterpestsurvival,growth,susceptibilityandinteractions

Informationtoaddclarityandspecificityonpest/hostinteractions:dispersalstructureanddistanceandinterconnectednessoftemperature,phenologyandpestpopulationgrowthrate;phenologicalrelationshipsamongtreesandpests;roleofclimateoninsectsandpathogensinrelationtoavailablewater;baselinedataonpestsofnaturalpopulationsthatidentifytheseparateofmultipleclimatevariablesandproblemstheycause(includingforecastsofepiphytoticsorepizootics,andevaluationstheroleofevolution);pest/predatorinteractionsandresponses,relationshipsamongclimate,pests,andtheirparasites;minimumandmaximumtemperaturepreferencesofpestsandpest/hostinteractionsandresponsetotemperatureextremes;protocolforidentifyingthe“drivers”thattransformnewinsectsanddiseasesintopests;disturbanceregimesandtheirinteractiveimpacts;and,synergiesamongfire,insects,andpathogens.

Modelsandmodelingprotocolsneeded:modelsthatincorporatelocalmeteorologicaldata;improvedspatially-explicitclimatepredictionsatfinerscales(averagedailypatternsandprojectedvariationsfromtheaverage);effectsofdown-scalingorup-scalingdatafromvariousmodelsandappropriatelinkingtoolsforincreasingtheaccuracyofthesepredictiveprocessestobemoreaccuratepredictors;functionalgroupratherthansingle-speciesmodels;and,predictivemodelsthatincorporatedataondisturbancesanddisturbanceimpacts.

Managementinformationneeded:anewprotocolforaddressingtheresearchneedsofinvasiveforestpeststhatinvolvesallstakeholdersinacoordinatedpartnership;andmanagementactionplansdevelopedinthefaceofno-analogvegetationsystemsandclimatechange.

AckNoWleDGmeNTS

OurappreciationisextendedtoChristopherAsaro,VirginiaDepartmentofForestry;MatthewP.Ayres,BiologicalSciencesDepartment,DartmouthCollege;FredP.Hain,DepartmentofEntomologyandFrankKoch,DepartmentofForestryandEnvironmentalResources,NorthCarolina

StateUniversity;EdwardL.Barnard,FloridaDivisionofForestry;RonaldF.BillingsandDonaldM.Grosman,TexasForestService;ScottCameronandJamesJohnson,GeorgiaForestryCommission;StephenR.Clarke,JohnA.Ghent,WilliamE.Jones,BruceD.Moltzan,DerekPuckett,JamesD.Smith,DaleA.Starkey,andBorysM.Tkacz,ForestHealthProtection,SusanJ.Frankel,PacificSouthwestResearchStation,andKierKlepzig,AlbertE.‘Bud’Mayfield,III,DanielMiller,WilliamJ.Otrosina,andA.DanielWilson,SouthernResearchStation,U.S.DepartmentofAgriculture,ForestService.

liTeRATuRe ciTeD

Anagnostakis,S.L.1978.TheAmericanchestnut:newhopeforafallen giant.Bull.777.NewHaven,CT:ConnecticutAgriculturalExperimentStation.9p.

Anderson,R.L.;Powers,H.;Snow,G.1980.Howtoidentifyfusiformrustandwhattodoaboutit.For.Bull.SA–FB/P24.Atlanta:U.S.DepartmentofAgricultureForestService,SouthernRegion,StateandPrivateForestry,ForestInsectandDiseaseManagement.12p.

Andreadis,T.G.;Weseloh,R.M.1990.DiscoveryofEntomophagamaimaigainNorthAmericangypsymoth,Lymantriadispar.ProceedingsoftheNationalAcademyofScience(U.S.).87:2461–2465.

Antipin,J.;Dilley,D.2004.Chicagovs.theAsianlonghornedbeetle:aportraitofsuccess.Misc.Publ.MP-1593.Washington,DC:U.S.DepartmentofAgricultureForestService.51p.

Applegate,H.W.1971.Annosusrootrotmortalityinonce-thinnedloblollypineplantationsinTennessee.PlantDiseaseReporter.55:625–627.

Asaro,C.;Fettig,C.J.;McCravy,K.W.[andothers].2003.TheNantucketpinetipmoth:aliteraturereviewwithmanagementimplications.JournalofEntomologicalScience.38:1–40.

Balch,R.E.1927.DyingoaksintheSouthernAppalachians.ForestWorker.3(7):13.

Batzer,H.O.;Morris,R.C.1978.Foresttentcaterpillar.ForestInsectandDiseaseLeaflet9.Washington,DC:U.S.DepartmentofAgricultureForestService.8p.

Beal,J.A.1926.Frostkillsoak.JournalofForestry.24:949–950.

Bentz,S.E.;Riedel,L.G.H.;Pooler,M.R.;Townsend,A.M.2002.Hybridizationandself-compatibilityincontrolledpollinationsofeasternNorthAmericanandAsianhemlock(Tsuga)species.JournalofArboriculture.28:200-205.

Berisford,C.W.1988.TheNantucketpinetipmoth.In:Berryman,A.A.,ed.Dynamicsofforestinsectpopulations:patterns,causes,andimplications.NewYork:PlenumPublishingCorp.:141–161.

Beukema,S.J.;Robinson,D.C.E.;Greig,L.A.2007.Forests,insectsandpathogensandclimatechange:workshopreport.Prineville,OR:TheWesternWildlandsEnvironmentalThreatAssessmentCenter.20p.http://www.fs.fed.us/wwetac/workshops/Forest%20Pests%20and%20Climate%20Report.pdf.[Dateaccessed:November22,2010].

Billings,R.F.1980.Directcontrol.In:Thatcher,R.C.;Searcy,J.L.;Coster,J.E.;HertelG.D.,eds.Thesouthernpinebeetle.Tech.Bull.1631.Washington,DC:U.S.DepartmentofAgricultureForestService,ExpandedSouthernPineBeetleResearchandApplicationsProgram:178-192.

Billings,R.F.;Kibbe,C.A.1978.SeasonalchangesbetweensouthernpinebeetlebrooddevelopmentandloblollypinefoliagecolorineasternTexas.SouthwesternEntomologist.3:89–95.

Page 31: Chapter 16. invasive Pests—insects and Diseases

487chAPTeR 16. Invasive Pests—Insects and Diseases

Billings,R.F.;Upton,W.W.2010.Amethodologyforassessingannualriskofsouthernpinebeetleoutbreaksacrossthesouthernregionusingpheromonetraps.In:Pye,J.M.;Rauscher,H.M.;Sands,Y.;[andothers],tech.eds.Advancesinthreatassessmentandtheirapplicationtoforestandrangelandmanagement.Gen.Tech.Rep.PNW-GTR-802.Portland,OR:U.S.DepartmentofAgricultureForestService,PacificNorthwestandSouthernResearchStations:73-85.Vol.1.

Boyce,J.S.1961.Chestnutblight.In:Forestpathology.3rded.NewYork:McGraw-HillBookCo.:285–292.

Brasier,C.M.1991.Ophiostomanovo-ulmisp.nov.,causativeagentofcurrentDutchelmdiseasepandemics.Mycopathologia.115:151-161.

Brasier,C.M.;Scott,J.K.1994.Europeanoakdeclinesandglobalwarming:atheoreticalassessmentwithspecialreferencetotheactivityofPhytophthoracinnamomi.BulletinOEPP.24(1):221–232.

Broadmeadow,M.;Ray,D.2005.ClimatechangeandBritishwoodland.Inf.Note69.Edinburgh,UnitedKingdom:ForestryCommission.www.forestresearch.gov.uk/pdf/fcin069.pdf/$FILE/fcin069.pdf.[Dateaccessed:November22,2010].

Brown,H.D.;McDowell,W.E.1968.Statusofloblollypinedie-offontheOakmulgeeDistrict,TalladegaNationalForest,Alabama-1968.Rep.69–2–28.Pineville,LA:U.S.DepartmentofAgricultureForestService,ForestInsectandDiseaseManagement.22p.

Brown,H.D.;Peacher,P.H.;Wallace,H.W.1969.Statusofloblollypinedie-offontheOakmulgeeDistrict,TalladegaNationalForest,Alabama-1968.Rep.70–2–3.Pineville,LA:U.S.DepartmentofAgricultureForestService,ForestInsectandDiseaseManagement.7p.

Burton,I.;Huq,S.;Lim,B.[andothers].2002.Fromimpactsassessmenttoadaptationpriorities:theshapingofadaptationpolicy.ClimatePolicy.2:145–159.

Cameron,R.S.;Billings,R.F.1988.Southernpinebeetle:factorsassociatedwithspotoccurrenceandspreadinyoungplantations.SouthernJournalofAppliedForestry.12:208-214.

Campbell,R.W.;Sloan,R.J.1977.Foreststandresponsestodefoliationbygypsymoth.ForestScienceMonograph19.ForestScience.23(Suppl.):1–35.

Campbell,W.A.;Copeland,O.L.,Jr.1954.Littleleafdiseaseofshortleafandloblollypines.Circ.940.Washington,DC:U.S.DepartmentofAgriculture.41p.

Chakraborty,S.;Datta,S.2003.HowwillplantpathogensadapttohostplantresistanceatelevatedCO2underachangingclimate?NewPhytologist.159:733–742.

Chakraborty,S.;Murray,G.M.;Magarey,P.A.[andothers].1998.PotentialimpactofclimatechangeonplantdiseasesofeconomicsignificancetoAustralia.AustralasianPlantPathology.27:15–35.

Cherret,J.M.1986.Historyoftheleaf-cuttingantproblem.In:Lofgren,C.S.;VanderMeer,R.K.,eds.Fireantsandleaf-cutting-antsbiologyandmanagement.Boulder,CO:WestviewPress:10–17.

Coakley,S.M.;Scherm,H.1996.Plantdiseaseinachangingglobalenvironment.AspectsofAppliedBiology.45:227–238.

Coakley,S.M.;Scherm,H.;Chakraborty,S.1999.Climatechangeandplantdiseasemanagement.AnnualReviewofPhytopathology.37:399–426.

Conner,M.D.;Wilkinson,R.C.1983.IpsbarkbeetlesintheSouth.ForestInsectandDiseaseLeaflet129.Washington,DC:U.S.DepartmentofAgricultureForestService.8p.

Cordell,C.E.;Anderson,R.L.;Kais,A.G.1989.Howtoidentifyandcontrolbrown-spotdiseaseonlongleafpine.Atlanta,GA:U.S.DepartmentofAgricultureForestService,SouthernRegion.10p.

Coulson,R.N.;Flamm,R.O.;Pulley,P.E.[andothers].1986.Responseofthesouthernpinebarkbeetleguildtohostdisturbance.EnvironmentalEntomology.15:859–868.

Cowles,R.S.;Montgomery,M.E.;Cheah,C.A.S.J.2006.Activityandresiduesofimidaclopridappliedtosoilandtreetrunkstocontrolhemlockwoollyadelgid(Hemiptera:Adelgidae)inforests.JournalofEconomicEntomology.99:1258–1267.

Czabator,F.J.1971.Fusiformrustofsouthernpines—acriticalreview.Res.Pap.SO–65.NewOrleans:U.S.DepartmentofAgricultureForestService,SouthernForestExperimentStation.39p.

Dale,V.H.;Joyce,L.A.;McNulty,S.[andothers].2001.Climatechangeandforestdisturbances.BioScience.51:723–734.http://www.usgcrp.gov/usgcrp/Library/nationalassessment/forests/bioone2.pdf.[Dateaccessed:November22,2010].

D’Arcy,C.J.2005.Dutchelmdisease.SaintPaul,MN:AmericanPhytopathologicalSociety.http://www.apsnet.org/edcenter/intropp/lessons/fungi/ascomycetes/Pages/DutchElm.aspx.[Dateaccessed:November29,2012].

Dilling,C.;Lambdin,P.;Grant,J.[andothers].2010.SpatialandtemporaldistributionofimidaclopridineasternhemlockintheSouthernAppalachians.JournalofEconomicEntomology.103:368–373.

Doggett,C.A.;Grady,C.R.;Green,H.J.[andothers].1977.SeedlingdebarkingweevilsinNorthCarolina.For.Note31.Raleigh,NC:NorthCarolinaForestService,DepartmentofNaturalandEconomicResources.15p.

Drooz,A.T.1985.Foresttentcaterpillar.In:Insectsofeasternforests.Misc.Publ.1426.Washington,DC:U.S.DepartmentofAgricultureForestService:204-205.

Dull,C.W.;Ward,J.D.;Brown,H.D.[andothers].1988.EvaluationofspruceandfirmortalityintheSouthernAppalachianMountains.Rep.R8–PR13.Atlanta:U.S.DepartmentofAgricultureForestService,SouthernRegion,StateandPrivateForestry,ForestPestManagement.92p.

Dwyer,J.P.;Cutter,B.E.;Wetteroff,J.J.1995.AdendrochronologicalstudyofblackandscarletoakdeclineintheMissouriOzarks.ForestEcologyandManagement.75:69–75.

Eckhardt,L.G.;Goyer,R.A.;Klepzig,K.D.[andothers].2004a.InteractionofHylastesspecies(Gleeptera:Scolytidae)withLeptographiumassociatedwithloblollypinedecline.JournalofEconomicEntomology.97:468–474.

Echhardt,L.G.;Jones,J.P.;Klepzig,K.D.2004b.PathogenicityofLeptographiumspeciesassociatedwithloblollypinedecline.PlantDisease.88:1174-1178.

EmeraldAshBorerInformationNetwork.2010.Emeraldashborerinformationnetwork.Lansing,MI:MichiganStateUniversity.http://www.emeraldashborer.info/index.cfm.[Dateaccessed:June10,2011].

Fitzgerald,T.D.1995.Thetentcaterpillars.CornellSeriesinArthropodBiology.Ithaca,NY:CornellUniversityPress.303p.

Fraedrich,S.W.;Harrington,T.C.;Rabaglia,R.J.[andothers].2008.AfungalsymbiontoftheredbayambrosiabeetlecausesalethalwiltinredbayandotherLauraceaeintheSoutheasternUnitedStates.PlantDisease.92:215–224.

French,D.W.;Ascerno,M.E.;Stienstra,W.C.1980.TheDutchelmdisease.PublAg-BU-0518.St.Paul,MN:MinnesotaExtensionService,UniversityofMinnesota.10p.

Friedenberg,N.A.;Sarkar,S.;Kouchoukos,N.[andothers].2008.Temperatureextremes,densitydependence,andsouthernpinebeetle(Coleoptera:Curculionidae)populationdynamicsineastTexas.EnvironmentalEntomology.37:650–659.

Page 32: Chapter 16. invasive Pests—insects and Diseases

488The Southern Forest Futures Project

Froelich,R.C.;Cowling,E.B.;Collicott,L.C.[andothers].1977.Fomesannosusreducesheightanddiametergrowthofplantedslashpine.ForestScience.23:299–306.

Gan,J.2004.Riskanddamageofsouthernpinebeetleoutbreaksunderglobalclimatechange.ForestEcologyandManagement.191:61–71.

Garbelotto,M.;Svihra,P.;Rizzo,D.2001.Suddenoakdeathsyndromefells3oakspecies.CaliforniaAgriculture.55(1):9–19.

Garrett,K.A.;Dendy,S.P.;Frank,E.E.[andothers].2006.Climatechangeeffectsonplantdisease:genomestoecosystems.AnnualReviewofPhytopathology.44:489–509.

Gottschalk,K.W.1995.Usingsilviculturetoimprovehealthinnortheasternconiferandeasternhardwoodforests.In:Eskew,L.G.,ed.Foresthealththroughsilviculture.Gen.TechRep.RM–267.FortCollins,CO:U.S.DepartmentofAgricultureForestService,RockyMountainExperimentStation:219–226.http://www.fs.fed.us/rm/pubs_rm/rm_gtr267/rm_gtr267_219_226.pdf.[Dateaccessed:November22,2010].

Grassano,S.;Costa,S.2008.Optimizingfungalproductionforhemlockwoollyadelgidsuppression[Abstract].In:Onken,B.;Reardon,R.FourthsymposiumonhemlockwoollyadelgidintheEasternUnitedStates.Publ.FHTET–2008–01.Morgantown,WV:U.S.DepartmentofAgricultureForestService,ForestHealthTechnologyEnterpriseTeam:111.http://na.fs.fed.us/fhp/hwa/pubs/proceedings/2008_proceedings/fhtet_2008.pdf.[Dateaccessed:November22,2010].

Gysel,L.W.1957.Acornproductionongood,medium,andpoorsitesinsouthernMichigan.JournalofForestry.55:570–574.

Hain,F.2006.Newthreatstoforesthealthrequirequickcomprehensiveresearchresponse.JournalofForestry.104(4):182–186.

Hajek,A.E.;Humber,R.A.;Elkinton,J.S.[andothers].1990.AllozymeandRFLPanalysesconfirmEntomophagamaimaigaresponsiblefor1989epizooticsinNorthAmericangypsymothpopulations.ProceedingsoftheNationalAcademyofScience(U.S.A.).87:6979–6982.

Hanula,J.L.;Mayfield,A.E.,III;Fraedrich,S.W.[andothers].2008.Biologyandhostassociationsofredbayambrosiabeetle(Coleoptera:Curculionidae:Scolytinae),exoticvectoroflaurelwiltkillingredbaytreesintheSoutheasternUnitedStates.JournalofEconomicEntomology.101:1276–1286.

Harrington,T.C.;Fraedrich,S.W.;Aghayeva,D.N.2008.Raffaellalauricola,anewambrosiabeetlesymbiontandpathogenontheLauraceae.Mycotaxon.104:399–404.

Haugen,D.A.;Hoebbeke,E.R.2005.Sirexwoodwasp–SirexnoctilioF.(Hymenoptera:Siricidae).Pestalert.NewtownSquare,PA:U.S.DepartmentofAgricultureForestService,StateandPrivateForestry,NortheasternArea.3p.

Haugen,L.2007.HowtoidentifyandmanageDutchelmdisease.NewtownSquare,PA:U.S.DepartmentofAgricultureForestService,StateandPrivateForestry,NortheasternArea.16p.http://na.fs.fed.us/pubs/detail.cfm?id=918.[Dateaccessed:November22,2010].

Haugen,L.;Stennes,M.1999.FungicideinjectiontocontrolDutchelmdisease:understandingtheoptions.PlantDiagnosticiansQuarterly.20(2):29-38.

Hepting,G.H.1974.DeathoftheAmericanchestnut.JournalofForestHistory.18:60–67.

Herms,D.A.;McCullough,D.G.;Smitley,D.R.[andothers].2009.Insecticideoptionsforprotectingashtreesfromemeraldashborer.NorthCentralIPMCenterBull.(unnumbered).Lansing,MI:NorthCentralIPMCenter.12p.http://www.emeraldashborer.info/files/Multistate_EAB_Insecticide_Fact_Sheet.pdf.[Dateaccessed:November22,2010].

Hess,N.J.;Eckhardt,L.G.;Menard,R.D.[andothers].2005.AssessmentofloblollypinedeclineontheOakmulgeeRangerDistrict,TalledegaNationalForest,Alabama.Revised.Rep.2005–02–04.Pineville,

LA:U.S.DepartmentofAgricultureForestService,ForestPestManagement.36p.

Hess,N.J.;Walkinshaw,C.H.;Otrosina,W.J.2003.Theroleofhistologyindefiningfinerootmortalityofloblollydeclinestands.Prot.Rep.R8PR–53.Atlanta:U.S.DepartmentofAgricultureForestService,SouthernRegion,ForestHealthProtection.12p.

Hoffard,W.H.;Marx,D.H.;Brown,H.D.1995.Thehealthofsouthernforests.Prot.Rep.R8PR27.Atlanta:U.S.DepartmentofAgricultureForestService,SouthernRegion.36p.

Hollingsworth,R.G.;Hain,F.P.1991.Balsamwoollyadelgid(Homoptera:Adelgidae)andspruce-firdeclineinthesouthernAppalachians:assessingpestrelevanceinadamagedecosystem.FloridaEntomologist.74:179-187.

Houston,D.R.1997.Beechbarkdisease.In:Britton,K.O.,ed.Exoticpestsofeasternforests:Proceedingsofaconference.Nashville,TN:TennesseeExoticPlantPestCouncil:29–41.

Houston,D.R.;O’Brien,J.T.1983.Beechbarkdisease.ForestInsectandDiseaseLeaflet75.Washington,DC:U.S.DepartmentofAgricultureForestService.8p.

Hubbes,M.1999.TheAmericanelmandDutchelmdisease.ForestryChronicle.75:265-273.

Iverson,L.R.;Prasad,A.M.;Hale,B.J.[andothers].1999.PotentialfuturedistributionsofcommontreesoftheEasternUnitedStates.Gen.Tech.Rep.NE–265.Delaware,OH:U.S.DepartmentofAgricultureForestService,NortheasternResearchStation.245p.http://www.nrs.fs.fed.us/atlas/tree/.[Dateaccessed:June11,2010].

Jetton,R.M.;Dvorak,W.S.;Whittier,W.A.2008.EcologicalandgeneticfactorsthatdefinethenaturaldistributionofCarolinahemlockintheSoutheasternUnitedStatesandtheirroleinexsituconservation.ForestEcologyandManagement.255:3212-3221.

Jetton,R.M.;Whittier,W.A.;Dvorak,W.S.;Rhea,J.R.2010.StatusofgeneconservationforeasternandCarolinahemlockintheEasternUnitedStates.In:Onken,B.;Reardon,R.,comps:Proceedingsofthe5thSymposiumonHemlockWoollyAdelgidintheEasternUnitedStates.Publicationno.FHTET-2010-07.Morgantown,WV:U.S.DepartmentofAgricultureForestService,ForestHealthTechnologyEnterpriseTeam:93-99.

Juzwik,J.;Harrington,T.C.;MacDonald,W.L.;Appel,D.N.2008.TheoriginofCeratocystisfagacearum,theoakwiltfungus.AnnualReviewofPhytopathology.46:13-26.

Kais,A.G.1989.Brownspotneedleblight.In:Cordell,C.E.;Anderson,R.L.;Hoffard,W.H.[andothers],tech.coords.Forestnurserypests.Agric.Handb.680.Washington,DC:U.S.DepartmentofAgricultureForestService:26–28.

Kasper,C.A.2000.Floweringdogwood(Cornusflorida).WindstarWildlifeInstitute.Accessedat:http://www.windstar.org/features/clearinghouse/a_flowerin.htm

Kliejunas,J.2003.ApestriskassessmentofPhytophthoraramoruminNorthAmerica.Vallejo,CA:U.S.DepartmentofAgricultureForestService,StateandPrivateForestry.11p.http://www.suddenoakdeath.org/pdf/RevisedPRA.8.03.pdf.[Dateaccessed:November22,2010].

Kliejunas,J.T.2010.SuddenoakdeathandPhytophthoraramorum:asummaryoftheliterature:2010edition.Gen.Tech.Rep.PSW-GTR-234.Albany,CA:U.S.DepartmentofAgricultureForestService,PacificSouthwestResearchStation.181p.

Koch,F.H.;Smith,W.D.2008a.Mappingsuddenoakdeathrisknationallyusinghost,climateandpathwaysdata.In:Frankel,S.J.;Kliejunas,J.T.;Palmieri,K.M.,tech.coords.2008.Proceedingsofthesuddenoakdeaththirdsciencesymposium.Albany,CA:U.S.DepartmentofAgricultureForestService,PacificSouthwestForestExperimentStation:279-287.http://www.fs.fed.us/psw/publications/documents/psw_gtr214/.[Dateaccessed:June11,2010].

Page 33: Chapter 16. invasive Pests—insects and Diseases

489chAPTeR 16. Invasive Pests—Insects and Diseases

Koch,F.H.;Smith,W.D.2008b.Spatio-temporalanalysisofXyleborusglabratus(Coleoptera:Circulionidae:Scolytinae)invasioninEasternU.S.forests.EnvironmentalEntomology.37:442–452.

Kolarik,M.;Freeland,E.2011.Geosmithiamorbidasp.nov.,anewphytopathogenicspecieslivinginsymbiosiswiththewalnuttwigbeetle(Pityophthorusjuglandis)onJuglansinUSA.Mycologia.103(2):325-332.

Kovacs,K.F.;Haight,R.G.;McCullough,D.G.[andothers].2009.CostofpotentialemeraldashborerdamageinU.S.communities,2009-2019.EcologicalEconomics.69:569–578.

Kruse,J.J.2000.Archipsgoyeranan.sp.(Lepidoptera:Tortricidae),animportantpestofbaldcypress(Taxodiaceae)inLouisianaandMississippi.ProceedingsoftheEntomologicalSocietyofWashington.102:741–746.

Lemmen,D.S.;Warren,F.J.,eds.2004.Climatechangeimpactsandadaptation:aCanadianperspective.Ottawa,Ontario:NaturalResourcesCanada.174p.

Liebhold,A.M.;Gottschalk,K.W.;Muzika,R.[andothers].1995.SuitabilityofNorthAmericantreespeciestogypsymoth:asummaryoffieldandlaboratorytests.Gen.Tech.Rep.NE–211.Radnor,PA:U.S.DepartmentofAgricultureForestService,NortheasternForestExperimentStation.34p.

Logan,J.A.;Régnière,J.;Powell,J.A.2003.Assessingtheimpactsofglobalwarmingonforestpestdynamics.FrontiersinEcologyandtheEnvironment.1:130–137.

Loomis,R.C.1976.Loblollypinedie-off,OakmulgeeR.D.Eval.Memo.Pineville,LA:U.S.DepartmentofAgricultureForestService,ForestInsectandDiseaseManagement.2p.

Lovett,G.M.;Canham,C.D.;Arthur,M.A.[andothers].2006.ForestecosystemresponsestoexoticpestsandpathogensinEasternNorthAmerica.BioScience.56(5):395–403.

MacDonald,W.L.1995.Oakwilt:anhistoricalperspective.In:Appel,D.N.;Billings,R.F.,eds.Oakwiltperspectives:Proceedingsofthenationaloakwiltsymposium.CollegeStation,TX:TexasForestService,TexasAgriculturalExperimentStation:7–13.

Mamlstrom,C.M.;Raffa,K.F.2000.Bioticdisturbanceagentsintheborealforests:considerationsforvegetationchangemodels.GlobalChangeBiology.6:35–48.

Mausel,D.L.;Salom,S.M.;Kok,L.T.[andothers].2010.Establishmentofthehemlockwoollyadelgidpredator,Laricobiusnigrinus(Coleoptera:Derodontidae),intheEasternUnitedStates.EnvironmentalEntomology.39:440–448.

Mayfield,A.E.,III.2008.Laurelwilt.ForestandShadeTreePests,Leaflet13.Tallahassee,FL:FloridaDepartmentofAgricultureandConsumerServices,DivisionofForestry.2p.

Mayfield,A.;Barnard,E.;Bates,C.[andothers].2009.Recoveryplanforlaurelwiltonredbayandotherforestspecies.CausedbyRaffaelealauricola,vectorXyleborusglabratus.NationalPlantDiseaseRecoverySystem,acooperativeprojectofTheAmericanPhytopathologicalSocietyandTheUnitedStatesDepartmentofAgriculture.27p.http://www.ars.usda.gov/SP2UserFiles/Place/00000000/opmp/ForestLaurelWilt100107.pdf.[Dateaccessed:November29,2012].

McClure,M.S.1987.Biologyandcontrolofhemlockwoollyadelgid.Bull.851.NewHaven,CT:ConnecticutAgriculturalExperimentStation.9p.

Menard,R.D.;Eckhardt,L.G.;Hess,N.J.2006.AssessmentofloblollypinedeclineonFortBenningMilitaryReservation.Rep.2006–02–01.Pineville,LA:U.S.DepartmentofAgricultureForestService,SouthernRegion,ForestHealthProtection.21p.

Millar,C.I.;Stephenson,N.L.;Stephens,S.L.2007.Climatechangeandforestofthefuture:managinginthefacesofuncertainty.EcologicalApplications.17(8):2145–2151.

Miller,R.E.1979.Loblollypinedie-offstatusreport.Rep.79–2–4.Pineville,LA:U.S.DepartmentofAgricultureForestService,ForestInsectandDiseaseManagement.3p.

Millers,I.;Shriner,D.S.;Risso,D.1990.HistoryofhardwooddeclineintheEasternUnitedStates.Gen.Tech.Rep.NE–126.Durham,NH:U.S.DepartmentofAgricultureForestService,NortheasternArea,StateandPrivateForestry,ForestHealthProtection.75p.

Montgomery,M.E.;Bentz,S.E.;Olsen,R.T.2009.Evaluationofhemlock(Tsuga)speciesandhybridsforresistancetoAdelgestsugae(Hemiptera:Adelgidae)usingartificialinfestation.JournalofEconomicEntomology.1021(3):1247-1254.

Morris,C.L.1970.VolumelossesfromFomesannosusinloblollypineinVirginia.JournalofForestry.68:283–294.

Moser,J.C.1984.Townant.In:Proceedingsofthe10thanniversaryoftheeastTexasforestentomologyseminar.Misc.Publ.MP–1553.CollegeStation,TX:TexasAgriculturalExperimentStation:47–52.

Moser,W.K.;BarnardE.L.;Billings,R.F.[andothers].2009.ImpactsofnonnativeinvasivespeciesonU.S.forestsandrecommendationsforpolicyandmanagement.JournalofForestry.107:320–327.

Newhouse,A.E.;Schrodt,F.;Liang,H.[andothers].2007.TransgenicAmericanelmshowsreducedDutchelmdiseasesymptomsandnormalmycorrhizalcolonization.PlantCellReporter.26:977-987.

Nicholas,N.S.;Zedaker,S.M.1990.ForestdeclineandregenerationsuccessoftheGreatSmokyMountainsspruce-fir.[Abstract].In:Smith,E.R.,ed.Proceedings:thefirstannualsouthernmanandthebiosphereconference.Rep.TVA/LR/NRM–90/8.Norris,TN:TennesseeValleyAuthority.[Numberofpagesunknown].

Nord,J.C.;Ragenovich,I.;Doggett,C.A.1984.Palesweevil.ForestInsectandDiseaseLeaflet104.Washington,DC:U.S.DepartmentofAgricultureForestService.8p.

Nowak,J.[N.d.].Southernpinebeetlehazardmaps.Atlanta:U.S.DepartmentofAgriculture,ForestService,SouthernRegion.http://www.fs.fed.us/foresthealth/technology/nidrm_spb.shtml.[Dateaccessed:November19,2010].

Oak,S.W.;Starkey,D.A.;Dabney,J.M.1988.Oakdeclinealtershabitatinsouthernuplandforests.In:ProceedingsoftheannualconferenceoftheSoutheasternAssociationofFishandWildlifeManagementAgencies.42:491–501.

Oliveira,E.B.;Penteado,S.R.C.;Lede,E.T.1998.ForestmanagementforthepreventionandcontrolofSirexnoctilioinPinustaeda.In:Lede,E.T.,ed.TraininginthecontrolofSirexnoctiliobytheuseofnaturalenemies:Proceedingofaconference.Morgantown,WV:U.S.DepartmentofAgriculture.104p.

Otrosina,W.L.;Garbelotto,M.2010.Heterobasidionoccidentalesp.nov.andHeterobasidionirregularenom.nov.:adispositionofNorthAmericanHeterobasidionspecies.FungalBiology.114(1):16-25.

Paine,T.D.;Birch,M.C.;Svihra,P.1981.Nichebreadthandresourcepartitioningbyfoursympatricspeciesofbarkbeetles(Coleoptera:Scolytidae).Oecologia.48:1–6.

Papadopol,C.S.2000.ImpactsofclimatewarmingonforestsinOntario:optionsforadaptationandmitigation.ForestryChronicle.76:139–149.

Paradis,A.;Elkinton,J.;Hayhoe,K.[andothers].2008.Roleofwintertemperatureandclimatechangeonthesurvivalandfuturerangeexpansionofthehemlockwoollyadelgid(Adelgestsugae)inEasternNorthAmerica.In:Mitigationandadaptationstrategiesforglobalchange.Dordrecht,Netherlands:Springer.13:541–555.

Page 34: Chapter 16. invasive Pests—insects and Diseases

490The Southern Forest Futures Project

Parker,W.C.;Colombo,S.J.;Cherry,M.I.[andothers].2000.Thirdmillenniumforestry:whatclimatechangemightmeantoforestsandforestmanagementinOntario.ForestryChronicle.76:445–463.

Pooler,M.R.;Riedel,L.G.H.;Bentz,S.E.;Townsend,A.M.2002.Molecularmarkersusedtoverifyinterspecifichybridizationbetweenhemlock(Tsuga)species.JournaloftheAmericanSocietyforHorticulturalScience.127:623-627.

Reid,L.;Eickwort,J.;Johnson,J.;Riggins,J.J.2011.Distributionofcountieswithlaurelwiltdiseasebyyearofinitialdetection.Atlanta:U.S.DepartmentofAgricultureForestService,SouthernRegion.http://www.fs.fed.us/r8/foresthealth/laurelwilt/dist_map.shtml.[Dateaccessed:March9,2011].

Rexrode,C.O.;Brown,H.D.1983.Oakwilt.ForestInsectandDiseaseLeaflet29.Washington,DC:U.S.DepartmentofAgricultureForestService.6p.

Rhea,J.R.;Watson,J.K.1994.Foresthealthevaluationofthehemlockwoollyadelgid,Adelgestsugae,infestationsinShenandoahNationalPark(SMP),Virginia,1993.Rep.94–1–22.Atlanta:U.S.DepartmentofAgricultureForestService,SouthernRegion,StateandPrivateForestry,ForestHealthProtection.10p.

RiveraRojas,M.;Locatelli,B.;Billings,R.2010.CambioclimáticoyeventosepidémicosdelgorgojodescortezadordelpinoDendroctonusfrontalisenHonduras(Climatechangeandoutbreaksofthesouthernpinebeetle,Dendroctonusfrontalis,inHonduras).ForestSystems.19:70–76.

Rizzo,D.M.;Garbelotto,M.;Davidson,J.M.[andothers].2002.PhytophthoraramorumandsuddenoakdeathinCalifornia:I.Hostrelationships.In:Verner,J.,tech.ed.ProceedingsofasymposiumontheKingsRiversustainableforestecosystemproject:progressandcurrentstatus.Gen.Tech.Rep.PSW–GTR–183.Albany,CA:U.S.DepartmentofAgricultureForestService,PacificSouthwestResearchStation:733–740.

Robbins,K.1984.Annosusrootrotineasternconifers.ForestInsectandDiseaseLeaflet76.Washington,DC:U.S.DepartmentofAgricultureForestService.6p.

Rogers,H.H.;Runion,G.B.;Krupa,S.V.1994.PlantresponsestoatmosphericCO2enrichmentwithemphasisonrootsandtherhizosphere.EnvironmentalPollution.83:155–189.

Scheffer,R.J.;Voeten,J.G.W.;Guries,R.P.2008.BiologicalcontrolofDuctchelmdisease.PlantDisease.92:192-200.

Scherm,H.2004.Climatechange:canwepredicttheimpactsonplantpathologyandpestmanagement?CanadianJournalofPlantPathology.26:267–273.

Schlarbaum,S.E.1988.ReturningtheAmericanchestnuttotheforestsofNorthAmerica.KatuahJournal.21(Fall):6,7,23.

Seem,R.C.2004.Forecastingplantdiseaseinachangingclimate:aquestionofscale.CanadianJournalPlantPathology.26:274–283.

Seybold,S.;Haugen,D.;O’Brien,J.[andothers].2010.Thousandcankersdisease.PestAlertNA–PR–02–10.NewtownSquare,PA:U.S.DepartmentofAgricultureForestService,NortheasternArea,StateandPrivateForestry.2p.http://na.fs.fed.us/pubs/palerts/cankers_disease/thousand_cankers_disease_screen_res.pdf.[Dateaccessed:January10,2011].

Sharov,A.;Leonard,D.;Liebold,A.M.[andothers].2002.“Slowthespread”:anationalprogramtocontainthegypsymoth.JournalofForestry.100:30–35.

Smith,E.L.;Storer,A.J.;Roosien,B.K.2009.EmeraldashborerinfestationratesinMichigan,Ohio,andIndiana.[Abstract].In:McManus,K.A.;Gottschalk,K.W.,eds.Proceedings.20thU.S.DepartmentofAgricultureinteragencyresearchforumoninvasivespecies.Gen.Tech.Rep.NRS–P–51.NewtownSquare,PA:U.S.DepartmentofAgricultureForestService,NorthernResearchStation:96.

Smith,R.H.;Lee,R.E.,III.1972.Blackturpentinebeetle.ForestPestLeaflet12.Washington,DC:U.S.DepartmentofAgricultureForestService.8p.

Snover-Clift,K.L.2009.Dutchelmdisease:Ophiostomanovo-ulmi.Factsheet.Ithica,NY:CornellUniversity,PlantDiagnosticClinic.4p.http://plantclinic.cornell.edu/factsheets/dutchelmdisease.pdf.[Dateaccessed:March11,2011].

Solomon,J.D.1995.GuidetoinsectborersofNorthAmericanbroadleaftreesandshrubs.Agric.Handb.706.Washington,DC:U.S.DepartmentofAgricultureForestService.706p.

SouthernAppalachianManandtheBiosphere.1996.TheeffectstoSouthernAppalachianAssessmentforestecosystemsfromnativeandexoticpests.In:TheSouthernAppalachianassessmentterrestrialtechnicalreport.Rep.5of5.Atlanta:U.S.DepartmentofAgricultureForestService,SouthernRegion:103-122.

Spittlehouse,D.L.;Stewart,R.B.2003.Adaptationtoclimatechangeinforestmanagement.BCJournalofEcosystemsandManagement.4(1):1–11.http://www.forrex.org/publications/jem/ISS21/vol4_no1_art1.pdf.[Dateaccessed:November22,2010].

Staeben,J.C.;Clarke,S.;Ghandi,K.J.K.2010.Blackturpentinebeetle.ForestInsectandDiseaseLeaflet12.Portland,OR:U.S.DepartmentofAgricultureForestService.8p.

Staley,J.M.1965.Declineandmortalityofredandscarletoaks.ForestScience.11:2–17.

Stambaugh,W.J.1989.AnnosusrootdiseaseinEuropeandtheSoutheasternUnitedStates:occurrence,research,andhistoricalperspective.In:Otrosina,W.J.;Scharpf,R.F.,tech.coords.Proceedingsofthesymposiumonresearchandmanagementofannosusrootdisease(Heterobasidionannosum)inWesternNorthAmerica.Gen.Tech.Rep.PSW–116.Berkeley,CA:U.S.DepartmentofAgricultureForestService,PacificSouthwestForestandRangeExperimentStation:3–9.

Starkey,D.A.;Mangini,A.;Oliveria,F.[andothers].2000.ForesthealthevaluationofoakmortalityanddeclineontheOzarkNationalForest,1999.Rep.2000–02–02.Atlanta:U.S.DepartmentofAgricultureForestService,SouthernRegion,StateandPrivateForestry,ForestHealthProtection.31p.

Starkey,D.A.;Oak,S.W.;Ryan,G.[andothers].1989.EvaluationofoakdeclineareasintheSouth.Prot.Rep.R8PR–17.Atlanta:U.S.DepartmentofAgricultureForestService,SouthernRegion,StateandPrivateForestry,ForestPestManagement.43p.

Sturrock,R.N.2007.Climatechangeeffectsonforestdiseases:anoverview.In:Jackson,M.B.,comp.Proceedingsofthe54thannualwesterninternationalforestdiseaseworkconference.Missoula,MT:U.S.DepartmentofAgricultureForestService:51–55.

Sturrock,R.N.;Frankel,S.J.;Brown,A.V.[andothers].2011.Climatechangeandforestdiseases.PlantPathology.60:133-149.

Tainter,F.H.;Baker,F.A.1996.Oakwilt.In:Principlesofforestpathology.NewYork:JohnWiley:671-682.

Tainter,F.H.;Retzlaff,W.A.;Starkey,D.A.;Oak,S.W.1990.Declineofradialgrowthinredoaksisassociatedwithshort-termchangesinclimate.EuropeanJournalofForestPathology.20:95–105.

TexasForestService.1982.Texasforestpestreport1980–1981.Publ.127.CollegeStation,TX:TexasForestService.39p.

Thatcher,R.C.1960a.Barkbeetlesaffectingsouthernpines:areviewofcurrentknowledge.Occas.Pap.180.Washington,DC:U.S.DepartmentofAgricultureForestService.25p.

Thatcher,R.C.1960b.Influenceofthepitch-eatingweevilonpineregenerationineastTexas.ForestScience.6:354–361.

Thatcher,R.C.;Barry,P.J.1982.Southernpinebeetle.ForestInsectandDiseaseLeaflet49.Washington,DC:U.S.DepartmentofAgricultureForestService.6p.

Page 35: Chapter 16. invasive Pests—insects and Diseases

491chAPTeR 16. Invasive Pests—Insects and Diseases

Thatcher,R.C.;Conner,M.D.1985.Identificationandbiologyofsouthernpinebarkbeetles.Agric.Handb.634.Washington,DC:U.S.DepartmentofAgricultureForestService;CooperativeStateResearchService,ExpandedSouthernPineBeetleResearchandApplicationsProgram.14p.

Thatcher,R.C.;Coster,J.E.;Hertel,G.[andothers],eds.1980.Thesouthernpinebeetle.Tech.Bull.1631.Washington,DC:U.S.DepartmentofAgricultureForestService,ScienceandEducationAdministration,ExpandedSouthernPineBeetleResearchandApplicationsProgram.266p.

Tran,J.K.;Ylioja,T.;Billings,R.[andothers].2007.ImpactofminimumwintertemperaturesonthepopulationdynamicsofDendroctonusfrontalis(Coleoptera:Scolytinae).EcologicalApplications.17:882–899.

U.S.DepartmentofAgriculture,AnimalandPlantHealthInspectionService.2003.Emeraldashborer;quarantineandregulations:interimruleandrequestforcomment.FederalRegister.68:59,082–59,091.

U.S.DepartmentofAgriculture,AnimalandPlantHealthInspectionService.2006.Emeraldashborer;quarantinedareas:affirmationofinterimrulesasfinalrule.FederalRegister.70:249–263.

U.S.DepartmentofAgriculture,AnimalandPlantHealthInspectionService.2010a.APHISlistofregulatedhostsandplantsprovenorassociatedwithPhytophthoraramorum.http://www.aphis.usda.gov/plant_health/plant_pest_info/pram/downloads/pdf_files/usdaprlist.pdf.[Dateaccessed:March4,2011].

U.S.DepartmentofAgriculture,AnimalandPlantHealthInspectionService.2010b.Europeangypsymoth(Lymantriadispar)NorthAmericaquarantine.Washington,DC:U.S.DepartmentofAgriculture,AnimalandPlantHealthInspectionService.http://www.aphis.usda.gov/plant_health/plant_pest_info/gypsy_moth/downloads/gypmoth.pdf.[Dateaccessed:November19,2010].

U.S.DepartmentofAgriculture,AnimalandPlantHealthInspectionService.2011.Cooperativeemeraldashborerproject:EABlocationsinIllinois,Indiana,Iowa,Kentucky,Maryland,Michigan,Minnesota,Missouri,NewYork,Ohio,Pennsylvania,Virginia,Wisconsin,WestVirginiaandCanada:February1,2011.http://www.emeraldashborer.info/files/MultiState_EABpos.pdf.[Dateaccessed:March1,2011].

U.S.DepartmentofAgriculture,AnimalandPlantHealthInspectionService,AgriculturalResearchService,ForestService;CooperatingStateDepartmentsofAgriculture.2010.Emeraldashborer,Agrilusplanipennis(Fairmaire),biologicalcontrolreleaseguidelines,ver.1.Riverdale,MD:U.S.DepartmentofAgriculture,Animal&PlantHealthInspectionService.63p.

U.S.DepartmentofAgricultureForestService.1985a.BlackturpentinebeetleandIpsbeetles.In:Insectsofeasternforests.Misc.Publ.1426.Washington,DC:U.S.DepartmentofAgricultureForestService:346–347,358–361.

U.S.DepartmentofAgricultureForestService.1985b.Foresttentcaterpillar.In:Insectsofeasternforests.Misc.Publ.1426.Washington,DC:U.S.DepartmentofAgricultureForestService:204-205.

U.S.DepartmentofAgricultureForestService.2010.Hemlockwoollyadelgid[homepage].NewtownSquare,PA.:U.S.DepartmentofAgricultureForestService,NortheasternArea.http://www.na.fs.fed.us/fhp/eab/.[Dateaccessed:March1,2011].

U.S.DepartmentofAgricultureForestService,andUSDAAnimalandPlantHealthInspectionService.2008.Asianlonghornedbeetle:anewintroduction.PestAlertNA–PR–01–99GEN.NewtownSquare,PA:U.S.DepartmentofAgricultureForestService;AnimalandPlantHealthInspectionService.2p.http://www.na.fs.fed.us/pubs/palerts/alb/alb_pa.pdf.[Dateaccessed:November22,2010].

U.S.DepartmentofAgricultureNaturalResourcesConservationService.2008.TennesseeNaturalHeritageProgramrareplantlist2008.Nashville,TN:TennesseeDivisionofEnvironmentandConservation,DivisionofNaturalResources.46p.http://www.state.tn.us/environment/na/pdf/plant_list.pdf.[Dateaccessed:February18,2011].

U.S.DepartmentofAgricultureNaturalResourcesConservationService.2009.Countyreportofendangered,threatenedandspecialconcernplants,animals,andnaturalcommunitiesofKentucky.Frankfort,KY:KentuckyNaturePreservesCommission.136p.http://plants.usda.gov/java/threat?statelist=states&stateSelect=US21.[Dateaccessed:February18,2011].

U.S.DepartmentofAgricultureNaturalResourcesConservationService.2011.Threatenedandendangered:protectedplantsforscientificname=Juglanscinerea.http://plants.usda.gov/java/threat?txtparm=Juglans+cinerea&category=sciname&familycategory=DI&duration=PR&growthhabit=TR&wetland=all&statefed=statelist&stateSelect=US01&stateSelect=US05&stateSelect=US12&stateSelect=US13&stateSelect=US21&stateSelect=US22&stateSelect=US28&stateSelect=US37&stateSelect=US40&stateSelect=US45&stateSelect=US48&stateSelect=US51&stateSelect=US72&sort=sciname&submit.x=84&submit.y=13.[Dateaccessed:February18,2011].

Vilela,E.F.1986.Statusofleaf-cuttingantcontrolinforestplantationsinBrazil.In:Lofgren,C.S.;VanderMeer,R.K.,eds.Fireantsandleaf-cuttingants:biologyandmanagement.Boulder,CO:WestviewPress:399-408.

Ward,J.D.;Mistretta,P.A.2002.Impactofpestsonforesthealth.In:Wear,D.N.;Greis,J.G.Southernforestresourceassessment.Gen.Tech.Rep.SRS–53.Asheville,NC:U.S.DepartmentofAgricultureForestService,SouthernResearchStation:403-428.Chapter17.

Wargo,P.M.1977.ArmillariamelleaandAgrilusbilineatusandmortalityofdefoliatedoaktrees.ForestScience.23:485–492.

Wargo,P.M.;Harrington,T.C.1991.Hoststressandsusceptibilitytoarmillaria.Agric.Handb.691.In:Shaw,C.G.,III;Kile,G.,eds.Armillariarootdisease.Washington,DC:U.S.DepartmentofAgriculture:88–101.

Wargo,P.M.;Houston,D.R.;LaMadeleine,L.A.1983.Oakdecline.ForestInsectandDiseaseLeaflet165.Washington,DC:U.S.DepartmentofAgricultureForestService.8p.

Winnett,S.M.1998.PotentialeffectsofclimatechangeonU.S.forests:areview.ClimateResearch.11:39–49.http://www.int-res.com/articles/cr/11/c011p039.pdf.[Dateaccessed:November22,2010].

Woods,A.J.;Coates,K.D.;Hamann,A.2005.IsanunprecedentedDothistromaneedleblightepidemicrelatedtoclimatechange?BioScience.55:761–769.

Zhu,Z.1994.Forestdensitymappinginthelower48States:aregressionprocedure.Res.Pap.SO–280.NewOrleans:U.S.DepartmentofAgricultureForestService,SouthernForestExperimentStation.11p.

Page 36: Chapter 16. invasive Pests—insects and Diseases
Page 37: Chapter 16. invasive Pests—insects and Diseases

493chAPTeR 16. Invasive Pests—Insects and Diseases

andallvegetation.Newplantcommunitieswillorganizethemselvesandwillreplaceplantsthatareunabletoadapttonewclimates.Newcommunitiescouldincludecurrenttreespecies,othertreespecies(e.g.,hardwoodsorstronglydispersingspeciesfromwarmerareas)orcouldbecomedominatedbygrassandshrubspecies.

moDeliNG climATe chANGe

Available models

Majoreffortsareunderwaytocreateandusemodelsthatcanprojectpotentialscenariosdescribingboththeimpactsofclimatechangeonecologicalconditionsandthesubsequentresponsesresultingfromandpossiblytheninfluencingthoseconditions.Modelingcancontributetoourprojectionsoffutureconditions“…butrequiressoundknowledgeofthecausalfactorsdeterminingspatialdistribution,survival,reproduction,dispersal,andinflictionofdamage”(GoudriaanandZadocks1995).

Selectionofbroad-scalemodeltypes(suchasgeneralcirculationmodels,process-basedmodels,andempiricalmodels)dependsonthespecificquestionsbeinganalyzedandtheavailablerelevantdata.Theapplicationofgeneralcirculationmodelsislimited;thefinestscaleusedforglobalclimatesimulationisfartoocoarseformeaningfulecologicalapplications(Loganandothers2003).Atasmallerscale,gapmodels,biogeographymodels,andbiogeochemistrymodelsareamongthosebeingusedtorefineprobablebroad-scalemodelprojectionstoreflectconditionsatamorelocalscale(Winnett1998).

Currentmodelprojectionsoffutureconditionsthatwillaffectforestcompositionandproductivityvaryoverawiderangeofplausiblescenarios(Loganandothers2003,NationalAssessmentSynthesisTeam2000,Scherm2000).

Scherm(2000)supportsMillstein’s(1994)contentionthatuncertaintiesinmodelinputcancompromisethecredibilityoftheoutputbecauseoferrorperpetuationorpropagation.Thesescientistsarenotaloneintheirconcern.Othersaddtheconcernthatdataselectioncanalsosignificantlyinfluence

iNTRoDucTioN

Thisappendixcontainsageneralizedsummaryoftherelevantliteraturerelatedtoclimatechange,vegetationchange(speciesandgeographicrangechanges),andpestactivityscenarioclassificationasreflectedinthecurrentliterature.

Informationforthisappendixwasderivedfrompublishedscienceliterature,alongwithaselectionofliteratureaboutthebiologyandecologyofforestpests.AdditionalinformationaboutforestpestsandtheircontrolisreadilyavailablefromStateandFederalforestryagenciesoronline(twogoodstartingpointsarehttp://na.fs.fed.us/pubs/index.shtmandhttp://www.fs.fed.us/r8/foresthealth/).

Manyscientistsbelievethatclimatechangeintheformofglobalwarminghasoccurredoverthelastcenturyandwillcontinuetooccurintotheimmediatefuture(IntergovernmentalPanelonClimateChange2007,Kleijunasandothers2009,MalcolmandPitelka2000,McNultyandAber2001,NationalAssessmentSynthesisTeam2000).Theprimaryfactorsofclimatenotedasdrivingobservedecologicaleffectsaretemperatureandavailablewater.Inadditionatmosphericgasses(carbondioxideandairpollutantssuchasnitrogenoxidesandsulfurdioxide)inexcessoftheir‘normal’rangesareoftenidentifiedasadditionaldriversofthechangebeingobserved.Climatechangeisalsolinked,atleastinpart,tohumanactivity(MalcolmandPitelka2000,Sturrock2007,Winnett1998).Thesechangesareexpectedtoimpactcropsandtheirpestsindividually,aswellasimpactingtheinteractionsbetweencropsandpests(Runion2003).

Reportingtheresultsofaworkshopattemptingtounderstandthepotentialinteractionsamongforests,insects,diseases,andclimatechange,Beukemaandothers(2007)reportthat:

Participantsagreedthatthingswillchange.Mostvegetationcommunitieswillnotsimplymigratefromonelocationtoanother.Instead,manycommunitieswillbecompletelynew,withnewcombinationsoftrees,understoryplants,insects,anddiseases.Atthesametimeitisimportanttobearinmindthatwearenotgoingtocompletelyloseallforests

appeNDIX C. climate change and its impacts on Forests

Page 38: Chapter 16. invasive Pests—insects and Diseases

494The Southern Forest Futures Project

modeloutput.Theuseofacrispdatasetversusa“fuzzynumber”setwillhaveadditionalmajorimpactsonoutputs(Coakleyandothers1999).

SchermandCoakley(2003)haveidentifiedthreecontinuingproblemswiththeapplicationofmodelsforpredictingclimatechangeeffects:

• Modelinputshaveahighdegreeofuncertainty.

• Nonlinearrelationshipsandthresholdsintherelationshipbetweenclimaticvariablesandepidemiologicalresponsescomplicateeffortstocollectsufficientdataforclearpredictiveunderstanding.

• Modelingoftenignoresthepotentialforadaptationbyplantsandtheinsectsanddiseasesthatattackthem.

Physical impacts of climate change

Temperature—Increaseinaveragetemperatureisconsistentlyshowninresultsfromavarietyofmodelsasbeingofconcern.TheIntergovernmentalPanelonClimateChange(2007)statedthatthedatasupportinganongoingwarmingoftheclimateareunequivocal,pointingtoobservationsofincreasesinglobalairandoceantemperatures,widespreadmeltingofsnowandice,andrisingsealevels.Thepanelfoundalineartrendinaveragetemperaturewhichhadincreasedby0.74ºC(0.56to0.92ºC)from1906to2005,higherthantheearlierreportedincreaseof0.6ºC(0.4to0.8ºC)for1901to2000(IntergovernmentalPanelonClimateChange2001);thatlandareashavewarmedfasterthanoceans;andthattemperatureincreasesappeartobelargerinnorthernlatitudes.

Overall,climatechangeispredictedtoleadtoincreasingtemperature.Meanglobalsurfaceairtemperaturesarepredictedtoincreasefrom1.4to5.8ºCbytheendofthecentury.Bothnight-dayandwinter-summeraveragetemperaturerangesarelikelytoshrinkasminimumtemperaturesincreasemorethanmaximumones,andcontinentalandhigh-latitudeareaswilltendtowarmmorethancoastalandlower-latitudeareas(Burdonandothers2006,Harvellandothers2002).Themagnitudeofthesechangesisexpectedtovarybothtemporallyandspatially(McNultyandBoggs2010).

Water regime—Waterisreportedtobeofgreatsignificance,secondonlytotemperature,whenprojectingpotentialeffectsofclimatechange.Overabundanceofwater,lackofit,andseasonalityofitsavailabilityallhavesignificantimpactsontheforestprocessesthatgoverntheoverallhealthofindividualorganisms.Projectionsofoverallresponsestorainfallpatternvarygreatly.Generalizationsfoundintheliteratureincludethefollowing:

• IntheSouth,intenseprecipitationeventshaveincreasedoverthepast100years(NationalAssessmentSynthesisTeam2000).

• Risingsealevelshavealreadyhadsignificantimpactsoncoastalareas,andtheseimpactswilllikelyincrease(NationalAssessmentSynthesisTeam2000).

MalcolmandPitelka(2000)summarizedtheeffectsofwaterasfollows:futureregional-scaleprecipitationchangesremainparticularlydifficulttopredict,andchangesinthefrequencyandseverityofstormsandotherextremeweathereventsareuncertain(Wigley1999).Overallthesechangeswillappearasashiftofclimaticzonestowardsthepoles;warmertemperatureswillreachfurthernorthintheUnitedStates.Thislastobservationintroducesacriticalconcernwhendiscussingclimatechange.Ecologicalfactorsdonotfunctioninisolation,theyinteractandinfluenceeachother.Thisisafacteasilyforgottenwhenreadingtheliterature,muchofwhichdiscussessinglefactoreffectsatavarietyofscales.

Carbon dioxide and trace gases—Carbondioxideisroutinelycitedasaprimarycauseofglobalwarming.Theconsensuswithinthescientificcommunity(Coakley1988)isthattheincreaseincarbondioxideandshiftingpercentageoftracegases(ozone,chlorofluorocarbons,nitrogenoxides,sulfuroxides,andmethane)willcombinetobringaboutcontinuingglobalwarming.Althoughthisisgenerallyagreedtobeanaccurateprojectionoffuturecondition,thespatialrelationshipsinvolvedareextremelyuncertain,asarepredictionsofwheretheeffectwillbesignificant.

Light—Solarradiationisthesourceofenergyformostterrestrialprocesses,andanythingthatalterstheamountofradiationreachingtheearth’ssurfacemayalterclimate.Fluctuationsinsolaroutput,volcaniceruptions,andothernaturalperturbationsinfluencesolarinputtotheearth’senergyengine,asdochangesinlanduseandindustry.Thequalityoflightandthedurationofphotoperiodhavebeenshowntoaffectplantsinavarietyofways.Yetexcepttonotethatgreenhousegassescanaffectthequalityoflight,littleissaidintheliteratureaboutpossiblefutureshiftsinlightquality.Photoperiodisseldomdiscussedaschangingforagivenarea.Effectsofphotoperiodonlyappeartobenotedassignificantwithinthecontextofotherfactorsthatinfluenceplantmigrationsasdescribedbelow.

Wind—Intheearly1950s,Hepting(1963)foundthatwind,nottemperatureorrainfall,wastheprimarydriverofclimatechangeinGreatBritain.Morerecently,LemmenandWarren(2004),alsodiscussingclimatechangeinGreatBritain,suggestthatawarmerclimatemaybemoreconducivetoextremewindeventsandthatthesemayinturnhaveconsequencesforotherforestdisturbances.Yarwood(1959)suggestedthatwindhassignificantimpacts,both

Page 39: Chapter 16. invasive Pests—insects and Diseases

495chAPTeR 16. Invasive Pests—Insects and Diseases

directlyorindirectly,onplantsandthepeststhatattackthem.Unfortunately,withtheexceptionofdiscussionsinthecontextofstormevents,windislittlediscussedintheliterature,andwefoundnoprojectionsoffuturewindeventsintheSouth.

Soil—Soilchemicalpropertiesdonotappeartobedirectlyaffectedbyclimatechange,theironlycontributiontoclimatechangebeingacomplexofsecondaryeffects.However,itisgenerallyrecognizedthatasairtemperatureincreasessodoessoiltemperature.Soilwarminginconjunctionwithdroughtisamajorconcernbecauseitpredisposesrootsandrootletstomortality,whetherornotrootrottingfungiareinvolved.Localizedandoftenshort-termshiftsinthealbedoarepredictedifsoilwarmingresultsinthefailureofvegetativecover,butpredictionsarenotspatiallyexpliciteitherastosizeorlocation.

Ratesofsoilmineralization,acidification,nitrification,andcarbonsequestrationareallprocessesthatareclearlyinfluencedbyclimatechange,butgenerallytheseeffectsaremoreaffectedby(andsubsequentlyinfluence)thelocalbiota.

Mixed edaphic effect projections—Avarietyofprojectionshavebeenmadeforcompoundededaphicfactors;fourarebrieflynotedbelow:

• Increasedfrequencyofextremeweatherevents(Scherm2003)

• Increasedfrequencyandintensityofdroughtoccurringunderwarmertemperatures(Breshearsandothers2005)

• Morefrequentwinterwaterloggingresultingfromincreasedwinterrainfall(BroadmeadowandRay2005)

• Increaseddurationofsunshineresultingfromchangesintemperatureandhumiditywhichinturnleadtoreducedsummercloudcover(BroadmeadowandRay2005)

imPAcTS oN PeSTS AND iNDiViDuAl hoST PlANTS

Climateisthesinglemostimportantfactordeterminingthedistributionofmajorvegetationtypesandindividualspecies(MalcolmandPitelka2000).

Extrapolatingthephysicaleffectsofclimatechangetothepotentialbiological/ecologicaleffectsthattheyengenderisoftenproblematic.Thesimpledescriptionisthatastheclimatewarms,southernforestswillmigratenorthwardandupward(assumingthathigherelevationsitesbecomeavailable),andwilldisplaceaportionofthetemperatemixedhardwoodforest.Thetemperatemixedhardwood

forestinitsturnwillmigrate,displacingpartofthenorthernborealforest.Althoughthispresentsaneasytounderstandgeneralization,itmasksanextremelycomplexreality.

Forestsarenotexpectedtomigrateascohesiveunits.Althoughdrivenbyasetofindividualphysicalparameters,migrationwillmorelikelyresponddirectlyatthespeciesandindividualplantlevel,notattheassociation,ecosystem,orotherecologicalleveloforganization.Differentspecies(anddifferentindividualsevenwithinaspecies)willreactinpotentiallyverydifferentwaystothevariousstimuligeneratedbyclimatechange.Theresponsesofecosystemscanonlybepredictedbyunderstandingthebehavioroftheirconvergentpropertiesandtheuniquecharacteristicsandresponsesofindividualspecies(MalcolmandPitelka2000).

Onthepositiveside,increasinglysophisticatedcomputermodelshavebeendevelopedthatincorporatemorefundamentalecologicalmechanisms.However,eventhesenewermodelscannotyetpredictwithaccuracywhathappensastheclimateischanging(MalcolmandPitelka2000).

Nevertheless,wehavesomeclearreportsofobservedresponsestoclimatechange.Anaverage1°Cincreaseinaveragetemperatureisreportedtoincreaseplantgrowthandlengthenthegrowingseason.Budbreakofquakingaspen(Populustremuloides)isreportedtobe26daysearlierthanacenturyagoinAlberta,Canada;andbudbreakofwhitespruce(Piceaglauca)isearlierinOntario(LemmenandWarren2004).Ground-basedmonitoringeffortsinEuropedocumentedan11-dayincreaseingrowingseasonlengthovera34-yearperiod(MalcolmandPitelka2000).Becausetemperaturecanaffectecosystemsinmanydifferentwaysandbecausetherearemultiplepathwaysforfeedbackandinteraction,evaluatingorpredictingtheeffectsoftemperatureincreasesisnotsimple.Notsurprisingly,publishedresultshavebeenmixed(MalcolmandPitelka2000).

Thesizeofplantorgansatmultiplescalesmayincreaseasaresponsetoelevatedlevelsofcarbondioxide.Increasedareaperleaf,leafthickness,numberofleaves,leafareaperplant,anddiameterofstemsandbrancheshaveallbeenobservedunderincreasedcarbondioxide.Enhancedphotosynthesis,increasedwateruseefficiency,andreduceddamagefromozonearealsoreportedasresponsestoincreasedcarbondioxide(Garrettandothers2006).

Disease and insect Risks, Absent climate change

ThesecondperiodicNationalInsectandDiseaseRiskMap,completedin2006,presentsastrategicassessmentofpotentialtreemortalityresultingfrommajorinsectsanddiseases.Thisisthedefinitivesourceatthepresenttimeforprojectedinsect-anddisease-causedmortality

Page 40: Chapter 16. invasive Pests—insects and Diseases
Page 41: Chapter 16. invasive Pests—insects and Diseases

497chAPTeR 16. Invasive Pests—Insects and Diseases

Zadocks1995).Althoughthenumberofrecentattributionsofpathosystemshiftsresultingfromclimatechangeisincreasing,fieldresearchisplaguedbythelong-termnatureofclimatechange,whichismuchmorecomplicatedthantheshiftsinweatherthathavebeenmorecommonlystudiedinthepast(Coakley1988).

Host-pestinteractionswillbeaffectedbyclimatechangeinsimilarwaysasotherplantsandanimals.Inthemostsimplisticscenario,pestspeciesmigrationswillgenerallyfollowthemigrationoftheirpreferredhosts.Allofthesameecologicalelementsaffectingthehostsinthenewenvironmentwillimpactthepeststhemselves.Temperature,availablewater,qualityanddurationoflight,airquality,soilcondition,andotherfactorswillaffecttheirphysiologicalandecologicalresponses.Inaddition,theconditionandpossiblyalteredphysiologyofthehostinitsnewenvironmentwillinfluencethenewhost-pestinteraction.

Diseaseevolutionisanotherfactorthatpresentscomplicationswhenpredictingthemigrationofdiseasesintonewareas;ratesaredeterminedbythenumberofgenerationsofreproductionpertimeinterval,alongwiththeheritabilityoftraitsrelatedtofitnessunderthenewclimatescenario(Garrettandothers2006).

Afewrecentpublicationshavefocusedontheneedtoconsidermicroclimatefactorsasbeingimmediatelyrelevantwhendescribingpest-hostinteractions.Thisisalittlestudiedareaduetothecomplexityinherentinisolatingmicro-effectsinamacro-scaleecosystem.

Temperature effects on diseases—Gradualwarmingwouldprobablyleadtoageneralnortherlyshiftinseasonalclimaticregimes,whichinturnwouldaffecttherangeofoak(Quercusspp.),sometimesadverselyandsometimesfavorably(BrasierandScott1994).Newdiseasecomplexesmayariseandsomediseasesmayceasetobeeconomicallyimportantifwarmingcausesapolewardshiftofagroclimaticzonesandhostplantsmigratebeyondtheircurrentranges.Pathogenswouldfollowthemigratinghostsandmayinfectremnantvegetationofnaturalplantcommunitiesnotpreviouslyexposed(Coakleyandothers1999).

Thegeographicrangeoffungalpathogensaretosomeextentdeterminedbythetemperaturerangesoverwhichtheycangrow(LonsdaleandGibbs1994).BrasierandScott(1994)foundthatthegrowthanddevelopmentofmanyfungiwithinthehostmayoftenbefavoredbyclimatewarming,andtheconditionsthatprevailwhenfungiarriveatthehostsurfaceareoftencriticalfordiseaseestablishment;theyalsoobservedthattheeffectsoftemperatureonthedevelopmentandpopulationdynamicsofmanypotentialoakdiseaseshavebeenlittleresearchedandtheyidentifiedthedifficultiesinvolved.Nevertheless,theypredictedthat

aswarmingincreasesinEurope,arootrotdisease(causedbyPhytophthoracinnamomi)willextenditsnorthwardrange,survivewintersbetterinrootsystems,showincreasedspreadwithinthehost,havegreaterinfectionfrequencyofnewhosts,andcausemarkedlymorerapidhostdeclineandmortality.

OtherauthorsconcurwiththepredictionsofBrasierandScott(1994).Chakrabortyandothers(1998)pointoutthatchangesintemperaturewillalterhost-plantphysiologyandthushostresistancetopests.BroadmeadowandRay(2005)addthatincreasedtemperatureswillresultinhigherevapotranspiration.AndBurdonandothers(2006)reiteratethatwhenweturntotheimpactofthemoreunpredictableaspectsofglobalclimatechangeonthepathogensthemselves,wewilllikelyseesignificantchangesinhost-pathogeninteractionsovertime,whicharelikelyinbothdirections(increaseanddecreasedactivity).

Increasedsoiltemperaturehasbeenshowntohavenegativeeffectsonplantroots.Redmond(1955)reportedthatina55-yearoldstand,yellowbirch(Betulaalleghaniensis)rootletswithanormalbackgroundmortalityrateofabout6percentsuffered19percentrootmortalitywhenaveragesoiltemperatureincreased1°Cand60percentrootmortalityifthetemperatureaverageincreased2°C.Theyalsoreportedachangeinmicrobialpopulationandachangeinthedevelopmentofmycorrhizae,thesymbioticassociationsbetweenfinefeederrootsofplantsandroot-inhabitingfungi.

Becauseoftheirrapidresponsetosmallenvironmentalchanges,pathogensmayprovidegoodearlywarningofimpendingclimatechange.Thedamagethresholdfromadiseasemayalsochangeinanewgeographicallocation(Chakrabortyandothers1998).

Temperature effects on insect pests—Higherairtemperaturescommonlyenhancethegeneralactivity,populationsize,andpotentialfordispersalofinsectpests.Highertemperaturescouldleadtogreateroverwinteringpopulationsize,increasedlengthofflightseason,andlengthofdailyflightperiods(BrasierandScott1994).Continuedclimatechange,andparticularlywarming,wouldhaveadramaticimpactonpestinsectspecies.Ascold-bloodedorganisms,theyhavealifehistorythathingesontemperature;thermalhabitatlargelysetstheboundariesoftheirgeographicdistribution(Loganandothers2003).

Extendedperiodsofwarmweathercanfavorthedevelopmentofinsectpestsbothdirectlyandindirectly.Warmtemperaturescanacceleratethedevelopmentofinsectpopulationsbyreducingthetimeneededforlife-cyclecompletion.Indirecteffectscanbetheresultofchangesinthehostplant,orcanbeproducedbydecouplingrelationshipswithnaturalenemies(MamlstromandRaffa

Page 42: Chapter 16. invasive Pests—insects and Diseases

498The Southern Forest Futures Project

2000).Insomecircumstances,warmertemperaturescouldactuallyinhibitinsectactivityordisruptthebuildupofpopulations:althoughwarmerwinterswouldincreaseoverwintersurvivalofsomeinsectpests,reducedsnowcovercouldincreasethewintermortalityofothers(Burdonandothers2006).Enemiesofinsectpestswouldalsobeaffectedbyclimatechange,buttheseeffectsaregenerallyunknownandrequiremoreresearch.Ifwarmertemperaturesfavorpredatorsandparasitoids,thesenaturalenemiesofpestswillexhibitgreatercontrolofthosepestspecies.Conversely,ifwarmertemperaturesdisruptordecreasepredatorandparasitoidpopulations,pestpopulationswillgrowmorequicklyandwillpersistathigherlevelsforlongerperiodsoftime.

Available water effects—Gilmour(1960)identifiedtwooppositewaterrelatedconditionsthatcausesignificantimpactsontrees.Droughtconditionshavebeenshowntobethecauseofvariousdisorderswithorwithoutanyassociatedfungalpathogen.And,saturatedsoilhasbeenfoundtocausedisordersinmanyplants.Thus,bothextremesinwateravailabilityhavebeenshowntonegativelyaffecttrees.Saturatedsoils,althoughbeingsomewhatdeficientinoxygen,appearalsotohavealteredchemistryfromsimilardriersoils.Garrettandothers(2006)foundthatevenwithouttheaddedimpetusofclimatechangetheinteractionofprecipitationanddiseaseisofprimaryimportanceforpredictingdiseaseseverity.

BroadmeadowandRay(2005)foundthatincreasedwinterrainfallleadstomorefrequentwinterwaterloggingofsoiland,insomecircumstances,tofinerootdeathextendingintothesoilsurfacehorizons.Thisinturnexacerbatestheeffectsofsubsequentsummerdrought.Blackandothers(2010)associatedSwissneedlecastdisease(Phaeocryptopusgäumannii)withspringandsummerneedlewetness,aswellaswintertimetemperatures.

Becausemostplantparasiticfungiarebelievedtorequirefreewaterforsporegermination,microclimateofleafsurfacesisanimportantconsideration.Theimportantsourcesoffreewaterforfoliagediseasesarerain,fog,condensedwater,andguttationwater.Yarwood(1959)foundlittlegerminationwhentherelativehumidityfellbelow95percentandcategorizedfoliagediseasesbytheirrequirementsforwaterinthephyllosphereduringtheinfectionstage;but,insteadofpresentingabroadcategorizationofthiseffect,focusedattentiononrustfungi(specificallytheirurediosporestage).

LemmenandWarren(2004)emphasizethatforestcharacteristicsandage-classstructurealsoaffecthowforestsrespondtochangesinmoisture,notingthatmatureforests(withwellestablishedrootsystems)arelesssensitivetochangesinmoisturethanyoungerforestsand

post-disturbancestands—atleastintheshortrun.Theyaddthatdifferentspecieshavedifferentdroughttolerance,whichalsomustbeconsidered.AndLonsdaleandGibbs(1994)remindusthatclimatechangewithitsassociatedchangeinfrequencyofsummerdroughtswouldalterthestabilityofassociationsbetweentreespeciesandvariousmembersoftheirnon-diseasefungalassociations—resultinginanoutbreakofdiseaseinplaceofcoexistence,orinsomecircumstancesmutualism.

Hansonandothers(2001)foundthattheimpactofpotentialchangesindroughtorprecipitationregimeswillnotonlydependonthepredictedscenarioofchange,butalsoonthetypeofforestecosystemandtheclimateconditionstowhichitiscurrentlyadapted.Theyconcludebysummarizingsixreasonswhyforestswouldnotexhibitcatastrophicdiebackundertheinfluenceofclimatechange(includingdrought)andthepredictionthatthereplacementofforestsbyfastergrowingtreeswillbegradual(Loehle1996).

Generallyspeaking,anyprecipitationregimethatstresseshosttrees(whetheritistoolittleortoomuchmoisture)willmakethemmoresusceptibletoinsectattack.

Wind effects—Yarwood(1959)citeswindasbeingaseriousmodifierofwaterrelationsandsuggeststhatwindcommonlypreventstheformationofdew,andcausesraindropsordewtoevaporatemorerapidlythantheywouldinstillair.BroadmeadowandRay(2005)notethatanincreaseinthenumberofstormsmaymakewoodlandsmorevulnerabletowinddamage.

Light effects—Fungipreferentiallygrowwhentheskyiscloudyandarethereforeactivemainlyonshadedpartsoftheplantorinnon-irradiatedanglesoftheecosystem.Pathogenicfungiareadditionallyprotectedwhengrowingpartlyorcompletelywithinthehost’stissue(ManningandvonTiedemann1995).

Thegreatsignificanceoflightespeciallyinthenearultravioletband(UV-A)onfungalsporulationhasbeenrecognizedsincethefirststudieswereperformedonthisphenomenoninthe1960s.Humphrey(1941)reportsthatexposuretolightstimulatedsporulationin62of75speciesoffungitested;mostrequiredlightfortheinitiationofsporulation.Sporulationwasnotinhibitedinanyofthe417fungalstrainstestedwhenexposedtolight.However,enhancedUV-Bradiationmayincrease,decrease,orleaveunaffectedtheseverityofbioticdiseases.Aseriouscomparisonofthiscontradictoryinformationisnotpossiblesince,intheunderlyingstudies,therangesoflightqualities,lightintensities,andlightexposuresweretoolargeandtoovariableasweretheexperimentaldesignsandtimecoursesapplied(ManningandvonTiedemann1995).

Page 43: Chapter 16. invasive Pests—insects and Diseases

499chAPTeR 16. Invasive Pests—Insects and Diseases

Ifsomepartsofthediseaselifecyclearephotoperiodsensitive,populationsmightneedtoundergoextensiveadaptationtomakeuseofextendedseasonsintemperateareas(Garrettandothers2006).

UV-Bhaspositiveandnegativeeffectsonfungaldevelopment;itseffectondiseasesismainlythroughalteredphysiologyandmorphology(Chakrabortyandothers1998).

Air quality effects—Asnotedabove,increasedcarbondioxideintheatmosphereisgenerallycitedasbeingaprimaryfactorindrivingphysiologicalchangesinplantpopulations.Workingwithapasturelegumeandafungus(Coletotricumgloeosporioides)attwotimesambientcarbondioxideconcentration,Runion(2003)reportedanincreaseofvirulenceofthediseaseagainstresistantcultivarsofthelegume(nochangewithrespecttosusceptiblecultivars)andasignificantincreaseinfecundity(morepronouncedintheaggressivefungalcultivarsbeingtested).ChakrabortyandDatta(2003)focusedparticularconcernonwhetherthisincreasedfecundityatelevatedcarbon-dioxidelevelscouldrapidlyerodetheusefulnessofdiseaseresistance.Alteringthepredispositionofthehosttodiseasemaybethepredominanteffectofrisinglevelsofcarbondioxide(ManningandvonTiedemann1995).

Charkrabotoryandothers(1998)reportanincreaseofdiseaseseverityinresponsetoincreasedcarbondioxidefor6of10biotrophicfungiand9of15necrotrophicfungi;andobservethatpredictingeffectsforunstudiedpathosystemswillbechallenging,andevenmorechallengingwhenincludingthecombinedeffectsondiseasesandtheirhostplants.

Burdonandothers(2006)suggestthattheeffectofcarbondioxidemaybetoincreasetheefficiencyofcarbonfixationwitharesultantincreaseingrowthandimprovementinthecarbonstatusoftheplant.Thisincreasewouldleadtomorphologicalchangegenerallyexpressedasenhancedgrowth;thecombinedchangesinnutritionandmorphology,inturn,couldaffectthesuitabilityoftheplantashostmaterialforavarietyofdiseases.Thishavingbeensaid,theauthorscautionthatthereportedresearchonthesubjectislimitedandendthediscussionwiththisfurthercaution:“…thepredictabilityoftheimpactofthesefactorsasonwholecommunitiesisevenmoreuncertainwithbothindirectanddirecteffectsofvaryingmagnitudebeinglikely.”

MirroringthisconcernLemmenandWarren(2004)reportthatalthoughnumerousstudieshaveinvestigatedtheimpactsofelevatedcarbondioxideonforestgrowthandhealth,theresultsareneitherclearnorconclusive.

ManningandKeane(1988)concludethat“inatheoreticalsense,airpollutioncanincrease,decreaseornotaffectthe

courseofdevelopmentofadiseaseepidemic,”basedonnewandexistingobservationsaboutairpollutionandpestbehaviorincluding:

• Bacterialdiseasesaregenerallyinhibitedbysulfurdioxide,whichlimitslesionsizeandoftenincreaseslatentperiods.

• Fungaldiseaseshavebeenreportedtobeenhanced,inhibited,ornotaffectedatallbyairpollutants.

• Thelittlethatisknownabouttheeffectsofpollutiononrootdiseasesindicatesthatvirus-affectedplantsareusuallylessaffectedbyairpollutantsthanvirus-freeplants.

• AccordingtoJamesandothers(1980a),inoculatedstumpsofozone-stressedpines(Pinusspp.)weremorereadilyinvadedbyannosumrootdisease(causedbyHeterobasidionannosum).

• AccordingtoSkellyandothers(1983),ozonestressedeasternwhitepine(Pinusstrobus)intheBlueRidgeMountainsofVirginiaweremoresubjecttoLeptographiumrootdisease(causedbyVerticicladiellaprocera).

• AccordingtoMahoneyandothers(1985),loblollypineseedlingswithectomycorrhizae(Pisolithustinctorius)werenotadverselyaffectedbyozone,sulfurdioxide,oracombinationofboth.

• AccordingtoKeaneandManning(1987),ozonecausedsignificantdecreasesinectomycorrhizaeofwhitebirch(Betulapendula)andwhitepineseedlings.

Soil environment effects—Carbondioxideconcentrationinsoilisexpectedtobefarlessimpactingtodiseasesthanatmosphericcarbondioxide.Soilmicrofloraisroutinelyexposedtolevels10to20timeshigherthanatmosphericcarbondioxidelevels(Coakleyandothers1999;ManningandvonTiedemann1995).Colonizationandpersistenceofmycorrhizaeappearstobedependent,inpart,onthenutrientstatus(primarilynitrogen)andcarbondioxideconcentrationinsoil,althoughobservedresponsesdonotshowaconsistentpattern.Notmuchmorecanbesaidherebecausetheinfluenceofmycorrhizaeonplantdiseaseisstillnotwellunderstood.

Ozonedoesnotpenetratethesoilsurfaceandthereforeaffectsrootsonlyindirectlybyalteringphotosynthesis.Damagecausedbyseveraltreerootdiseasepathogensbecamemoreseverewhenthehostplantwasstressedbyozone(Fennandothers1990;Jamesandothers1980b,1982;Skellyandothers1983).

Page 44: Chapter 16. invasive Pests—insects and Diseases

500The Southern Forest Futures Project

O’Neill(1994)presentsadetailedreviewofthepotentialeffectsofelevatedlevelsofcarbondioxideontherhizosphere(theregionofsoilthatisdirectlyinfluencedbyrootsecretionsandassociatedsoilmicroorganisms),observingthatecosystemsarelargelyconstrainedbytheratesatwhichsoilprocessesoccur.Muchmoredatawillbeneededtobegintheprocessofgeneralizedmodelingofeffectsontherhizosphere.

Effectsofsoilsaturationhavealreadybeenbrieflydiscussedabove.Boththeamountofwaterandtimingoffloodingaffectthedegreeofnegativeimpactoncoverplants.

Soilcharacteristics,nutrientavailability,anddisturbanceregimesmayprovetobemoreimportantthantemperatureincontrollingfutureecosystemdynamics(LemmenandWarren2004).Climateandvegetationinteracttodeterminethecharacteristicsoilsofanarea,anddifferentclimaticzonesarecharacterizedbydifferentsoiltypes—exceptwherethepresenceofunusualrock,suchasserpentine,resultsinuniquesoils(MalcolmandPitelka2000).

effects on host Biology

Littleisknownabouthowenvironmentaleffectsontreephysiologyinfluencetheinducibleresponsesthatarerelevanttopathogens(signalrecognition,generationofphytoalexinsandreactiveoxygenspecies,hypersensitiveresponses,callusgrowth,andsystemicacquiredresistance)(AyresandLombardero2000).

Carbondioxideisaprimaryinputtogrowthanddevelopmentofallplantlife,providingbothafertilizationeffectandanincreaseintheefficiencywithwhichplantsusewater.Thefertilizationeffectmaybeaffectedbytheavailabilityofwaterandothernutrients.Itmayalsodiminishafteraninitialperiodofadjustmentbytheplant.Increasedcarbondioxidelevelsmayalsotriggerchangesinthechemicalcompositionofvegetationsuchasaffectingthecarbon-to-nitrogenratioinleaves(Winnett1998).Positiveresponsetocarbondioxideappearstooccurunderawiderangeofnutrientavailability(Rogersandothers1994).Inaddition,Bazzazandothers(1994)stressthatthedifferentialresponsesofspeciestoelevatedlevelsofcarbondioxideindicatepotentialshiftsinthecompetitiverelationshipsamongplants.Partialclosureoftheguardcellsformingstomateshasbeenproposedasthemechanismbywhichplantsslowtranspiration(JonesandMansfield1970),whichinturnmaybeonemechanismofadaptiveresistancetoelevatedcarbondioxidelevels.

Otherfactorstoconsiderincludethefollowing:

• Insoils,somefungicanusecarbondioxideasanadditionalsourceofcarbon,whichisincorporatedinto

organicacidsandeventuallyenterstheKrebscycleasanadditionalenergysupply(ManningandvonTiedemann1995);thisincreasetendstoincreaserootgrowthmorethanabovegroundgrowth(Rogersandothers1994).

• Ozoneeffectsonplantdiseasesarehostmediated.

• TheprincipalmechanismforUV-Beffectsonplantdiseaseswouldbethroughalterationofhostplants(ManningandvonTiedemann1995).

• Host-pathogenrelationships,defenseagainstphysicalstressors,andthecapacitytoovercomeresourceshortagescouldbeimpactedbyrisesincarbondioxide(Rogersandothers1994).

• Duringwinterdormancy,directeffectsofclimateonthehostaregenerallylessimportantthanthoseinvolvingapathogen(LonsdaleandGibbs1994).

combined effects

Increasedsummertemperaturesanddroughtinesswouldbeexpectedtohelpshiftthedistributionsoffunginorthwardswithintherangeofpotentialhosts,oratleasttoincreasethegeographicrangeoverwhichtheybehaveaspathogens(LonsdaleandGibbs1994).

Fungiappeartobelargelytolerantofcurrentozonelevels.However,astrongnegativecorrelationexistsbetweenrainfallorrelativeairhumidityandphotochemicalozonegenerationintheatmosphere:onwetdaysthatareappropriateforfungalgrowthonplantsurfaces,ozonelevelsareusuallylow.Consequently,biologicallyharmfulconcentrationsofozoneareunlikelytocoincidewithgerminatingsporesoractivelygrowingmycelium(ManningandvonTiedemann1995).

Expectedincreasesingrowthfromelevatedcarbondioxidelevelswillalmostcertainlyaggravateproblemswithdiseases.However,thiseffectwouldlikelybeoffsetbygrowthreductionscausedbyincreasedozoneandUV-B(ManningandvonTiedemann1995).Becausecarbondioxidemaygreatlyalterecosystemstructureandfunction(BazzazandFajer1992),unmanagedforestecosystemsmaybeseriouslyimpactedbycarbondioxideactingincombinationwithdrought,comparedtointensivelymanaged,monoculturetreefarmswherespeciescompositionhasbeenaltered.Overalltheinteractionofcarbondioxideandtemperatureisnotwellunderstoodandtheexperimentaldatahavebeeninconsistent(Rogersandothers1994).

Athighertemperatures,anincreaseintheavailabilityofallmajornutrients(nitrogen,phosphorus,calcium,magnesium,potassium,andsulfur)canbeexpectedasaresultof

Page 45: Chapter 16. invasive Pests—insects and Diseases

501chAPTeR 16. Invasive Pests—Insects and Diseases

increasedwaterfluxesthroughsoilandhigherorganicmatterdecompositionrates,whichwouldincreasethecirculationofnutrientsinthesoil-nutritionsystem.Also,nutrientcirculationwouldincreasebecauseofhighergrowthratesofforestspeciesatincreasingatmosphericcarbondioxideconcentrationandwarmertemperature(Nilsonandothers1999).

Stressedtreesaremoresusceptibletoinsectpestsanddiseases(BroadmeadowandRay2005),enablingsomelevelofassessmentbyforestpathologistsandentomologists.However,firmprojectionsoffuturepestactivitycannotbemadeandconsiderablecautionshouldbeexercisedinextrapolatinganalysistoafutureclimate.Forsomeinsectsanddiseases,likelytrendscannotbepredictedevenonthebasisofexpertjudgment(BroadmeadowandRay2005).

Climatechangewilldirectlyinfluenceinfection,reproduction,dispersal,andsurvivalamongtheseasonsandothercriticalstagesinthelifecycleofadisease(CoakleyandScherm1996).Observedoutcomesincludemodificationsinhostresistance,alteredstagesandratesofdiseasedevelopment,andchangesinthephysiologyofhost-pathogeninteractions(Scherm2003).

eFFecTS oN ecoSySTemS

Becauseindividualspecieswillrespondtoclimatechangedifferently,ecosystemswillnotnecessarilyshiftascohesiveunits.Themostvulnerablespeciesareexpectedtobethosewithnarrowtemperaturetolerances,slowgrowthcharacteristics,andlimitingdispersalmechanismssuchasheavyseeds(LemmenandWarren2004).Howwellplantandanimalspeciesadapttoormovewithchangesintheirpotentialhabitatisstronglyinfluencedbothbytheirdispersalabilitiesandbythecharacteristicsandseverityofdisturbancestotheseenvironments.Nonnativeandinvasivespeciesthatdisperserapidlyarelikelytofindopportunitiesinnewlyformingcommunities(Joyceandothers2001).However,ifclimatechangecausesagradualshiftofcroppingregions,pathogenswillfollowtheirhosts(GoudriaanandZadocks1995)intolesschangednewcommunities.

Thepatternofdisturbanceimposedonalandscapebyaparticularbioticagentisdeterminedbothbythestructureandconditionofthelandscapeandbythecharacteristicsoftheagentanditsresponsivenesstoenvironmentalconditions(MamlstromandRaffa2000).Factorssuchaschangesinlanduseorincreasesinresistantstrainsofdiseasesmayunderlierangeexpansions(Harvellandothers2002).

Daleandothers(2001)pointoutthatmanydisturbancesarecascading.Forexample,insectinfestationsanddiseasespromoteforestfiresbycreatingfuels,andthefiresinturn

promotefutureinfestationsandinfectionsbycompromisingtheresistanceofsurvivingtreestoinsectsanddiseases.Invasivenonnativespeciesaresometimesabletomodifyexistingdisturbancesorintroduceentirelynewones.Underclimatechange,thesecompoundedinteractionsmaybeunprecedentedandunpredictable.Theyarelikelytoappearslowlyandbedifficulttodetectbecauseoftreelongevity.

Climatechangecouldrepresentanewformofdisturbancetounmanagedecosystemsandthuscouldprovidenewopportunitiesforinvasivespeciestoflourishanddisplacenativespecies.Animportantfeatureofmanyinvasivespeciesistheirdispersaleffectivenessandtheirhighreproductiverates(MalcolmandPitelka2000).Changesinphonologicalsynchronicityofhostsandnativepests,aswellastheirrelativeabundanceandphysiologicalcondition,mayaffectthefrequencyandconsequencesofoutbreaks(Malcolmandothers2006).

eFFecTS oN DiSTRiBuTioN oF SPecieS

Asclimateshifts,climaticallysensitivespecieswilleventuallydieout,andonlyasubsetofthepotentialpoolofincomingplantsmayactuallymigratesufficientlyquicklytokeepupwiththeshiftingclimate.Thus,plantcommunitiescouldbecomeprogressivelycomposedofthemoreadaptableandfastermovingspecies,especiallyifwarmingisrapid.Thischangeinplantcommunities,especiallytreecommunities,isofconsiderableconcern.Expansionofthewarm-temperaturemixed-evergreenforestsoftheSouthwouldbeattheexpenseofotherkindsofforests.Insomescenarios,partsoftheSouthbecomedrierandgrasslandsorsavannahsreplacethecurrentforest(MalcolmandPitelka2000).

TheforestareaimpactedbyinsectsanddiseasesintheUnitedStatesisapproximately45timesthatimpactedbyfire,withaneconomicimpactthatisalmost5timeslarger(Daleandothers2001).Ifthistrendcontinues,pestsanddiseasesarelikelytobetheprimarycauseofspecieschangeineasternforestsoverthenextfewdecades.Forecastingthetrajectoryofthosechangesisnearlyimpossiblebecausewecannotpredictwithanycertaintywhichpestsordiseaseswillbeestablished(Lovettandothers2006).Giventhecomplexitiesofclimatechange,andbioticresponsestoit,predictionofthefutureimpactofclimatechangeonemerginginfectiousdiseasesisdifficultexceptonabroadscale.Climatechangecanleadtotheemergenceofpreexistingpathogensasmajordiseaseagentsorcanprovidetheclimaticconditionsrequiredfornonnativediseasestoflourish(Andersonandothers2004).Becauseclimatechangewillallowplantsanddiseasestosurviveoutsidetheirhistoricranges,Harvellandothers(2002)haveprojectedanincreaseinthenumberofinvasivediseases.

Page 46: Chapter 16. invasive Pests—insects and Diseases

502The Southern Forest Futures Project

The following discussion and analysis is excerpted with only very minor changes from Régnière and Bentz (2008) and provides an example for consideration of a pest present and destructive in the western United States which and its potential impact in the East and South under the influence of climate change.

The mountain pine beetle (Dendroctonus ponderosae) is a native insect of pine forests in Western North America. Although it has a broad geographical distribution, it has been historically confined in the United States, by the distribution of its pine hosts, and in the northern half of British Columbia, by the geoclimatic barrier of the Rocky Mountains. Since the early to mid-1990s, an outbreak has reached unprecedented levels in terms of acreage and number of pine trees attacked. Lodgepole pine (Pinus contorta) is being killed throughout its range, most notably in Colorado and British Columbia. The beetle is also causing very high mortality among whitebark pine (Pinus albicaulis) and limber pine (Pinus flexilis) at high elevations. Historical records from the past century suggest that these ecosystems have had pulses of infestation and mortality but not at the levels currently being observed. Since 2006, the range of infestation has expanded into the Peace River area of north-central Alberta. Climate change may well be involved in this recent northeastward and upward range expansion. Evidence of similar shifts in insect distributions is ample and mounting throughout the world, much of it convincingly linked to climate change.

The primary concern at this time is the likelihood that the infestation will continue spreading eastward into the pines of the Canadian boreal forest, eventually reaching the eastern provinces and threatening the pines growing on the Atlantic side of the continent and then spreading into the Southern United States. Because of its recent incursion to the edges of the Canadian boreal forest, mountain pine beetle is viewed as a potential invading species in eastern pine ecosystems.

Three well-understood links connect climate and mountain pine beetles and form the basis for the concern that changing climate (temperature and precipitation) has had—and will continue to have—a role in the recent outbreaks and range expansion of this insect.

1. A well-synchronized adult emergence pattern is a prerequisite for successful mass attack of healthy pine trees. Such highly synchronized emergence is most likely to occur where (and when) the insect has a strictly univoltine (one generation per year) life cycle.

2. Cold winter temperature is the major cause of mortality in mountain pine beetles. For more than 20 years, process-based models describing responses to temperature have been under development; they show that a hemivoltine life cycle (one generation every 2 years) entails exposure to two winters, leading to lower population performance.

3. Drought affects the ability of pine trees to defend themselves against insect attack.

Three model components are available to study the impact of weather on mountain pine beetle populations: a phenology model that predicts life stage-specific developmental timing, a cold-tolerance model that predicts probability of larval mortality resulting from cold temperature, and a drought-stress model that predicts fluctuations of tree susceptibility. All three models have been implemented within BioSIM to make landscape-scale predictions of mountain pine beetle performance under climate change scenarios. BioSIM is a generic modelling tool that uses available knowledge about the responses of particular species (usually pests) to key climatic factors to predict their potential geographic range and performance.

The phenology model is very good at predicting the portions of the continent where the insect has a high likelihood of being univoltine. This model predicts the northward and upward shift of infestation. Under a conservative climate change scenario, it also predicts that by the end of the 21st century, the area at risk will shift considerably northward, to a point that the insect may be maladapted over much of its current distributional range. The cold tolerance model suggests that winter survival is very low and will remain so in the foreseeable future throughout the boreal pine forests from Alberta to Ontario. Although drought stress is, and is predicted to be, more common in that same area, there is not a very large change in this risk factor predicted in the near future.

Thus, with our current understanding of the insect’s physiology and host plant interactions, the risk of seeing the mountain pine beetle spread across the northern forests of Canada into the eastern pine forests seems rather low. This prediction, of course, is contingent on failure of the insect to adapt (evolve) and change its thermal responses, and on a relatively stable distribution of pines over the time range under consideration.

Page 47: Chapter 16. invasive Pests—insects and Diseases

503chAPTeR 16. Invasive Pests—Insects and Diseases

Describingsimilareffectsforpestinsectsinclimatechangescenarios,Loganandothers(2003)indicatethatthereisahistorictrendtointensificationinallaspectsofoutbreakbehavior,basedonassessmentsofindividualspecies’responsestodate;thiscertainlycharacterizesmodelingworkwiththemountainpinebeetle(Dendroctonusponderosae),gypsymoth,sprucebeetle(Dendroctonusrufipennis),andsprucebudworm(Choristoneurafumiferana).

Waltherandothers(2002)linkclimatechangetochangesinavarietyofknownspringtimelife-cycleeventsinEuropeanorganisms(includingearlierannualbirdbreeding,migrantbirdarrival,theappearanceofbutterflies,chorusesandspawningofamphibians,andshootgrowthandfloweringofplants);thesechangesineventtimingsuggestalengtheningofgrowingseasonby8to16days.Andersonandothers(2004),citinggreyleafspot(Pyriculariagrisea)diseaseofcorn(Zeaspp.),suggestthattherangesofseveralimportantcropinsects,nonnativeplants,andplantdiseaseshavealreadyexpandednorthward.Theyalsonotethatautumnlife-cycleevents(leafcolorchangeandleaffall)arenotasclearlydefinedintheirresponsetotheextensionofgrowingseasonasspringtimeevents.

Plantshavehistoricallyrespondedtoclimatechangebymigrationandadaptation.Fragmentationandrateofseedlingestablishmentmayhindersomeplantpopulationsfromsuccessfulmigrationtohigherlatitudes.Persistenceofthesepopulationsmaydependheavilyonadaptiveevolution,butpredictedratesofevolutionaryresponsearemuchslowerthanthepredictedrateofclimatechange.Historicalclimatechangesweregenerallymuchslower(byoneormoreordersofmagnitude)thanthosepredictedforthefuture(EttersonandShaw2001).Thisobservationleadstoconcernthathistoricalresponsepatternstoclimatechangemaynotprovetobeeffectiveaspredictorsoffuturechange.

Addingtotheconcernsexpressedaboveisacriticalconsiderationthathasnotyetbeenemphasizedenough—climatechangecannotbeviewedinisolation;itseffectsonecosystemsmustbeconsideredinthecontextofarangeofhuman-causedimpactsonecosystems,suchasairpollution,waterpollution,habitatdestructionandfragmentation,andthenonnativespeciesthatthriveandhavetheirmostseriouseffectsinecosystemsalreadydisturbedbyhumanactivities(MalcolmandPitelka2000).

Manyunpredictable,unforeseenpestproblemsmayariseasaresultofchangingtemperatures,changingprecipitationregimes,orbothincombination.Previouslyminororinfrequentpestsmaybecomesignificantcausesoftreemortality.Somecurrentmajorpestsmaydeclineinimportance.Inadditiontonewnonnativeinvasivepestsarrivingfromoverseas,therangesofinsectsanddiseasesnativetoNorthAmericamayexpandor

contractdramatically.Becausethesechangesarelargelyunpredictableyetboundtooccur,landmanagersandscientistsinforestry-relateddisciplineswillneedtopracticeearlydetectionandmonitoringof“new”problemsandfollowupwithresearchandcreative,adaptivemanagementstrategies.

PAThoSySTemS

Thesubtlechangesinconditionsattributedtoclimatechangecanaffectplant-diseasedevelopment.Thesechangesarenoteasilydetermined,and,consequently,theabilitytoforecasthowdiseasechangesunderalteredgrowthconditionsisnotsimple(Seem2004).

Lessstablerelationshipstendtooccurinthesimplerecosystemsthatinitiallyexistinplantedforests,ofteninvolvingnewcombinationsofhostandpathogenspeciesthathavebeentransportedbeyondtheirnaturalgeographicranges.Insuchsituations,climatechangewouldlikelyencouragemajorchangesindiseaseincidenceandseverity(LonsdaleandGibbs1994).

Tree-diseaseproblemscannotbefullyunderstoodwithoutathoroughappreciationofthepartplayedbyenvironmentalfactors,particularlyclimate,asaprecursortofungalattack.Themanifestationofmanydiseasesoftenmerelyreflectsunfavorablesitefactors,thepresenceofthefungusbeingtheresultofanunhealthyconditionratherthantheprimarycauseofthetree’sdebility(Gilmour1960).

Duringunusualweathereventsorbiologicallyinducedstressperiods,thecompetitivedominantmaybethemostvulnerable.Itslargesizehasstretcheditslimitstocoordinateuptake,transport,storage,andphotosynthesis(ManionandLachance1992).

Thetimingofthestresseventisalsoveryimportant.Earlyseasonstressisfrequentlyovercomealthoughlaterstressorsarenotso,oftensimplybecauseofsufficienttimeremaininginthegrowingseason(LundquistandHamelin2005).

NonnativeinsectpestsanddiseasesposethemostseriousthreattotheforestsofeasternNorthAmerica.Thelitanyofpestanddiseaseintroductionsislong:chestnutblight(Cryphonectriaparasitica),Dutchelmdisease(Ophiostomaulmi),beechbarkdisease(Nectriacoccineavar.faginata),balsamwoollyadelgid(Adelgespiceae),hemlockwoollyadelgid(A.tsugae),dogwoodanthracnose(Disculadestructiva),andgypsymoth(Lovettandothers2006).

AccordingtoLovettandothers(2006),ecologistsneedadequateinformationinonlysixcategoriesofknowledgeaboutnonnativepestsandtheirhoststomakeroughpredictionsofthetypeandmagnitudeofpotentialecosystem

Page 48: Chapter 16. invasive Pests—insects and Diseases

504The Southern Forest Futures Project

impacts.Pestinformationisneededconcerning:(1)modeofaction,(2)hostspecificity—suchasspeciesandageclass,and(3)virulence.Withrespecttothehost,theinformationneededis:(4)ecologicalimportance—positionorbio-productionvaluesinthesystem,(5)uniqueness,and(6)phytosociology—suchaspureversusmixedstands,effectivenessofregeneration.

Whenclimatechangehasasignificantanddirecteffectonplants,changesincompositionmayensue.Givendifferentialresponsesacrossplantspecies,thismayleadtorelativechangesincommunitycomposition.Whencoupledwithrangeextensionsorcontractionsofindividualspecies,theresultmaybeincreasedordecreaseddiversityofwholeplantcommunities.Diseasesofonehostspeciesmaythusbebroughtintointimatecontactwithnewhosts,althoughthelikelihoodofspatialmovementsnecessaryforthistooccurisperhapslowintheimmediatefuture;theymaybenefitfromincreasingoverlapofobligatealternatehostdistributions;ortheymaysuffersignificantreductionsinpopulationsizeasaconsequenceofallopatricdistributionsorincompletecongruenceinthedistributionofobligatealternatehosts(Burdonandothers2006).

Bolandandothers(2004)summarizeresearchonthepotentialimpactofclimatechangeonplantdiseasesandlist143plantdiseases,only18ofwhichareforesttreediseases.Despitethistheytabulatedataforclimatechangeeffectswithrespecttoforestpathosystemsunderthesecategories:primaryinoculumordiseaseestablishment,rateofdiseaseprogress,potentialdurationofepidemic,reasonsforeffects,andneteffectofthedisease.Althoughpredictingtheeffectsonthediseasesisrelativelyintuitivetoplantpathologists,theauthorsarguethatextendingtheintuitiveknowledgepathosystemsordiseasemechanismsrequiresmoreknowledgeabouthowthehost’sphysiologyandthusthehost-pathogeninteractionwillbeaffected.Theyalsociteaspecificneedforfurtherknowledgeabouttheeffectsofelevatedcarbondioxide,UVradiation,andgroundlevelozone,aswellastheeffectsofenvironmentalchangesoninsectvectorsofdiseases.

Aninterestingsidebartopathosystemsactivityisreflectedinthecapacityoffungitoperformtheircleanupfunction(woodyandleaflitterdecomposition)undertheinfluenceofclimatechange.Yin(1999)makesseveralpoints.First,thedecayrateofforestwoodydebrisisakeymissinglinkinourquantitativeunderstandingofcarbondynamicsandtheglobalcarbonbudgetofforests.And,inthecontextofglobalclimatechange,a2°CwarminginairtemperatureinJanuaryandJulywouldacceleratestemwoodydebrisdecay(indensityloss);accelerateddecaywoulddecreaseinthepresenceofincreasedprecipitation(andvice-versa);but,themagnitudeofincreasewouldbesmallerwhenadjustedforthedetrimentaleffectofelevatedcarbondioxideaspartofclimatechange.

Formanyfungaldiseasesthatrelyonbioticvectorsfordispersal,theeffectsofclimatechangeandweatheronthedevelopmentofoutbreaksorepidemicshavenotbeenstudiedindetail.Inareaswhereapathogenalreadyoccurs,weatherconditionsmayfavoroutbreaksofitsvectorsincertainyears,suggestingthatclimatechangecouldinfluencelong-termprevalenceofthedisease(LonsdaleandGibbs1994).Theintroductionofnewvectorspecies,changesinvectoroverwinteringandoversummering(Garrettandothers2006),andothereffectsofchangeoninsectsmayhaveimportanteffectsonpathogensurvival,movement,andreproduction(Garrettandothers2006).Pathogensthatrelyonvectorsmayseesignificantshiftsintheirdistributionorintensityifenvironmentalchangesaffectthebehaviororviabilityoftheirvector(Burdonandothers2006).

However,insomecircumstances,warmertemperaturescouldactuallyinhibitinsectactivityordisruptthebuild-upofpopulations.Enemiesofinsectpestswillalsobeaffectedbyclimatechange,buttheseeffectsareunknownandrequiremoreresearch.Ifwarmertemperaturespositivelyaffectpredatorsandparasitoids,naturalenemieswillexhibitgreatercontrolofpestspecies.Conversely,ifwarmertemperaturesdisruptordecreasepredatorandparasitoidpopulations,pestpopulationswillgrowmorequicklyandwillpersistathigherlevelsforlongerperiods.

liTeRATuRe ciTeDAnderson,P.K.;Cunningham,A.A.;Patel,N.G.[andothers].2004.Emerginginfectiousdiseasesofplants:pathogen,pollution,climatechangeandagrotechnologydrivers.TrendsinEcologyandEvolution19(10):535–544.

Ayres,M.P.;Lombardero,M.J.2000.Assessingtheconsequencesofglobalchangeforforestdisturbancefromherbivoresandpathogens.ScienceofTotalEnvironment262:263–286.(also:http://www.dartmouth.edu/~mpayres/pubs/gepidem.PDF).

Bazzaz,F.A.;Fajer,E.D.1992.PlantlifeinaCO2-richworld.ScientificAmerican266:68-74.

Beukema,S.J.;Robinson,D.C.E.;Greig,L.A.2007.Forests,insects&pathogensandclimatechange:workshopreport.Prineville,OR:TheWesternWildlandsEnvironmentalThreatAssessmentCenter.20p.(accessat:http://www.essa.com/documents/Forests,%20Pests%20and%20Climate%20-%20Workshop%20Report.pdf).

Black,B.A.;Shaw,D.C.;Stone,J.K.2010.ImpactsofSwissneedlecastonoverstoryDouglas-firforestsofthewesternOregonCoastRange.Webpublishedm.s.Corvalis,OR:OregonStateUniversity.35p.(accessathttp://ir.library.oregonstate.edu/jspui/bitstream/1957/15212/1/Black_et_al_FEM_SNC_study_2010%5B1%5D.pdf).

Boland,G.J.;Melzer,M.S.;Hopkin,A.[andothers].2004.ClimatechangeandplantdiseasesinOntario.CanadianJournalofPlantPathology26:335–350.

Brasier,C.M.;Scott,J.K.1994.Europeanoakdeclinesandglobalwarming:atheoreticalassessmentwithspecialreferencetotheactivityofPhytophthoracinnamomi.Bulletin-OEPP24(1):221–232.

Breshears,D.D.;Cobb,N.S.;Rich,P.M.[andothers].2005.Regionalvegetationdie-offinresponsetoglobal-changetypedrought.ProceedingsoftheNationalAcademyofSciencesoftheUnitedStatesofAmerica102:15144–15148.

Page 49: Chapter 16. invasive Pests—insects and Diseases

505chAPTeR 16. Invasive Pests—Insects and Diseases

Broadmeadow,M.;Ray,D.2005.ClimatechangeandBritishwoodland.InformationNote69.Edinburgh,UnitedKingdom:ForestryCommission.(also:http://www.forestresearch.gov.uk/pdf/fcin069.pdf/$FILE/fcin069.pdf).

Burdon,J.J.;Thrall,P.H.;Ericson,L.2006.Thecurrentandfuturedynamicsofdiseaseinplantcommunities.AnnualReviewofPhytopathology44:19–39.

Chakraborty,S.;Datta,S.2003.HowwillplantpathogensadapttohostplantresistanceatelevatedCO2underachangingclimate?NewPhytologist159:733–742.

Chakraborty,S.;Murray,G.M.;Magarey,P.A.[andothers].1998.PotentialimpactofclimatechangeonplantdiseasesofeconomicsignificancetoAustralia.AustralasianPlantPathology27:15–35.

Coakley,S.M.1988.Variationinclimateandpredictionofdiseaseinplants,AnnualReviewofPhytopathology26:163-181.

Coakley,S.M.;Scherm,H.;Chakraborty,S.1999.Climatechangeandplantdiseasemanagement.AnnualReviewofPhytopathology37:399–426.

Dale,V.H.;Joyce,L.A.;McNulty,S.[andothers].2001.Climatechangeandforestdisturbances.BioScience51:723–734.(also:http://www.usgcrp.gov/usgcrp/Library/nationalassessment/forests/bioone2.pdf).

Etterson,J.R.;Shaw,R.G.2001.Constrainttoadaptiveevolutioninresponsetoglobalwarming.Science294:151-154.

Fenn,M.E.Dunn,P.H.;Durall,D.M.1989.Effectsofozoneandsulfurdioxideonphyllospherefungifromthreetreespecies.AppliedEnvironmentalMicrobiology55:412-418.

Garrett,K.A.;Dendy,S.P.;Frank,E.E.[andothers].2006.Climatechangeeffectsonplantdisease:genomestoecosystems.AnnualReviewofPhytopathology44:489–509.

Gilmour,J.W.1960.Theimportanceofclimaticfactorsinforestmycology.NewZealandJournalofForestry8:250-260.

Goudriaan,J.;Zadocks,J.C.1995.Globalclimatechange:modelingthepotentialresponsesofagrosystemswithspecialreferencetocropprotection.EnvironmentalPollution87:215-224.

Hansen,A.J.;Neilson,R.P.;Dale,V.H.[andothers].2001.Globalchangeinforests:responsesofspecies,communitiesandbiomes.BioScience.51:765–779.

Harvell,C.D.;Mitchell,C.E.;Ward,J.R.[andothers].2002.Climatewarminganddiseaserisksforterrestrialandmarinebiota.Science.296:2158–2162.

Hepting,G.H.1963.Climateandforestdiseases.AnnualReviewofPhytopathology.1:31–50.

Humphrey,H.B.1941.Climateandplantdiseases.YearbookofAgriculture1941.Washington,DC:U.S.DepartmentofAgriculture:499-502.

IntergovernmentalPanelonClimateChange.2001.Climatechange2001:synthesisreport.AcontributionofWorkingGroupsI,II,andIIItothethirdassessmentreportoftheIntegovernmentalPanelonClimateChange.In:Watson,R.T.andtheCoreWritingTeam,eds.CambridgeUniversityPress,Cambridge,UnitedKingdom,andNewYork:398pp.

IntergovernmentalPanelonClimateChange.2007.Summaryforpolicymakers.In:Solomon,S.;Qin,D.;Manning,M.;Chen,Z.;Marquis,M.;Averyt,K.B.;Tignor,M.;Miller,H.L.,eds.Climatechange2007:Thephysicalsciencebasis.ContributionofworkinggroupItothefourthassessmentreportoftheIntergovernmentalPanelonClimateChange.Cambridge,UnitedKingdomandNewYork:CambridgeUniversityPress.20p.(also:http://www.ipcc.ch/pdf/assessment-report/ar4/syr/ar4_syr_spm.pdf.).

James,R.L.;Cobb,F.W.,Jr.;Miller,P.R.[andothers].1980a.EffectsofoxidantairpollutiononsusceptibilityofpinerotstoFomesannosus.Phytopathology70:560-563.

James,R.L.;Cobb,F.W.,Jr.;Wilcox,W.W.[andothers].1980b.EffectofphotochemicaloxidantinjuryofponderosaandJeffreypinesonsusceptibilityofsapwoodandfreshlycutstumpstoFomesannosus.Phytopathology70:704-708.

Jones,R.J.;Mansfield,T.A.1970.Increasesinthediffusionresistancesofleavesinacarbondioxide-enrichedatmosphere.JournalofExperimentalBotany21:951-958.

Joyce,L.;Aber,J.;McNulty,S.[andothers].2001.PotentialconsequencesofclimatevariabilityandchangefortheforestsoftheUnitedStates.In:NationalAssessmentSynthesisTeam,eds.ClimatechangeimpactsontheUnitedStates:thepotentialconsequencesofclimatevariabilityandchange.Cambridge,UnitedKingdom:CambridgeUniversityPress:489–522.(also:http://www.srs.fs.usda.gov/pubs/ja/ja_joyce001.pdf).

Keane,K.D.;Manning,W.J.1987.Effectsofozoneandsimulatedacidrainandozoneandsulfurdioxideonmycorrhizalformationinpaperbirchandwhitepine.In:Perry,R.etal.London,GreatBritain:SelperLtd.:608-613.

Kleijunas,J.T.;Geils,B.W.;Glaeser,J.M.[andothers].2009.ReviewofliteratureonclimatechangeandforestdiseasesofwesternNorthAmerica.Albany,CA:U.S.DepartmentofAgricultureForestService,PacificSouthwestResearchStation.54p.

Lemmen,D.S.;Warren,F.J.,eds.2004.Climatechangeimpactsandadaptation:aCanadianperspective.Ottawa,Ontario:NaturalResourcesCanada.174p.

Logan,J.A.;Régnière,J.;Powell,J.A.2003.Assessingtheimpactsofglobalwarmingonforestpestdynamics.FrontiersinEcologyandtheEnvironment.1:130–137.(also:http://www.usu.edu/beetle/documents/Loganet.al.2003.pdf.[accessedJuly13,2009]).

Loehle,C.1996.Dosimulationsprojectunrealisticdieback?JournalofForestry94:13-15.

Lonsdale,D.;Gibbs,J.N.1994.Effectsofclimatechangeinfungaldiseaseoftrees.In:Frankland,J.C.;Magan,N.;Gadd,G.M.,eds.Fungiandenvironmentchange:symposiumoftheBritishMycologicalSociety.Cambridge,UnitedKingdom:CambridgeUniversityPress:1–19.

Lovett,G.M.;Canham,C.D.;Arthur,M.A.[andothers].2006.ForestecosystemresponsestoexoticpestsandpathogensineasternNorthAmerica.BioScience56(5):395–403.

Lundquist,J.E.;Hamelin,R.C.,eds.2005.Forestpathology:fromgenestolandscapes.St.Paul,MN:AmericanPhytopathologicalSociety,APSPress.175p.

Mahoney,M.J.;Chevone,B.I.;Skelly,J.M.[andothers].1985.Influenceofmycorrhizaeonthegrowthofloblollypineseedlingsexposedtoozoneandsulfurdioxide.Phytopathology75:679-682.

Malcolm,J.R.;Liu,C.;Neilson,R.P.;Hansen,L.;Hannah,L.2006.Globalwarmingandextinctionsofendemicspeciesfrombiodiversityhotspots.Conserv.Biol.20:238-248.

Malcolm,J.R.;Pitelka,L.F.2000.Ecosystemsandglobalclimatechange:areviewofpotentialimpactsonU.S.terrestrialecosystemsandbiodiversity.47p.Accessedat:http://www.pewclimate.org/docUploads/env_ecosystems.pdf.(July13,2009).

Mamlstrom,C.M.;Raffa,K.F.2000.Bioticdisturbanceagentsintheborealforests:considerationsforvegetationchangemodels.GlobalChangeBiology6:35-48.

Manion,P.D.;Lachance,D.L.1992.Forestdeclineconcepts:anoverview.In:Manion,P.D.;Lachance,D.L.,eds.Forestdeclineconcepts.St.Paul,MN:APSPress:181–190.

Manning,W.J.;Keane,K.D.1988.Effectsofairpollutantsoninteractionsbetweenplants,insectsandpathogens.In:Heck,W.W.;Taylor,O.C.;Tingley,D.T.,eds.Assessmentofcroplossfromairpollutants.London,G.B.:Elsevier:365-386.

Page 50: Chapter 16. invasive Pests—insects and Diseases

506The Southern Forest Futures Project

Manning,W.J.;vonTiedemann,A.1995.Climatechange:potentialeffectsofincreasedatmosphericcarbondioxide(CO2),ozone(O3),andultraviolet-B(UV-B)radiationonplantdiseases.EnvironmentalPollution88:219–245.

McNulty,S.G.;Aber,J.D.2001.UnitedStatesnationalclimatechangeassessmentonforestecosystems:anintroduction.BioScience51:720–723.(also:http://www.usgcrp.gov/usgcrp/Library/nationalassessment/forests/bioone1.pdf).

McNulty,S.G.;Boggs,J.L.2010.Aconceptualframework:redefiningforestsoil’scriticalacidloadsunderachangingclimate.EnvironmentalPollution30:1-6.(also:doi:10.1016.j.envpol.2009.11.028).

Millstein,J.A.1994.Propagationofmeasurementerrorsinpesticideapplicationcomputations.InternationalJournalofPestManagement40:159-165.

NationalAssessmentSynthesisTeam.2000.ClimatechangeimpactsontheUnitedStates:thepotentialconsequencesofclimatevariabilityandchange.Washington,DC:U.S.GlobalChangeResearchProgram.541p.

Nilson,A.;Kiviste,A.;Korjus,H.[andothers].1999.ImpactofrecentandfutureclimatechangeonEstonianforestryandadaptationtools.ClimateResearch.12:205–214.

O’Neill.E.G.1994.Responseofsoilbiotatoelevatedatmosphericcarbondioxide.PlantandSoil165:55-65.

Redmond,D.R.1955.Studiesinforestpathology.XV.Rootlets,mycorrhiza,andsoiltemperaturesinrelationtobirchdieback.CanadianJournalofBotany33:595-627.

Régnière,J.;Bentz,B.2008.Mountainpinebeetleandclimatechange.In:McManus,K.;Gottschalk,K.W.Proceedings:19thU.S.DepartmentofAgricultureInteragencyResearchForumonInvasiveSpecies,2008(Jan.8-11:Annapolis,MD)Gen.Tech.Rep.NRS-P-36.NewtownSquare,PA:U.S.DepartmentofAgricultureForestService,NorthernResearchStation:63-64.(Availableat:http://www.nrs.fs.fed.us/pubs/gtr/gtr_nrs-p-36.pdf).

Rogers,H.H.;Runion,G.B.;Krupa,S.V.1994.PlantresponsestoatmosphericCO2enrichmentwithemphasisonrootsandtherhizosphere.EnvironmentalPollution83:155-189.

Runion,G.B.2003.Climatechangeandplantpathosystems—futurediseasepreventionstartshere.NewPhytologist159:531–538.

Scherm,H.2000.Simulatinguncertaintyinclimate-pestmodelswithfuzzynumbers.EnvironmentalPollution108:373-379.

Scherm,H.2003.Plantpathogensinachangingworld.AustralianPlantPathology32:157-165.

Scherm,H.;Coakley,S.M.2003Plantpathogensinachangingworld.AustralianPlantPathology32:157-165.

Seem,R.C.2004.Forecastingplantdiseaseinachangingclimate:aquestionofscale.CanadianJournalPlantPathology26:274-283.

Skelly,J.M.;Yang,Y.S.;Chevione,B.I.[andothers].1983.OzoneconcentrationsandtheirinfluenceonforestspeciesintheBlueRidgeMountainsofVirginia.In:Davis,D.D.;Millen,A.A.;Dochinger,L.S.,eds.Airpollutionandtheproductivityofforests(Oct.4-5,1983:Washington,DC).StateCollege,PA:PennsylvaniaStateUniversity,IsaacWaltonLeagueofAmerica.344p.

Sturrock,R.N.2007.Climatechangeeffectsonforestdiseases:anoverview.In:Jackson,M.B.(compiler).Proceedingsofthe54thannualWesternInternationalForestDiseaseWorkConference(Oct.2-6,2006:Smithers,BritishColumbia,Canada).Missoula,MT:USDepartmentofAgriculture,ForestService:51–55.

Walther,G.R.;Post,E.;Convey,P.[andothers].2002.Ecologicalresponsestorecentclimatechange.Nature.416:389–395.

Wigley,T.M.L.1999.Thescienceofclimatechange:globalandU.S.perspectives.Arlington,VA:PewCenteronGlobalClimateChange.http://www.pewclimate.org/docUploads/env_science.pdf.(July13,2009).

Winnett,S.M.1998.PotentialeffectsofclimatechangeonU.S.forests:areview.ClimateResearch11:39–49.(also:http://www.int-res.com/articles/cr/11/c011p039.pdf).

Yang,X.B.;Scherm,H.1997.ElNinoandinfectiousdisease.Science.275:739.

Yarwood,C.E.1959.Microclimateandinfection.In:PlantPathol.Probl.AndProgr.1908-1958.MadisonWI:Univ.Wisc.Press:548-556.

Yin,X.1999.Thedecayofforestwoodydebris:numericalmodelingandimplicationsbasedonsome300datacasesfromNorthAmerica.Oecologia.121:81–98.

oTheR ReFeReNceS

Annosum Root Disease

Anderson,R.L.;Mistretta,P.A.1982.Managementstrategiesforreducinglossescausedbyfusiformrust,annosusrootrot,andlittleleafdisease.Agric.Handbk.597.Washington,DC:U.S.DepartmentofAgriculture,ForestService.30p.

Asian longhorned Beetle

U.S.DepartmentofAgriculture,AnimalandPlantHealthInspectionService.2010.Planthealth:asianlonghornedbeetle.Washington,DC:U.S.DepartmentofAgriculture,AnimalandPlantHealthInspectionService.Webaccessedwww.aphis.usda.gov/plant_health/plant_pest_info/asian_lhb/index.shtml

U.S.DepartmentofAgriculture,ForestService.Foresthealthprotection–Asianlonghornedbeetle.Portalpage.NewtownSquare,PA:U.S.DepartmentofAgricultureForestService,NortheasternArea,StateandPrivateForestry,ForestHealthProtection.Webaccessedatwww.na.fs.fed.us/fhp/alb/

Baldcypress leafroller

http://www.insectimages.org/browse/subthumb.cfm?sub=4300&Start=1&display=30&sort=2

http://www.fs.fed.us/r8/foresthealth/publications/patterns_of_defoliation_in_southeastern_louisiana_swamps.pdf

Balsam Woolly Adelgid

Ragenovich,I.R.;Mitchell,R.G.2006.Balsamwoollyadelgid.ForestInsect&DiseaseLeaflet118.Portland,OR:U.S.DepartmentofAgriculture,ForestService.12p.Availableathttp://www.fs.fed.us/r6/nr/fid/fidls/fidl-118.pdf).

Bark Beetle (see below for southern pine beetle)Ciesla,W.M.1973.Six-spinedengraverbeetle.ForestPestLeaflet141.Washington,DC:U.S.DepartmentofAgricultureForestService.6p.(availableathttp://www.fs.fed.us/r6/nr/fid/fidls/fidl141.pdf).

Clarke,S.R.;Evans,R.E.;Billings,R.F.2000.InfluenceofpinebarkbeetlesonthewestGulfCoastalPlain.TexasJournalofScience52(4)Supplement:105-126.

Beech Bark Disease

Brown Spot Needle Blight

Phelps,W.R.;Kais,A.G.;Nicholls,T.H.1978.Brownspotneedleblightofpines.ForestInsect&DiseaseLeaflet44.Washington,DC:U.S.DepartmentofAgricultureForestService.8p.(availableathttp://www.fs.fed.us/r6/nr/fid/fidls/fidl-44.pdf).

Page 51: Chapter 16. invasive Pests—insects and Diseases

507chAPTeR 16. Invasive Pests—Insects and Diseases

Butternut canker

Fleguel,V.R..1996.Aliteraturereviewofbutternutandthebutternutcanker.Inform.Rep.20.Ontario,Canada:MinistryofNaturalResources,EasternOntarioModelForest.32p.

Nicholls,T.H.1979.Butternutcanker.In:Proceedingsofthesymposiumonwalnutinsectsanddiseases.Gen.Tech.Rep.NC–52.St.Paul,MN:U.S.DepartmentofAgricultureForestService,NorthCentralForestExperimentStation:73–82.

Ostry,M.E.;Mielke,M.E.;Anderson,R.L.1996.Howtoidentifybutternutcankerandpreservebutternut.St.Paul,MN:U.S.DepartmentofAgricultureForestService,NorthCentralForestExperimentStation.4p.

Ostry,M.;Mielke,M.;Skilling,D.1994.Butternut—strategiesformanagingathreatenedtree.Gen.Tech.Rep.NC–165.St.Paul,MN:U.S.DepartmentofAgricultureForestService,NorthCentralForestExperimentStation.7p.

Dogwood Anthracnose

Anderson,R.L.;Knighten,J.L.;Windham,M.[andothers].1994.DogwoodanthracnoseanditsspreadintheSouth.Protect.Rep.R8–PR–26.Atlanta:U.S.DepartmentofAgricultureForestService,SouthernRegion,State&PrivateForestry,ForestPestManagement.10p.

Britton,K.O.;Roncadori,R.W.;Hendrix,F.F.1993.IsolationofDisculadestructivaandotherfungifromseedsofdogwoodtrees.PlantDisease.77:1026–1028.

Daughtrey,M.L.;Hibben,C.R.;Britton,K.O.;Windham,M.T.;Redlin,S.C.1996.Dogwoodanthracnose:understandingadiseasenewtoNorthAmerica.PlantDisease.80:349–358.

Daughtrey,M.L.;Hibben,C.R.;Hudler,G.W.1988.CauseandcontrolofdogwoodanthracnoseinNortheasternUnitedStates.JournalofArboriculture.14(6):159–164.

Windham,M.T.;Graham,E.T.;Witte,W.T.[andothers].1998.Cornusflorida“AppalachianSpring”:awhitefloweringdogwoodresistanttodogwoodanthracnose.HorticulturalScience.33:1265–1267.

emerald Ash Borer

Various.2010.EmeraldAshBorerInformationNetwork.Lansing,MI:MichiganStateUniversity.Availableat:http://www.emeraldashborer.info.

U.S.DepartmentofAgriculture,ForestService.Foresthealthprotection–Emeraldashborer.Portalpage.NewtownSquare,PA:U.S.DepartmentofAgricultureForestService,NortheasternArea,StateandPrivateForestry,ForestHealthProtection.Webaccessedathttp://na.fs.fed.us/fhp/eab/)

Forest Tent caterpillar

Harper,J.D.;Abrahamson,L.P.1979.ForesttentcaterpillarcontrolwithaeriallyappliedformulationsofBacillusthuringiensisanddimilin.JournalofEconomicEntomology.72:74–77.

Fusiform Rust

Anderson,R.L.;Mistretta,P.A.1982.Managementstrategiesforreducinglossescausedbyfusiformrust,annosusrootrot,andlittleleafdisease.Agric.Handbk.597.Washington,DC:U.S.DepartmentofAgricultureForestService.30p.

Dinus,R.J.;Schmidt,R.A.1977.Managementoffusiformrustinsouthernpines.In:Proceedingsofasymposium.Gainesville,FL:UniversityofFlorida.163p.

Matthews,F.R.;Anderson,R.L.1979.Howtosaveyourfusiformrustinfectedpinesbyremovingcankers.Bull.SA–FB/P7.Atlanta:U.S.DepartmentofAgricultureForestService,SouthernRegion,StateandPrivateForestry,ForestInsectandDiseaseManagement.6p.

Phelps,R.W.;Czabator.1978.Fusiformrustofsouthernpines.ForestInsect&DiseaseLeaflet26.Washington,DC:U.S.DepartmentofAgricultureForestService.7p.(availableathttp://www.fs.fed.us/r6/nr/fid/fidls/fidl-26.pdf).

Schmidt,R.A.1998.Fusiformrustdiseaseofsouthernpines:biology,ecology,andmanagement.Tech.Bull.903.Gainesville,FL:UniversityofFlorida.14p.

U.S.DepartmentofAgriculture,ForestService(USDAFS).1971.Thinningpineplantationsin1971andafter.UnnumberedForestManagementBulletin.Atlanta:U.S.DepartmentofAgricultureForestService,SoutheasternArea,StateandPrivateForestry,ForestInsectandDiseaseManagement.6p.

Gypsy moth

Elkinton,J.S.;Liebhold,A.M.1990.PopulationdynamicsofgypsymothinNorthAmerica.AnnualReviewofEntomology.35:571–596.

Gottschalk,K.1993.Silviculturalguidelinesforforeststandsthreatenedbythegypsymoth.Gen.Tech.Rep.GTRNE-171.Radnor,PA:U.S.DepartmentofAgricultureForestService,NortheasternForestExperimentStation.49p.

McManus,M.;Schneeberger,N.;Reardon,R.;Mason,G.1989.Gypsymoth.ForestInsect&DiseaseLeaflet162.Washington,DC:U.S.DepartmentofAgricultureForestService.14p.(availableathttp://www.fs.fed.us/r6/nr/fid/fidls/fidl-162.pdf).

U.S.DepartmentofAgriculture,ForestServiceandAnimalandPlantHealthInspectionService(USDAFSandothers).1995.GypsymothmanagementintheUnitedStates:acooperativeapproach.[UnnumberedRep.].Washington,DC:U.S.DepartmentofAgricultureForestService.Various[total1092p.]

hardwood Borer

Donley,D.E.;Accivatti,R.E.1980.Redoakborer.ForestInsect&DiseaseLeaflet163.Portland,OR:U.S.DepartmentofAgricultureForestService.7p.(availableathttp://www.fs.fed.us/r6/nr/fid/fidls/fidl-163.pdf).

Graham,S.A.1959.Controlofinsectsthroughsilviculturalpractices.JournalofForestry.57:281–283.

Hay,C.J.;Morris,R.C.1970.Carpenterworm.ForestPestLeaflet64.Washington,DC:U.S.DepartmentofAgricultureForestService.8p.(availableathttp://www.fs.fed.us/r6/nr/fid/fidls/fidl-64.pdf).

hemlock Woolly Adelgid

U.S.DepartmentofAgriculture,ForestService(USDAFS).2005.Hemlockwoollyadelgid.PestAlertNA-PR-09-05.NewtownSquare,PA:U.S.DepartmentofAgricultureForestService,NorhteasternArea,State&PrivateForestry.2p.(Also::http://na.fs.fed.us/spfo/pubs/pest_al/hemlock/hwa05.htm).

U.S.DepartmentofAgriculture,ForestService(USDAFS).2010.Hemlockwoollyadelgid[homepage].NewtownSquare,PA:U.S.DepartmentofAgricultureForestService,NortheasternArea.Variousp.[http://na.fs.fed.us/fhp/hwa/].

littleleaf Disease

Anderson,R.L.;Mistretta,P.A.1982.Managementstrategiesforreducinglossescausedbyfusiformrust,annosusrootrot,andlittleleafdisease.Agric.Handbk.597.Washington,DC:U.S.DepartmentofAgricultureForestService.30p.

Page 52: Chapter 16. invasive Pests—insects and Diseases

508The Southern Forest Futures Project

Mistretta,P.1984.Littleleafdisease.ForestInsect&DiseaseLeaflet20.Washington,DC:U.S.DepartmentofAgricultureForestService.6p.(availableathttp://www.fs.fed.us/r6/nr/fid/fidls/fidl-20.pdf).

Nantucket Pine Tip moth

Berisford,C.W.1974.Comparisonsofadultemergenceperiodsandgenerationsofthepinetipmoths,RhyacioniafrustranaandR.rigidana.AnnalsoftheEntomologicalSocietyofAmerica.67:666–668.

Berisford,C.W.;Kulman,H.M.1967.InfestationrateanddamagebytheNantucketpinetipmothinsixloblollypinestandcategories.ForestScience.13:428–438.

Eikenbary,R.D.;Fox,R.C.1965.TheparasitesoftheNantucketpinetipmothinSouthCarolina.Tech.Bull.1017.Clemson,SC:SouthCarolinaAgriculturalExperimentStation.9p.

Eikenbary,R.D.;Fox,R.C.1968.ArthropodpredatorsoftheNantucketpinetipmothRhyacioniafrustrana.AnnalsoftheEntomologicalSocietyofAmerica.61:1218–1221.

Fettig,C.J.;Berisford,C.W.1999.NantucketpinetipmothphenologyineasternNorthCarolinaandVirginia:implicationsforeffectivetimingofinsecticideapplication.SouthernJournalofAppliedForestry.23:30–38.

Nowak,J.T.;Berisford,C.W.2000.Effectsofintensivemanagementpracticesoninsectinfestationlevelsandloblollypinegrowth.JournalofEconomicEntomology.93:336–341.

Warren,L.O.1985.PrimaryhymenopteransparasitesofNantucketpinetipmoth,Rhyacioniafrustrana(Comstock).JournalofEntomologicalScience.20:383–389.

Yates,H.O.,III;Overgard,N.A.;Koerber,T.W.1981.Nantucketpinetipmoth.ForestInsect&DiseaseLeaflet70.Washington,DC:U.S.DepartmentofAgricultureForestService.8p.(availableathttp://www.fs.fed.us/r6/nr/fid/fidls/fidl-70.pdf).

oak Decline

Oak,S.W.;Courter,A.2000.Modelingoakdeclineeffectsonforestcompositionandstructurechangeusingtheforestvegetationsimulator[Abstract].In:Anon.Proceedingsofthefirstjointmeetingofthenortheastandsouthwideforestdiseaseworkshops.Morgantown,WV:WestVirginiaUniversity.[Notpaged].

Oak,S.W.;Huber,C.M.;Sheffield,R.M.1991.IncidenceandimpactofoakdeclineinwesternVirginia1986.Resour.Bull.SE–123.Asheville,NC:U.S.DepartmentofAgricultureForestService,SoutheasternForestExperimentStation.16p.

Oak,S.;Tainter,F.;Williams,J.;Starkey,D.1996.OakdeclineriskratingfortheSoutheasternUnitedStates.AnnalsdesSciencesForestiere.53:721–730.

oak Wilt

Appel,D.N.;Billings,R.F.,eds.1995.Oakwiltperspectives:Proceedingsofthenationaloakwiltsymposium.CollegeStation,TX:TexasForestService,TexasAgriculturalExperimentStation,TexasAgriculturalExtensionService.217p.

Pine Reproduction Weevil

Corneil,J.A.;Wilson,L.F.1980.Palesweevil—rationaleforitsinjuryandcontrol.MichiganChristmasTreeJournal.Fall:16–17.

Grosman,D.M.;Billings,R.F.;McCook,F.A.;Upton,W.W.1999.Influenceofharvestdateandsilviculturalpracticesontheabundanceandimpactofpinereproductionweevilsinwesterngulfpineplantations.In:Haywood,James,D.,ed.Proceedingsofthetenthbiennialsouthernsilviculturalresearchconference.Gen.Tech.Rep.SRS–30.Asheville,NC:U.S.DepartmentofAgricultureForestService,SouthernResearchStation:565–568.

Speers,C.F.1974.Palesandpitch-eatingweevils:developmentinrelationtotimepinesarecutintheSoutheast.Res.NoteSE–207.Asheville,NC:U.S.DepartmentofAgricultureForestService,SoutheasternForestExperimentStation.7p.

Stevens,R.E.1971.Pinereproductionweevil.ForestPestLeaflet15.Washington,DC:U.S.DepartmentofAgricultureForestService.6p.(availableathttp://www.fs.fed.us/r6/nr/fid/fidls/fidl-15.pdf).

Southern Pine Beetle

Clarke,S.R.;Nowak,J.T.2009.Southernpinebeetle.ForestInsect&DiseaseLeaflet49.Portland,OR:U.S.DepartmentofAgricultureForestService.8p.(availableathttp://www.fs.fed.us/r6/nr/fid/fidls/fidl-49.pdf).

Price,T.S.;Doggett,C.;Pye,J.M.;Smith,B.1998.AhistoryofsouthernpinebeetleoutbreaksintheSoutheasternUnitedStatesbythesoutheasternforestinsectworkinggroup.Macon,GA:GeorgiaForestryCommission.72p.

Swain,K.M.;Remion,M.C.1981.Directcontrolofthesouthernpinebeetle.Agric.Handbk.575.Washington,DC:U.S.DepartmentofAgriculture.15p.

Texas leaf cutting Ant

Bennett,W.H.1958.TheTexasleaf-cuttingant.ForestPestLeaflet23.Washington,DC:U.S.DepartmentofAgricultureForestService.4p.(availableathttp://www.fs.fed.us/r6/nr/fid/fidls/fidl-23.pdf).

[Grosman,D.]n.d.Leaf-cuttingant.Webpage.CollegeStation,TX:TexasForestService.(Availableat:http://txforestservice.tamu.edu/main/popup.aspx?id=1187(Accessed:Jun.28,2010.)

Cherret,J.M.1986.Historyoftheleaf-cuttingantproblem.In:Lofgren,C.S.;VanderMeer,R.K.,eds.Fireantsandleaf-cutting-antsbiologyandmanagement.Boulder,CO:WestviewPress:10–17.