Top Banner
Chapter 13 Viruses, Viroids, and Prions Part 1
36

Chapter 13 Viruses, Viroids, and Prions Part 1. General Characteristics of Viruses Very small in size –Need an electron microscope to visualize and determine.

Jan 21, 2016

Download

Documents

Dana Adams
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Chapter 13 Viruses, Viroids, and Prions Part 1. General Characteristics of Viruses Very small in size –Need an electron microscope to visualize and determine.

Chapter 13

Viruses, Viroids, and Prions

Part 1

Page 2: Chapter 13 Viruses, Viroids, and Prions Part 1. General Characteristics of Viruses Very small in size –Need an electron microscope to visualize and determine.

General Characteristics of Viruses

• Very small in size– Need an electron microscope to visualize and

determine viral sizes– Passes through microbial filters (filterable

agent)– Range from 20 - 100 nm in length

Page 3: Chapter 13 Viruses, Viroids, and Prions Part 1. General Characteristics of Viruses Very small in size –Need an electron microscope to visualize and determine.
Page 4: Chapter 13 Viruses, Viroids, and Prions Part 1. General Characteristics of Viruses Very small in size –Need an electron microscope to visualize and determine.

General Characteristics of Viruses

• Inert outside living host cells

• Obligatory intracellular parasites– Viral nucleic acids only active inside a living

host cell – Take over host’s metabolic machinery to

multiply itself

• Not all of them cause disease – e.g. TT virus (TTV) discovered in 1997 is a

harmless symbiont (found in 2% of healthy humans)

Page 5: Chapter 13 Viruses, Viroids, and Prions Part 1. General Characteristics of Viruses Very small in size –Need an electron microscope to visualize and determine.

General Characteristics of Viruses

• Contain either DNA or RNA, not both – Can be single-stranded or double-stranded

• Contain a protein coat that surrounds DNA or RNA – Some are enclosed by an envelope (composed

of lipids, proteins, and carbohydrate)

• Multiply Inside living cells by using the host’s synthesizing machinery

Page 6: Chapter 13 Viruses, Viroids, and Prions Part 1. General Characteristics of Viruses Very small in size –Need an electron microscope to visualize and determine.

General Characteristics of Viruses

• Directs synthesis of specialized structures that can transfer the viral nucleic acid to other cells

• Hard to treat – Most antiviral drugs that would interfere with

viral multiplication would also interfere with the functioning of the host cell

Page 7: Chapter 13 Viruses, Viroids, and Prions Part 1. General Characteristics of Viruses Very small in size –Need an electron microscope to visualize and determine.

General Characteristics of Viruses

• Host range: spectrum of host cells the virus can infect

• Most viruses infect only specific types of cells in one host species (species specific)

• Host range is determined by specific host attachment sites (viral receptors) and the availability of cellular factors within the (potential) host

Page 8: Chapter 13 Viruses, Viroids, and Prions Part 1. General Characteristics of Viruses Very small in size –Need an electron microscope to visualize and determine.

General Characteristics of Viruses

• Host receptor site for bacteriophage (phage)– part of the cell wall (bacterial), or sometimes

part of the fimbriae or flagella

• Host receptor site for animal viruses– On the plasma membranes

• Viruses are classified by differences in the structures of their protein coat

Page 9: Chapter 13 Viruses, Viroids, and Prions Part 1. General Characteristics of Viruses Very small in size –Need an electron microscope to visualize and determine.
Page 10: Chapter 13 Viruses, Viroids, and Prions Part 1. General Characteristics of Viruses Very small in size –Need an electron microscope to visualize and determine.

Viral Structure

• Virion: a complete, fully developed, infectious viral particle composed of nucleic acid and surrounded by a protein coat– Vehicle of transmission from one host cell to

another– Structures of protein coat used for viral

classification

Page 11: Chapter 13 Viruses, Viroids, and Prions Part 1. General Characteristics of Viruses Very small in size –Need an electron microscope to visualize and determine.

Viral Structure

• Viral nucleic acid (either DNA or RNA) – Can be single-stranded or double-stranded– Can be linear or circular– Can be in several separate segments (e.g.

influenza virus)

• Capsid: the protein coat of a virus that surrounds the nucleic acid – Each capsid composed of protein subunit

(capsomeres)

Page 12: Chapter 13 Viruses, Viroids, and Prions Part 1. General Characteristics of Viruses Very small in size –Need an electron microscope to visualize and determine.

Viral Structure

– Arrangement of capsomeres characteristic of a particular type of virus

– Structure of capsid determined by the viral nucleic acid

– In a nonenveloped virus capsid protects nucleic acid from nuclease enzymes in biological fluids and promotes the virus’s attachment to susceptible host cells

Page 13: Chapter 13 Viruses, Viroids, and Prions Part 1. General Characteristics of Viruses Very small in size –Need an electron microscope to visualize and determine.

Viral Structure

• Envelope: an outer covering surrounding the capsid of some viruses– combination of lipid, proteins, and

carbohydrates– Some animal virus take host cell’s plasma

membrane as envelope when they are released from a host cell by an extrusion process

– Some envelopes may be covered by spikes (carbohydrate-protein complexes used for attachment to a host)

Page 14: Chapter 13 Viruses, Viroids, and Prions Part 1. General Characteristics of Viruses Very small in size –Need an electron microscope to visualize and determine.

Viral Structure

• Mutation of viral surface proteins allows viruses to escape antibodies made in an infected host– Cause reinfection with the same virus– e.g. Influenzavirus (changes in its spikes)

Page 15: Chapter 13 Viruses, Viroids, and Prions Part 1. General Characteristics of Viruses Very small in size –Need an electron microscope to visualize and determine.

General morphology

• Based on capsid architecture, viruses may be classified into several different morphological types– Use electron microscopy and X-ray

crsytallography

• Helical viruses– Resemble long rods; may be rigid or flexible– e.g. Rabies and Ebola viruses

Page 16: Chapter 13 Viruses, Viroids, and Prions Part 1. General Characteristics of Viruses Very small in size –Need an electron microscope to visualize and determine.

Helical virus

Page 17: Chapter 13 Viruses, Viroids, and Prions Part 1. General Characteristics of Viruses Very small in size –Need an electron microscope to visualize and determine.

General morphology

• Polyhedral (many-sided) viruses– Many animal, plant, and bacterial viruses– Capsid is in the shape of an icosahedron (a

regular polyhedron with 20 triangular faces and 12 corners)

– e.g. Adenovirus and poliovirus

Page 18: Chapter 13 Viruses, Viroids, and Prions Part 1. General Characteristics of Viruses Very small in size –Need an electron microscope to visualize and determine.

Polyhedral virus

Page 19: Chapter 13 Viruses, Viroids, and Prions Part 1. General Characteristics of Viruses Very small in size –Need an electron microscope to visualize and determine.

General morphology

• Enveloped viruses– Roughly spherical– enveloped helical or enveloped polyhedral

viruses– e.g. enveloped helical viruses: Influenzavirus– e.g. enveloped polyhedral (icosahedral) virus:

herpes simplex virus

Page 20: Chapter 13 Viruses, Viroids, and Prions Part 1. General Characteristics of Viruses Very small in size –Need an electron microscope to visualize and determine.

Enveloped virus

Page 21: Chapter 13 Viruses, Viroids, and Prions Part 1. General Characteristics of Viruses Very small in size –Need an electron microscope to visualize and determine.

General morphology

• Complex viruses– Viruses with complicated structures– e.g. Bacterial viruses (bacteriophages) and

poxviruses (have several coats around the nucleic acid)

Page 22: Chapter 13 Viruses, Viroids, and Prions Part 1. General Characteristics of Viruses Very small in size –Need an electron microscope to visualize and determine.

Complex virus

Page 23: Chapter 13 Viruses, Viroids, and Prions Part 1. General Characteristics of Viruses Very small in size –Need an electron microscope to visualize and determine.

Taxonomy of Viruses

• Oldest classification based on symptomatology

• International Committee on the Taxonomy of Viruses (ICTV) group viruses into families based on:– Nucleic acid type– Strategy for replication– Morphology

Page 24: Chapter 13 Viruses, Viroids, and Prions Part 1. General Characteristics of Viruses Very small in size –Need an electron microscope to visualize and determine.

Taxonomy of Viruses

• Virus species: a group of viruses sharing the same genetic information and ecological niche (host range)

• Order names end in -ales

• Family names end in -viridae

• Genus names end in -virus

Page 25: Chapter 13 Viruses, Viroids, and Prions Part 1. General Characteristics of Viruses Very small in size –Need an electron microscope to visualize and determine.

Taxonomy of Viruses

• No specific epithets (species) used for viruses; use descriptive common names– Subspecies are designated by a number

• Example– Herpesviridae>Herpesvirus>Human herpes

virus 1 (HHV 1), HHV 2, HHV 3– Retroviridae>Lentivirus>Human

immunodeficiency virus 1 (HIV 1), HIV 2

Page 26: Chapter 13 Viruses, Viroids, and Prions Part 1. General Characteristics of Viruses Very small in size –Need an electron microscope to visualize and determine.

Isolation, Cultivation, and Identification of Viruses

• Viruses must be grown in living cells– Viruses that use bacterial cells as host easier to

grow using bacterial cultures than animal or plant viruses

• Growing Bacteriophages in the Laboratory– Grow in either suspensions of bacteria in liquid

medie or in bacterial cultures on solid media– Solid media allows to detect and count viruses

using plaque method

Page 27: Chapter 13 Viruses, Viroids, and Prions Part 1. General Characteristics of Viruses Very small in size –Need an electron microscope to visualize and determine.

Growing bacteriophages in the lab

• Plaque: a clearing in a bacterial lawn resulting from lysis by phages– Each plaque theoretically is formed from a

single virus in the initial viral suspension

• Plaque-forming units (pfu): the concentration of viral suspensions measured by the number of plaques

Page 28: Chapter 13 Viruses, Viroids, and Prions Part 1. General Characteristics of Viruses Very small in size –Need an electron microscope to visualize and determine.
Page 29: Chapter 13 Viruses, Viroids, and Prions Part 1. General Characteristics of Viruses Very small in size –Need an electron microscope to visualize and determine.

Growing animal viruses in the lab

• In living animals– Some animal viruses can only be cultured in

living animals (mice, rabbits, and guinea pigs)– Some human viruses cannot be grown in other

animals, or can be grown but do not cause disease e.g. HIV 1 can infect Chimpanzees but show no symptoms of the disease

– Simian AIDS (in green monkey) and feline AIDS provide a model for studying human AIDS

Page 30: Chapter 13 Viruses, Viroids, and Prions Part 1. General Characteristics of Viruses Very small in size –Need an electron microscope to visualize and determine.

Growing animal viruses in the lab

• In Embryonated Eggs– Inexpensive form of host and fairly convenient– Virus is injected near the one most appropriate

for its growth– Viral growth is signaled by the death of the

embryo, or by the formation of typical pocks or lesions on the egg membranes

– Used to grow viruses for some vaccine (need to watch out for allergic reaction to egg proteins)

Page 31: Chapter 13 Viruses, Viroids, and Prions Part 1. General Characteristics of Viruses Very small in size –Need an electron microscope to visualize and determine.
Page 32: Chapter 13 Viruses, Viroids, and Prions Part 1. General Characteristics of Viruses Very small in size –Need an electron microscope to visualize and determine.

Growing animal viruses in the lab

• In cell cultures (use animal and plant cells)– Replaced embryonated eggs as the preferred

type of growth medium for many viruses– More convenient to work with than whole

animals or embryonated eggs– Primary cell lines: derived from tissue slices,

tend to die out after only a few generations– Continuous cell lines: transformed cells that can

be maintained through an indefinite number of generations; also known as immortal cell lines

Page 33: Chapter 13 Viruses, Viroids, and Prions Part 1. General Characteristics of Viruses Very small in size –Need an electron microscope to visualize and determine.

Cell Culture

Page 34: Chapter 13 Viruses, Viroids, and Prions Part 1. General Characteristics of Viruses Very small in size –Need an electron microscope to visualize and determine.

Growing animal viruses in the lab

– Some viruses have never been successfully cultivated in cell culture

– Maintenance of cell culture lines requires trained technicians

– Look for cytopathic effect (CPE) formed on the monolayer of cells infected with virus

Page 35: Chapter 13 Viruses, Viroids, and Prions Part 1. General Characteristics of Viruses Very small in size –Need an electron microscope to visualize and determine.

Cytopathic Effect (CPE)

Page 36: Chapter 13 Viruses, Viroids, and Prions Part 1. General Characteristics of Viruses Very small in size –Need an electron microscope to visualize and determine.

Viral identification• Cytopathic effects (CPE) in cell culture

• Serological tests– Detect antibodies against viruses in patient– Use antibodies to identify viruses in neutralization

tests, viral hemagglutination, and Western blot

• Nucleic acids– RFLPs (restriction fragment length

polymorphisms) – PCR (West Nile encephalitis outbreak)