Top Banner
hapter 10 Potentials and Fields 10.1 The Potential Formulation 10.2 Continuous Distributions 10.3 Point Charges
37

Chapter 10 Potentials and Fields

Jan 08, 2018

Download

Documents

Coleen Dennis

10.1 The Potential Formulation 10.1.1 Scalar and vector potentials 10.1.2 Gauge transformation 10.1.3 Coulomb gauge and Lorentz gauge
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Chapter 10 Potentials and Fields

Chapter 10 Potentials and Fields

10.1 The Potential Formulation

10.2 Continuous Distributions

10.3 Point Charges

Page 2: Chapter 10 Potentials and Fields

10.1 The Potential Formulation

10.1.1 Scalar and vector potentials

10.1.2 Gauge transformation

10.1.3 Coulomb gauge and Lorentz gauge

Page 3: Chapter 10 Potentials and Fields

10.1.1 Scalar and Vector Potentials

0

E

tBE

tEJB

000

0B

Maxwell’s eqs

),(),(

),(),(

trBtrE

trJtr

),(),(

trAtrV

or

field formulism

potential formulism

MS

ES

0E

VE

B

AB

)( At

E

0At

E )(

VAt

E

AB

tAVE

Page 4: Chapter 10 Potentials and Fields

10.1.1 (2)

0

E

0tAV

][

0

2 At

V

)(

][)( At

Vt

JA000

AAA 2 )()(

JtVA

tAA 0002

2

002

)()(

tEJB 000

Page 5: Chapter 10 Potentials and Fields

Ex.10.1

10.1.1 (3)

0V

ctxfor0

ctxforzxctc4k

A20 ˆ)(

where k is a constant,

?, J

Sol:

yxctc2kyxct

xc4kAB

zxct2k

tAE

020

0

ˆ)(ˆ)(

ˆ)(

for ctx )(, ctxfor0BE

0E

0B

y2kyxct

x2kE 00 ˆ)ˆ)((

z2kzxct

xc2kB 00 ˆ)ˆ)((

21

00c

)(

Page 6: Chapter 10 Potentials and Fields

10.1.1 (4)

z2kc

tE

0 ˆ

y2k

tB

0 ˆ

0E0

0z2kcz

c2k

tEB1J 0

00

0

ˆˆ)(

)(

200 c1

210x

z0x

z EEas0xat EE , 0Ex ,

xK fxy

xy

xy

xy BBBB ˆ11 0000

00

)ˆˆ(ˆ)]()[( xzKy2kt

2kt

f

yzktK f ˆ

Page 7: Chapter 10 Potentials and Fields

10.1.2 Gauge transformation

tAVE

0ttrVVforV )(),(,

0trAAforAABAA

),(,?aboutHow

tAV

ttAV

ttAV

tAVE

)(

)(tk

t

ttk

t

)(

Page 8: Chapter 10 Potentials and Fields

tiontransformaGauge

tVV

AAWhen

tAV

tAVE

AAB

The fields are independent of the gauges.(note: physics is independent of the coordinates.)

10.1.2 (2)

Page 9: Chapter 10 Potentials and Fields

10.1.3 Coulomb gauge and Lorentz gaugePotential formulation

)( At

V2

JtVA

tAA 0002

2

002

)()(

Sources: J

, AV

,AB

tAVE

Coulomb gauge: 0A

( )A VA Jt t

22

0 0 0 0 02

d

Rtr

41trVV

0

2 ),(),( easy to solve

difficult to solve

V

A

Page 10: Chapter 10 Potentials and Fields

10.1.3 (2)Lorentz gauge:

tVA 00

02

2

002

02

2

002

tVV

JtAA

0

2 V

JA 02

2

2

0022

t

inhomogeneous wave eq.

the d’Alembertion

[Note:Since is with ,the potentials with both and are solutions.]

2 2tt t

0f wave equation2

Page 11: Chapter 10 Potentials and Fields

Then, you have a solution and

Gauge transformation AA

tVV

Coulomb gauge : 0A

If you have a and ,A 0A

2AA

Find , A2

0A

A

10.1.3 (3)

Page 12: Chapter 10 Potentials and Fields

10.1.3 (4)

Lorentz gauge :tVA 00

If you have a set of and , andA

Vt

VA 00

2

2

002

0000 ttVA

tVA

Find ,t

VAt 002

2

002

Then ,you have a set if solutions and , andA V

tVA 00

Page 13: Chapter 10 Potentials and Fields

10.2 Continuous Distributions :

With the Lorentz gauge ,

tVA 00

0

2 1V wheret

2

0022

JA 02

,t

AVE

AB

In the static case ,)( 0t

,22

0

2 1V

JA 02

d

Rr

41rV

0

)()(

dRrJ

4rA 0 )()(

Page 14: Chapter 10 Potentials and Fields

10.2 (2)For nonstatic case, the above solutions only valid when for , and due to and , where is the retarded time. Because the message ofthe pensence of and must travel a distance the delay is ; that is ,

),( trV ),( trA ),( rtr ),( rtrJ

rt J

,rrR

cR /

cRtt r (Causality)

cttrr r )(

Page 15: Chapter 10 Potentials and Fields

10.2 (3)The solutions of retarded potentials for nonstatic sources are

d

Rtr

41trV r

0

),(),(

dR

trJ4

trA r0 ),(),(

Proof:

d

RRtrV )1(1)(

41),(

0

rrRRRR

R1

R1

22 ˆ

)(

Rc

Rc1t

tcRttr r

rr

ˆ)(),(

Page 16: Chapter 10 Potentials and Fields

10.2 (4)

d

RR

RR

c41V 2

0

ˆˆ

dRR

RR

RR

RR

c1

41V 22

0

2 )ˆ

()(ˆˆ

)(ˆ

Rc

tt r

r

ˆ

22

2 R1

R1R

RR1

RR

)()

ˆ( )()

ˆ( R4RR 3

2

dR4

Rc1

Rc1

Rc1

41V 3

2220

2 )(

0

rr

02

2

2ttrd

Rtr

41

tc1

),()),((

),( tr1tV

c1

02

2

2

The same procedure is for proving .A

Page 17: Chapter 10 Potentials and Fields

Example 10.2

Solution:

0V0

dzRtIz

4tsA r0

)(

ˆ),(

10.2 (5)

?),(,?),(,)(

tsB0tforItsE0tfor0tI

0

scontributesctzonlycstfor

0tsBtsE0tsAcstfor

22

)(,

),(),(),(,

Page 18: Chapter 10 Potentials and Fields

22 sct

0 2200

zsdz2z

4ItsA )()ˆ(),(

22 sct

0

2200 zzsz2

I

)()ln(ˆ

ssctctz2

I 2200 ln))(ln(ˆ

zs

sctct2

I 2200 ˆ)

)(ln(

)ln( zzsdzd 22

zzs1

22zs

z221

22

22 zs1

zsct2

cItAtsE

2200 ˆ)(

),(

ˆ),(

sAAtsB z

ˆ))(()(

)()(

22

2222200 sctcts

sct2s2

s1

sctcts

2I

10.2 (6)

Page 19: Chapter 10 Potentials and Fields

22

22222

2200

sctsctsctcts

sctct1

s2I

)()()(

)(

ˆ

)(),(

2200

sctct

s2ItsB

Note:

sct1

ssctctD 2

22

)(

1221

D1

scD

scD

t 2lnln

11

sc

11

D1

sc

22

2

222 sct

c

1sct

1sc

)()(

10.2 (7)

Page 20: Chapter 10 Potentials and Fields

Dt

ts

Ds

Ds

lnlnln

Dtc

ss1ct 2 ln)(

22 sctc

st

)(

,t0E

ˆ

s2IB 00

recover the static case

10.2 (8)

Page 21: Chapter 10 Potentials and Fields

10.3 Point Charges10.3.1 Lienard-Wiechert Potentials

10.3.2 The Fields of a Moving Point Charge

Page 22: Chapter 10 Potentials and Fields

10.3.1 Lienard-Wiechert potentials

Consider a point charge q moving on a trajectory )(tW

retarded position )( rtwrR

location of the observer at time t

cRtt r

Two issues•There is at most one point on the trajectory communicating with at any time t.r

),()( 2211 ttcRttcR

Since q can not move at the speed of light, there is only one point at meet.

Suppose there are two points:

cttRRVttcRR

12

211221

)(

Page 23: Chapter 10 Potentials and Fields

10.3.1 (2)

• qdtr r ),( the point chage

cVR1qdtr r /ˆ),(

due to Doppler –shift effect as the point charge is considered as an extended charge.

cx

vLL

cxL

Proof.consider the extended charge has a length L as a train

(a) moving directly to the observer

time for the light to arrive the observer.

E F

cv1LL

/

Page 24: Chapter 10 Potentials and Fields

(b)moving with an angle to the observer

10.3.1 (3)

cosL x L L xc v c

1 cos /LL

v c

The apparent volumec

vR1

ˆ actual volume

cvR1qdtr r /ˆ),(

Page 25: Chapter 10 Potentials and Fields

10.3.1 (4)

(

),(),(

c

vR1R

q4

1dR

tr4

1trV0

r

0

dtr

Rv

4d

Rtvtr

4trA r

0rr0 ),()(),(),(

),()(

),( trVcv

vRRcvqc

4trA 2

0

Lienard-Wiechert Potentials for a moving point charge

vRRcqc

41trV

0

),(

Page 26: Chapter 10 Potentials and Fields

10.3.1 (5)Example 10.3

constv ?),(?),(

trAtrV

22

22222222

r

2rr

222r

2r

2

rr

vctcrvcvrtcvrtct

ttt2tctvtvr2r

ttctvrR

tvtw00twlet

))(()()(

)(

)(

)()(

Solution:

1

consider

signchoose

retardedcrt

crtt0v r,

q

Page 27: Chapter 10 Potentials and Fields

10.3.1 (6)

))(()(

)(

)()()

ˆ(

2222222

r

2

r

r

rr

tcrvcvrtcc1

tc

vc

rvttc

ttctvr

cv1ttc

cvR1R

1

))(()()ˆ

(),(

222222200 tcrvcvrtc

qc4

1

cvR1Rc

qc4

1trV

),(),( trVcvtrA 2

))(()( 22222220

tcrvcvrtcvqc

4

002c1

)(ˆ)(

r

rr ttc

tvrRttcR

Page 28: Chapter 10 Potentials and Fields

10.3.2 The Fields of a Moving Point ChargeLienard-Weichert potentials:

)(),(

vRRcqc

41trV

0

),(),( trV

cvtrA 2

tAVE

AB

)(),(),( rrr twvandttcRtwrR

Math., Math., and Math,…. are in the following:

)()(

vRRcvRRc

14

qcV 20

Page 29: Chapter 10 Potentials and Fields

10.3.2 (2)

rtcR

)()()()()( RvvRRvvRvR

)(ˆˆ)()( rr

jr

irjii tRajitv

tRjtvRvR

wvrvRv )()()( va

vjvjzrvrv ijijii ˆˆ)(

)(ˆˆ)()( rr

r

jirjii tvvj

it

tw

vjtwvwv

rrijr

r

jrji taktak

it

tv

ktvv

ˆˆˆ)(

rrr tvtvtwrR )()(

0

)()()()()( rrrr tvvtaRtvvvtRavR

)()( aRttRa rr

=

0

Page 30: Chapter 10 Potentials and Fields

10.3.2 (4)

)()(

vRRcvRRc

14

qcV 20

r2

r2

20tvaRvtc

vRRc1

4qc

)()(

vRRcRaRvcv

vRRcqc

41 22

20

)()(

RaRvcvvRRcvRRc

qc4

1 2230

)()()(

vaRvc

cR

caRvvRRc

vRRcqc

41

tA 22

30

)())(()(

Prob.10.17

Page 31: Chapter 10 Potentials and Fields

10.3.2 (3)

)()()( vvttvvtvv0 rrr

r2

r tvtvv )(

r2 tvaRvvR )()(

)()( RRRR2

1RRRtc r

)()( RRRRR1

vRRcRt r

)( rtRvR

rtv

=

rtvRRR1 )(

)()( rr tvRtRvRR1

=

)()( vRttRv rr

Page 32: Chapter 10 Potentials and Fields

10.3.2 (5)

tAVtrE

),( RaRvcvvRRc

vRRcqc

41 22

30

)()()(

vaRvc

cR

caRvvRRc 22

)())((

])ˆ()ˆ)(()(

avRcRvRcaRvcvRRc

qR4

1 223

0

define vRRcuRvRcu ˆ

)()()()(

),( uRaaRuuvcuR

qR4

1trE 223

0

)()()(

),( auRuvcuR

qR4

1trE 223

0

vRcu ˆ

generalized Coulomb field radiation field or acceleration field dominates at large R

if RRq

41trE0v0a 2

0

ˆ),(,,

Electrostatic field

Page 33: Chapter 10 Potentials and Fields

10.3.2 (6)

)()()( VvvVc1vV

c1AB 22 V

cvA 2

vRRcRatav r

RaRvcvvRRcvRRc

qc4

1V 223

0

)()()(

)()( vRRc

RavRRc

qc4

1c1B

02

RvaRvc

vRRcqc

41 22

30

)()(

Page 34: Chapter 10 Potentials and Fields

10.3.2 (7)

)()()()(

223

0vcvaRvuRaR

uR1

4q

c1

)())(())(()(

ˆ uRaaRvRvcvRuR

qR4

1Rc1 22

30

)()()()(

ˆ uRaaRuvcuuR

qR4

1Rc1 22

30

)()()(

ˆ auRvcuuR

qR4

1Rc1 22

30

),(ˆ trERc1

),(ˆ),( trERc1trB

Page 35: Chapter 10 Potentials and Fields

10.3.2 (8)The force on a test charge Q with velocity due to a moving charge q with velocity is

V

v

)( BVEQF

)()(ˆ)()(

)(auRuvcR

cVauRuvc

uRR

4qQ 2222

30

Where rtatevaluatedallareaandvuR ,,,

Page 36: Chapter 10 Potentials and Fields

10.3.2 (9)Example 10.4 q constv ?),( trE

?),( trB

Solution:0a tvw 0t originatw

uuR

Rvc4

qtrE 3

22

0

)()(),(

)()()( tvrcvttcVtrcvRRcuR rr

21

2222222 tcrvcvrtcvRRcuR ))(()( Ex.10.3

Prob.10.14cv1Rc 22 /sin

3

21

22

22

0cv1Rc

Rcvc4

qtrE

)/sin(

)(),(

tvrR

Page 37: Chapter 10 Potentials and Fields

10.3.2 (10)

22

3222

22

0 RR

cv1

cv14

qtrEˆ

)/sin(

/),(

),(ˆ),( trERc1trB

),(),( trEvc1trB 2

c

vRP

Rvtttvr

RtvrR rr

)()(

)ˆ(4

),(,ˆ4

1),(2

02

0

PvPqtrBR

PqtrE

Coulomb`s law “Biot-savart Law for a point charge.”

ecoincidencbyptontpoiE ˆ

p

,22 cvwhen