Top Banner
8/22/11 1 The Origins of Molecular Biology: A Mendelian and Darwinian View of the World Introduc=on: The Big Ques=on Q: Why did the field of Molecular Biology come into being? Introduc=on: The Big Ques=on Q: Why did the field of Molecular Biology come into being? A: The simplest answer is that the field of Molecular Biology came into being as a way to explain mechanis=cally how heredity works! For example, you may want to know how eye color is inherited You may want to know how, on a molecular level, eye color forms (How the pigment is actually produced)
14

Chapter 1 Lecture - Winonacourse1.winona.edu/ssegal/Molecular Course...8/22/11 2 Introduc=on:$Molecular$Biology$PreO History • If$Molecular$Biology$studies$how$heredity$...

Jul 23, 2020

Download

Documents

dariahiddleston
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Chapter 1 Lecture - Winonacourse1.winona.edu/ssegal/Molecular Course...8/22/11 2 Introduc=on:$Molecular$Biology$PreO History • If$Molecular$Biology$studies$how$heredity$ works,$and$how$traits$are$expressed$then$the$

8/22/11  

1  

The  Origins  of  Molecular  Biology:  A  Mendelian  and  Darwinian  View  of  the  World  

Introduc=on:  The  Big  Ques=on  

•  Q:  Why  did  the  field  of  Molecular  Biology  come  into  being?  

Introduc=on:  The  Big  Ques=on  

•  Q:  Why  did  the  field  of  Molecular  Biology  come  into  being?  

•  A:  The  simplest  answer  is  that  the  field  of  Molecular  Biology  came  into  being  as  a  way  to  explain  mechanis=cally  how  heredity  works!  –  For  example,  you  may  want  to  know  how  eye  color  is  inherited  

–  You  may  want  to  know  how,  on  a  molecular  level,  eye  color  forms  (How  the  pigment  is  actually  produced)  

Page 2: Chapter 1 Lecture - Winonacourse1.winona.edu/ssegal/Molecular Course...8/22/11 2 Introduc=on:$Molecular$Biology$PreO History • If$Molecular$Biology$studies$how$heredity$ works,$and$how$traits$are$expressed$then$the$

8/22/11  

2  

Introduc=on:  Molecular  Biology  Pre-­‐History  

•  If  Molecular  Biology  studies  how  heredity  works,  and  how  traits  are  expressed  then  the  field  of  Molecular  Biology  must  have  its  roots  in  Gene=cs  

•  How  old  is  the  field  of  gene=cs?    How  long  have  humans  been  studying  heredity?  

Introduc=on:  Molecular  Biology  Pre-­‐History  

•  How  old  is  the  field  of  gene=cs?    How  long  have  humans  been  studying  heredity?  

•  About  10,000-­‐12,000  years  ago  humans  began  to  manipulate  animals  and  plants,  to  domes=cate  them  –  Plants  include  wheat,  barley,  len=ls,  peas  –  Animals  include  dogs,  sheep  and  goats  

•  Humans  were  able  to  quickly  understand  the  concept  of  heredity  (create  breeds  that  were  beUer  suited  to  agricultural  produc=on  by  ma=ng  individual  organisms  with  desirable  traits)  

Introduc=on:  Molecular  Biology  Pre-­‐History  

•  In  terms  of  crops,  humans  have  selected  for  varie=es  with  significantly  beUer  viability  –  Crop  variants  that  produce  

more  fruit/vegetable  –  Crops  that  are  more  resistant  

to  pests  

•  Using  Molecular  Biology:  –  Clone  genes  that  allow  for  pest  

resistance  etc.  –  Gene=c  Modifica=on:  Insert  

that  into  the  genome  of  a  plant  using  Agrobacterium  (round-­‐up  ready/Bt  crops)  

Page 3: Chapter 1 Lecture - Winonacourse1.winona.edu/ssegal/Molecular Course...8/22/11 2 Introduc=on:$Molecular$Biology$PreO History • If$Molecular$Biology$studies$how$heredity$ works,$and$how$traits$are$expressed$then$the$

8/22/11  

3  

Introduc=on:  Molecular  Biology  Pre-­‐History  

•  Besides  domes=ca=on,  understanding  how  heredity  works  also  is  extremely  important  for  public  health  

•  Humans  have  known  for  long  periods  of  =me  that  inbreeding  generally  results  in  expression  of  deleterious  traits  (generally  due  to  more  efficient  transmission  of  deleterious  gene  variants)  

•  Let’s  take  the  example  of  the  Romanov’s  –  Tsar  Nicholas  Romanov  II  was  the  Czar  of  Russia  from    –  The  family  included  his  wife  Alexandria  as  well  as  

four  daughters  

•  On  August  12,  1904  Tsar  Nicholas  II  and  Alexandria  had  their  first  son,  Alexis  

•  Alexis  was  clumsy  as  a  young  child  and  fell  oben.    When  he  cut  or  scraped  himself,  he  bled  profusely,  and  bruises  caused  uncontrollable  internal  bleeding  

•  Alexis  was  suffering  from  a  disease  called  hemophilia,  which  ran  through  the  Royal  Families  of  Europe  through  the  19th  century        

Introduc=on:  Molecular  Biology  Pre-­‐History  

Introduc=on:  Molecular  Biology  Pre-­‐History  

•  At  the  =me  of  the  Romanov’s,  it  was  known  that  the  disorder  ran  in  within  families  –  It  was  unknown  what  the  mechanism  of  

inheritance  of  the  disease  was  –  It  was  unknown  what  genes  were  implicated  

•  Today,  through  Molecular  Biology,  we  know  that  hemophiliacs  contain  a  defec=ve  variant  of  the  Cloeng  Factor  VIII  gene  on  the  X  chromosome  

•  Today,  hemophilia  is  not  a  life  threatening  disease  and  that  blood  transfusions  are  unnecessary  

•  Today,  using  molecular  biology  in  vitro,  we  can  produce  the  Cloeng  Factor  VIII  protein,  which  can  be  given  to  pa=ents  

Page 4: Chapter 1 Lecture - Winonacourse1.winona.edu/ssegal/Molecular Course...8/22/11 2 Introduc=on:$Molecular$Biology$PreO History • If$Molecular$Biology$studies$how$heredity$ works,$and$how$traits$are$expressed$then$the$

8/22/11  

4  

Introduc=on:  Molecular  Biology-­‐Where  We  Go  From  Here  

•  Define  Molecular  Biology  –  Ini=al  Terms  – Modern  Terms  

•  Understand  the  links  between  Gene=cs  and  Molecular  Biology  – How  the  field  of  Molecular  Biology  grew  out  of  Gene=cs  

– How  we  came  to  learn  which  molecule  contains  the  gene=c  informa=on  

Introduc=on:  Molecular  Biology-­‐Where  We  Go  From  Here  

•  Define  Molecular  Biology  –  Ini=al  Terms  – Modern  Terms  

•  Understand  the  links  between  Gene=cs  and  Molecular  Biology  – How  the  field  of  Molecular  Biology  grew  out  of  Gene=cs  

– How  we  came  to  learn  which  molecule  contains  the  gene=c  informa=on  

Introduc=on:  The  General  Defini=on  of  Molecular  Biology  

•  The  term  Molecular  Biology  was  coined  by  Dr.  Warren  Weaver  in  1938  

•  Warren  Weaver  was  a  civil  engineer  and  mathema=cian  by  trade  

•  Weaver  was  a  great  advocate  for  science  and  was  responsible  for  suppor=ng  grants  for  gene=cs  and  molecular  biology    

•  He  defined  molecular  biology  as  the  study  of  biological  phenomena  at  the  molecular  level  (ini=al  defini=on)  –  This  defini=on  covers  a  wide  range  of  

phenomena  –  This  defini=on  is  inaccurate  in  that  it  does  

not  explain  

Page 5: Chapter 1 Lecture - Winonacourse1.winona.edu/ssegal/Molecular Course...8/22/11 2 Introduc=on:$Molecular$Biology$PreO History • If$Molecular$Biology$studies$how$heredity$ works,$and$how$traits$are$expressed$then$the$

8/22/11  

5  

Introduc=on:  The  Beginnings  of  Molecular  Biology  

•  Molecular  Biology:  Study  how  the  processes  of  heredity,  evolu=on  as  well  as  how  basic  cellular  func=ons  work  (More  Modern  Defini=on)    

•  Heredity  can  be  defined  as  the  study  of  the  passage  of  traits  from  parent  to  offspring  –  Abstract  Concepts  of  Gene=cs  –  Eye  color  –  Hair  color  –  Body  paUern  –  Disease  or  Disease  predisposi=on  

•  Evolu=on  can  be  defined  as  the  development  of  more  complex  organisms  from  less  complex  organisms  –  Abstract  Concepts  of  Evolu=on  –  Development  of  an=bio=c  resistance  in  bacteria  –  Humans  developing  from  lesser  primates  apes    

•  Processes  that  fall  under  molecular  biology  necessary  for  cellular  func=on  –  DNA  replica=on/Segrega=on  –  Membrane  biosynthesis  –  Cellular  respira=on  

Introduc=on:  The  General  Defini=on  of  Molecular  Biology  

•  Our  Main  Focus  in  Molecular  Biology:  Molecular  basis  of  gene  expression  

•  Specifically,  if  one  wants  to  study  gene  expression  mechanis=cally  on  the  molecular  level,  then  one  follows  the  different  molecules  that  allow  for  expression  of  a  gene  as  well  as  the  molecules  that  carry  out  the  func=on  of  a  gene    –  Structure  of  DNA  and  the  hereditary  

informa=on  it  encodes  –  Structure  and  func=on  of  RNA  –  Structure  and  func=on  proteins  –  Mechanisms  of  DNA  replica=on  before  

cell  division  

 Historical  Perspec=ves  on  Heredity:  An  Introduc=on  

•  The  study  of  heredity  is  not  just  limited  to  the  modern  era,  but  started  over  2000  years  ago  

•  The  study  of  heredity  asks  one  of  the  fundamental  ques=ons  of  life,  how  do  we  have  the  traits  we  have?  

•  The  study  of  heredity  has  captured  the  imagina=on  of  many  scien=sts  through  out  history  

•  The  study  of  heredity  started  long  ago  in  ancient  Greece  with  Aristotle  (384-­‐322  BC)  –  Aristotle  proposed  the  theory  of  pangenesis  –  Pangenesis:  Hereditary  characteris=cs  are  

transmiUed  by  gemmules  from  individual  body  parts  

Page 6: Chapter 1 Lecture - Winonacourse1.winona.edu/ssegal/Molecular Course...8/22/11 2 Introduc=on:$Molecular$Biology$PreO History • If$Molecular$Biology$studies$how$heredity$ works,$and$how$traits$are$expressed$then$the$

8/22/11  

6  

Historical  Perspec=ves  on  Heredity:  An  Introduc=on  

•  Robert  Hooke  (1635-­‐1703)  developed  the  first  microscope  in  1665  and  allowed  humans  to  see  cells  for  the  first  =me  

•  The  use  of  microscopes  allowed  for  the  visualiza=on  of  sperm  and  eggs  

•  Performa=onism:  Inside  the  sperm  or  egg  exists  a  miniature  adult  (a  homunculus)  which  enlarges  during  development  

•  Note:  performa=onism  meant  that  all  traits  would  be  inherited  from  one  parent  

Historical  Perspec=ves  on  Heredity:  The  Age  of  Mendel  

•  It  was  not  un=l  the  1860s  that  mechanisms  of  heredity  started  to  become  truly  understood  

•  The  person  responsible  for  determining  the  mechanism  of  heredity  was  the  Austrian  monk  Gregor  Mendel    

•  Gregor  Mendel  was  born  in  1822  in  what  is  now  considered  the  Czech  Republic  to  a  family  of  farmers  

•  Although  his  family  had  liUle  money,  he  s=ll  received  a  substan=al  educa=on  during  his  childhood    

•  In  1843,  Mendel  was  admiUed  to  the  Augus=nian  Monastary  in  Brno,  where  he  was  trained  as  a  priest  

•  Mendel  later  went  on  the  become  a  teacher  and  scholar  

•  Later  he  went  on  to  further  his  educa=on  at  the  University  of  Vienna  from  1851-­‐1853,  where  he  took  courses  in  Math,  Chemistry,  Paleontology,  Botany  and  Plant  Physiology    

Historical  Perspec=ves  on  Heredity:  The  Age  of  Mendel  

•  Most  scien=sts  during  the  middle-­‐late  1800s  sought  to  follow  human  traits  as  they  thought  (without  evidence)  that  each  organism  inherited  traits  in  much  different  manners  than  other  organism  

•  The  other  scien=sts  of  that  =me  who  did  follow  human  traits  followed  those  that  generally  are  inherited  in  a  more  complex  manner    –  Traits  may  involve  many  genes    –  These  genes  may  have  strong  interac=ons  with  

environmental  factors  

•  Mendel  took  a  different  approach  because  he  decided  he  could  not  use  people  as  a  system  for  studying  inheritance,  he  instead  bred  pea  plants  

•  Mendel  was  easily  able  to  isolate  different  strains  of  pea  plant  with  very  dis=nct  characteris=cs  –  Seed  shape  –  Seed  color  –  Pod  shape  –  Stem  length  

Page 7: Chapter 1 Lecture - Winonacourse1.winona.edu/ssegal/Molecular Course...8/22/11 2 Introduc=on:$Molecular$Biology$PreO History • If$Molecular$Biology$studies$how$heredity$ works,$and$how$traits$are$expressed$then$the$

8/22/11  

7  

Historical  Perspec=ves  on  Heredity:  The  Age  of  Mendel  

•  Through  his  work  with  pea  plants  he  was  able  to  determine  how  each  of  these  individual  traits  were  inherited  from  parent  to  offspring  

•  Each  trait  was  controlled  by  a  pair  of  factors  

•  From  Mendel’s  study  of  the  different  traits,  and  their  mul=ple  factors,  came  his  law  of  Independent  Segrega=on    (Mendel’s  second  law)  –  Each  trait  is  determined  by  different  factors  –  Each  organism  must  inherit  two  factors  for  

each  trait  (one  from  each  parent)  –  Each  parent  then  must  segregate  his/her  two  

factors  into  separate  gametes  

•  In  Mendel’s  experiments,  he  no=ced  that  certain  factors  are  dominant  to  others,  which  led  to  postulate  a  Concept  of  Dominance    

•  Today,  we  find  that  each  trait  is  determined  by  a  gene  and  that  each  gene  can  exist  in  mul=ple  forms  (factors)  called  alleles  

Historical  Perspec=ves  on  Heredity:  The  Age  of  Mendel  

•  Mendel  extended  his  breeding  experiments  such  that  he  could  follow  more  than  one  trait  at  a  =me  

•  From  the  results  of  these  experiments  he  postulated  the  law  of  independent  assortment  (Mendel’s  first  law),  

•  The  first  law  states  that  for  each  trait,  the  factors  will  assort  independently  from  one  another  during  gamete  forma=on    –  Each  gamete  will  have  one  factor  for  each  

trait  –  The  presence  of  a  specific  factor  for  one  gene  

will  have  no  influence  on  which  factor  will  be  present  for  another  gene  

•  Upon  union  of  two  gametes,  each  trait  will  again  be  represented  by  two  factors  

Historical  Perspec=ves  on  Heredity:  The  Age  of  Mendel    

•  Mendel  performed  his  work  generally  outside  the  scien=fic  community,  and  thus,  his  work  although  published  was  not  exactly  viewed  favorably  (36  years)  

•  His  work  sat  idle  un=l  1900  when  Hugo  DeVries,  Karl  Correns  and  Erich  Von  Tschermak  independently  recreated  his  work  

•  Although  Mendel  was  able  to  determine  how  different  traits  were  inherited  he  had  no  idea  how  traits  were  encoded  –  Had  no  idea  that  traits  were  determined  by  genes  –  Had  no  idea  what  genes  were  composed  of  

•  During  the  early  1900’s,  many  other  scien=sts  determined  the  mechanisms  of  inheritance  for  a  large  number  of  traits  in  a  variety  of  different  organisms  

•  In  the  early  1900’s  Thomas  Hunt  Morgan  postulated  sex-­‐linkage  for  which  he  won  a  Nobel  Prize  

Page 8: Chapter 1 Lecture - Winonacourse1.winona.edu/ssegal/Molecular Course...8/22/11 2 Introduc=on:$Molecular$Biology$PreO History • If$Molecular$Biology$studies$how$heredity$ works,$and$how$traits$are$expressed$then$the$

8/22/11  

8  

Historical  Perspec=ves  on  Heredity:  The  Chromosomal  Theory  of  Heredity  •  One  of  the  main  difficul=es  in  the  

acceptance  of  Mendel’s  work  is  the  lack  of  actual  physical  evidence  

•  August  Weisman  (1893)  was  one  of  the  first  scien=sts  to  link  behavior  of  chromosomes  to  heredity  

•  When  studied  segrega=on  of  chromosomes,  he  no=ced  that  the  number  of  chromosomes  in  the  nuclei  of  germ  cells  is  halved.    Therefore,  he  postulated  that  the  material  of  heredity  (gene=c  informa=on)  is  located  in  the  nucleus    

•  From  this,  Weisman  postulated  that  The  Germ-­‐plasm  theory  –  States  that  cells  in  the  reproduc=ve  organs  

carry  a  complete  set  of  gene=c  informa=on,  and  that  this  informa=on  is  passed  along  to  the  egg  and  sperm  

–  Perhaps  this  informa=on  is  present  in  the  chromosomes  

Historical  Perspec=ves  on  Heredity:  The  Chromosomal  Theory  of  Heredity  •  In  1903  Walter  SuUon  published  his  paper  “The  

Chromosomes  in  Heredity  –  Paper  focused  on  the  principles  in  Meiosis  –  SuUon  saw  that  there  appeared  to  be  two  copies  for  

each  chromosome  –  During  meiosis,  each  gamete  receives  only  one  

member  of  of  the  chromosome  pair,  which  appropriately  follows  Mendel’s  law  of  independent  assortment    

•  SuUon’s  Conclusions  –  Chromosomal  movement  explains  Mendel’s  second  

law  (independent  segrega=on)  –  Proposal  of  the  Chromosomal  Theory  of  Heredity  

•  SuUon  assumed  that  genes  are  part  of  the  chromosome  –  Assumed  that  the  seed  color  gene  is  found  on  one  

pair  of  chromosomes  –  Explains  the  3:1  ra=o  when  crossing  heterozygotes  –  He  also  assumed  that  seed  shape  genes  were  found  

on  another  pair  of  chromosomes  from  the  seed  color  genes,  which  allow  for  the  observed  9:3:3:1  ra=o  

•  SuUon’s  results  were  important  for  two  reasons  –  Most  importantly  suggested  (but  did  not  prove)  

physical  evidence  for  Mendel’s  rules  regarding  segrega=on  

–  Linked  the  study  of  Gene=cs  to  the  study  of  cytology  and  would  drive  the  development  of  the  field  of  Molecular  Biology  

Historical  Perspec=ves:  The  Chromosomal  Theory  of  Heredity  

•  With  the  work  of  SuUon  and  the  Chromosomal  Theory  of    Heredity  two  ques=ons  remained  –  What  were  the  chromosomes  

composed  of?  –  What  material  carried  the  

informa=on  of  heredity?  

•  Given  that  the  chromosomes  appeared  to  segregate  according  to  Mendel’s  laws  of  independent  segrega=on,  then  the  material(s)  that  compose  chromosomes  must  also  be  responsible  for  heredity      

Page 9: Chapter 1 Lecture - Winonacourse1.winona.edu/ssegal/Molecular Course...8/22/11 2 Introduc=on:$Molecular$Biology$PreO History • If$Molecular$Biology$studies$how$heredity$ works,$and$how$traits$are$expressed$then$the$

8/22/11  

9  

The  Beginnings  of  Molecular  Biology:  Friedrich  Meischer’s  Contribu=ons  To  Determining  Which  Molecule  Holds  

Gene=c  Informa=on  •  At  about  the  same  =me  that  Mendel  

was  working  on  his  pea  plants,  Friedrich  Meischer  (1868)  was  embarking  on  studying  the  chemical  makeup  of  cells  

•  Meicher  theorized  that  to  determine  the  material  of  heredity  one  must  understand  the  chemical  nature  of  cells  

•  Meicher,  in  order  to  determine  the  material  of  heredity  studied  the  chemistry  of  pus  

•  Pus  includes  bacteria,  which  cause  an  infec=on,  as  well  as  many  white  blood  cells,  which  are  called  on  to  fight  the  infec=on  

The  Beginnings  of  Molecular  Biology:  Friedrich  Meischer’s  Contribu=ons  To  Determining  Which  Molecule  Holds  

Gene=c  Informa=on  •  Meicher  took  the  white  blood  

cells  and  isolated  their  nuclei  to  study  what  was  inside  

•  Upon  analysis,  he  expected  to  find  protein  inside  the  nucleus,  however,  he  found  the  ra=os  of  carbon  and  nitrogen  to  be  inconsistent  the  presence  of  protein  

•  As  well,  he  found  that  the  material  was  slightly  acidic  and  importantly  was  high  in  phosphorus-­‐he  called  this  material  nuclein  

•  With  further  analysis  of  nuclein,  he  found  that  the  three  main  components  of  nuclein  were  phosphate,  sugar  and  a  nitrogen  containing  base  

The  Beginnings  of  Molecular  Biology:    The  Controversy  Between  DNA  and  Protein  Carrying  the  Informa=on  of  

Heredity  

•  In  the  early  20th  Century  the  controversy  raged  which  molecule  contained  the  informa=on  of  heredity  –  Nucleic  Acid  (DNA)  –  Protein  

•  Due  to  the  chemical  nature  of  each  molecule,  it  was  thought  that  proteins  contained  the  informa=on  of  heredity  –  Proteins  are  composed  of  a  possible  20  different  amino  acids  –  Each  amino  acid  has  its  own  chemical  proper=es  –  Within  a  cell  there  could  be  many  different  varia=ons  of  protein  

•  DNA  was  thought  to  be  much  less  complex  than  protein  and  thus  could  not  be  the  material  of  heredity  –  Composed  of  only  four  different  nitrogenous  bases  –  Only  a  few  structural  varia=ons  

Page 10: Chapter 1 Lecture - Winonacourse1.winona.edu/ssegal/Molecular Course...8/22/11 2 Introduc=on:$Molecular$Biology$PreO History • If$Molecular$Biology$studies$how$heredity$ works,$and$how$traits$are$expressed$then$the$

8/22/11  

10  

The  Beginnings  of  Molecular  Biology:  Fredrick  Griffith’s  Contribu=ons  To  Molecular  Biology  

•  In  Griffith’s  experiments  he  used  two  different  strains  of  S.  pneumoniae    –  Type  IIIR  –  Type  IIIS  

•  Griffith  first  injected  the  non-­‐pathogenic  Type  IIIR  strain  and  found  that  the  mice  survived  

•  Next,  Griffth  injected  the  pathogenic  Type  IIIS  strain  into  the  mice  and  they  died  

•  Griffith  treated  Type  S  bacteria  with  heat,  thus  killing  them  

•  When  he  injected  the  heat  killed  type  S  bacteria,  he  found  that  the  mice  remained  healthy  

The  Beginnings  of  Molecular  Biology:  Fredrick  Griffith’s  Contribu=ons  To  Molecular  Biology  

•  The  last  experiment  he  did  was  he  mixed  the  heat  killed  type  S  bacteria  with  the  live  type  R  bacteria  

•  He  then  injected  this  mixture,  and  found  that  the  mice  became  sick  and  died  

•  He  concluded  that  there  was  a  transfer  of  some  component  from  the  dead  pathogenic  (Type  S)  bacteria  to  the  live  non-­‐pathogenic  Type  R  bacteria  to  make  it  become  pathogenic  

•  He  called  this  component  the  transforming  principle,  that  when  transmiUed  from  the  dead  S  to  the  live  R  bacteria  allowed  them  to  become  pathogenic  

•  Griffith  was  not  able  to  determine  the  true  chemical  nature  of  the  transforming  principle  

The  Beginnings  of  Molecular  Biology:  In  vitro  Experiments  Based  on  Griffith’s  work  

•  In  1931,  Henry  Dawson  showed  that  the  mouse  was  not  needed  for  transforma=on  –  He  heat  killed  the  pathogenic  type  S  bacteria  and  then  mixed  it  with  the  the  live  type  R  

bacteria  –  Instead  of  injec=ng  the  mixture  into  mice,  he  plated  the  mixture  on  agar  plates  –  He  found  some  type  R  colonies  and  some  type  S  colonies  on  his  plates  

•  In  1933,  Lionel  Alloway  showed  that  a  cell-­‐free  extract  prepared  from  broken  type  S  bacteria  could  also  be  used  for  transforma=on  of  live  type  R  cells  to  type  S  cells    

•  In  1941  Oswald  Avery,  Colin  MacLeod  and  Maclyn  McCarty  took  Griffith’s  experiment  further  to  determine  the  true  chemical  nature  of  the  transforming  principle  –  Took  mixtures  and  incubated  them  with  different  degrada=ve  enzymes  –  DNase  –  RNase  –  Protease  

Page 11: Chapter 1 Lecture - Winonacourse1.winona.edu/ssegal/Molecular Course...8/22/11 2 Introduc=on:$Molecular$Biology$PreO History • If$Molecular$Biology$studies$how$heredity$ works,$and$how$traits$are$expressed$then$the$

8/22/11  

11  

The  Beginnings  of  Molecular  Biology:  In  vitro  Experiments  Based  on  Griffith’s  work  

Historical  Perspec=ves:  The  Hershey-­‐Chase  Experiment  

•  Even  with  the  results  of  Avery,  MacLeod  and  McCarty,  the  controversy  about  whether  DNA  or  protein  contained  the  informa=on  of  heredity,  was  s=ll  raging  

•  Hershey  and  Chase  performed  what  is  now  recognized  as  the  sen=nel  experiment,  which  put  the  controversy  to  rest    

•  In  order  to  determine  whether  protein  or  DNA  was  being  inserted  into  the  host  cell,  Hershey  and  Chase  needed  to  find  a  way  to  label  each  type  of  molecule  

•  Hershey  and  Chase  used  the  T2  bacteriophage,  in  their  experiments  

•  T2  bacteriophage  is  a  virus  that  infect  E.  coli.    Viruses  are  unable  to  reproduce  on  their  own,  they  need  to  reproduce  use  a  host  cell    

•  At  the  =me,  it  was  known  that  a  virus  had  an  outer  protein  coat,  and  inside  this  protein  coat  was  DNA  

•  When  a  T2  bacteriophage  infects  and  E.  coli,  it  aUaches  to  the  outside,  and  then  injects  its  gene=c  material  into  the  E.  coli  cell.  Once  injected,  the  cell  uses  this  gene=c  material  to  make  new  virus  

•  What  Hershey  and  Chase  wanted  to  do  was  to  figure  out  what  got  inserted  into  the  host  cell  because  that  must  be  the  gene=c  material  

The  Beginnings  of  Molecular  Biology:  The  Hershey-­‐Chase  Experiment  

•  They  knew  protein  contained  sulfur,  whereas  DNA  did  not  and  DNA  contained  phosphorus  whereas  proteins  did  not  

•  They  labeled  proteins  with  a  radioac=ve  form  of  sulfur  (35S)    

•  They  labeled  DNA  with  a  radioac=ve  form  of  phosphorus  (32P)  

•  Next  they  created  Bacteriophage  that  had  either  their  DNA  labeled  with  32P  or  their  protein  labeled  with  35S  

•  They  then  took  their  phage  that  either  contained  radioac=ve  protein  or  radioac=ve  DNA  and  infected  E.  coli  with  them  

•  Upon  infec=on,  the  viruses  would  bind  to  the  outside  of  the  E.  coli  cell  and  insert  their  gene=c  material    

•  Next,  they  took  their  mixture  containing  infected  E.  coli  and  used  a  blender  to  lightly  shear  off  whatever  was  leb  that  was  bound  to  the  outside  of  the  cell  

•  They  then  centrifuged  their  sample  to  pellet  the  bacteria.  This  leaves  any  part  of  the  phage  that  was  not  inserted  into  the  cell  leb  in  solu=on  (supernatant)  

Page 12: Chapter 1 Lecture - Winonacourse1.winona.edu/ssegal/Molecular Course...8/22/11 2 Introduc=on:$Molecular$Biology$PreO History • If$Molecular$Biology$studies$how$heredity$ works,$and$how$traits$are$expressed$then$the$

8/22/11  

12  

The  Beginnings  of  Molecular  Biology:  The  Hershey-­‐Chase  Experiment  

•  When  they  looked  at  sample  in  which  the  phage  contained  radioac=ve  protein  (35S),  they  found  that  the  radioac=vity  was  found  in  the  supernatant  and  not  in  the  bacterial  pellet  

•  This  suggests  that  protein  is  not  inserted  into  the  host  cell,  and  thus  protein  would  not  be  the  gene=c  material  

•  In  contrast,  when  they  looked  at  the  sample  in  which  the  phage  contained  radioac=ve  DNA  (32P),  they  found  that  the  radioac=vity  was  found  in  the  bacterial  pellet  and  not  in  the  supernatant  

•  This  suggests  that  DNA  is  being  inserted  into  the  host  cell,  and  thus,  DNA  would  be  the  gene=c  material  

The  Beginnings  of  Molecular  Biology:  A  Model  For  the  Structure  of  DNA  

•  Previously,  it  had  been  shown  that  DNA  is  composed  of  three  different  components  –  Sugar  –  Phosphate  –  Nitrogenous  bases  

•  It  was  known  that  there  were  four  nitrogenous  bases  –  Adenine  –  Thymine  –  Cytosine  –  Guanine  

•  Quan=ta=ve  methods  by  Erwin  Chargaff  had  shown  that  the  the  number  of  [A]  =  [T]  and  the  amount  of  [G]  =[C]  (However,  [G+C]  does  not  equal  [A+T]  

•  Based  off  of  this  work,  and  by  X-­‐ray  diffrac=on  analysis  on  DNA  by  Maurice  Wilkins  and  Rosalind  Franklin,    James  Watson  and  Francis  Crick  were  able  to  determine  the  3-­‐D  structure  of  DNA    –  Found  that  the  shape  of  DNA  is  in  the  form  of  a  helix  

of  constant  diameter  –  Found  that  the  nitrogenous  bases  were  stacked  

towards  the  interior  of  the  molecule,  with  the  backbone  containing  sugar  (deoxyribose)  and  phosphate  

–  They  were  able  to  determine  the  distance  between  the  stacked  bases  

The  Beginnings  of  Molecular  Biology:  A  Model  For  the  Structure  of  DNA  

Page 13: Chapter 1 Lecture - Winonacourse1.winona.edu/ssegal/Molecular Course...8/22/11 2 Introduc=on:$Molecular$Biology$PreO History • If$Molecular$Biology$studies$how$heredity$ works,$and$how$traits$are$expressed$then$the$

8/22/11  

13  

The  Gene  Is  The  Basic  Unit  of  Heredity:  Introduc=on  

•  As  Mendel  worked  with  his  pea  plants  he  had  no  concept  of  what  a  gene  was  

•  Instead  he  was  only  following  hereditary  characteris=cs  –  Seed  shape  –  Seed  color  –  Plant  size  

•  In  1889  Hugo  de  Vries  tried  to  explain  Mendel’s  factors  in  his  book  “Intracellular  Pangenesis”  

•  De  Vries    stated  that  the  pangen  is  “smallest  par=cle  represen=ng  one  hereditary  characteris=c”  

•  About  20  years  late  Wilhelm  Johannsen  coined  the  term  gene  by  shortening  the  word  pangen    

•  Be  aware  neither  scien=st  understood  physically  what  a  gene  was,  they  only  knew  that  it  encoded  a  specific  hereditary  characteris=c  

The  Gene  Is  The  Basic  Unit  of  Heredity:  The  Molecular  Iden=ty  of  a  Gene  

•  Over  =me,  it  was  determined  that  the  genes  were  located  on  chromosomes,  which  were  composed  of  primarily  DNA  and  associated  proteins    

•  As  early  as  1910,  Thomas  Hunt  Morgan  and  his  research  group  at  Columbia  University  started  mapping  the  exact  posi=ons  of  each  discovered  gene  within  the  genome  –  Morgan  and  his  group  worked  with  Drosophila  

melanogaster  –  Produced  mutant  flies  with  different  characteris=cs  

(mutant  strains)    

•  Morgan  and  his  group  were  able  to  map  their  posi=ons  by  using  a  series  of  gene=c  crosses  using  his  different  mutant  strains  –  Mapped  each  new  gene  with  respect  to  known  genes  –  Were  able  to  map  each  gene  by  determining  which  

genes  were  linked  (on  the  same  chromosome)  

•  By  1913  Alfred  Sturtyvant,  student  in  Morgans’s  lab,  produced  the  first  ever  physical  map  loca=ng  each  known  gene  of  an  organism’s  genome  (Drosophila)  

•  At  this  point  in  =me,  a  gene  was  being  beUer  defined  as  a  unit  that  encodes  a  specific  inherited  trait  

The  Gene  Is  The  Basic  Unit  of  Heredity:  Determining  What  A  Gene  Encodes  on  a  Molecular  Level    

•  As  the  field  of  molecular  biology  started  to  develop,  researchers  wanted  to  develop  a  beUer  molecular  defini=on  of  a  gene  –  What  the  structure  of  a  gene  looks  like  –  More  importantly,  what  a  gene  actually  

encodes  

•  In  1941,  George  Beadle  and  Edward  L.  Tatum  were  the  first  to  demonstrate  the  link  between  a  gene  and  a  step  in  a  metabolic  pathway  which  is  catalyzed  by  an  enzyme  

•  Beadle  and  Tatum  worked  backwards  using  specific  mutants  of  the  pink  bread  mold,  Neurospora  crassa  in  which  specific  chemical  reac=ons  were  blocked  

•  Beadle  and  Tatum  followed  the  biochemical  pathway  for  niacin  biosynthesis  –  Considered  a  water  soluble  vitamin  –  Niacin  is  a  precursor  to  NADPH  

Page 14: Chapter 1 Lecture - Winonacourse1.winona.edu/ssegal/Molecular Course...8/22/11 2 Introduc=on:$Molecular$Biology$PreO History • If$Molecular$Biology$studies$how$heredity$ works,$and$how$traits$are$expressed$then$the$

8/22/11  

14  

The  Gene  Is  The  Basic  Unit  of  Heredity:  Determining  What  A  Gene  Encodes  on  a  Molecular  Level    

•  Beadle  and  Tatum  knew  that  niacin  could  be  produced  star=ng  from  the  amino  acid  tryptophan  

•  Niacin  produc=on  from  tryptophan  is  not  just  a  one  step  process,  in  that  there  are  several  intermediates  involved  –  Kynurenine  –  3-­‐hydroxyanthranilic  acid    

•  Beadle  and  Tatum  understood  that  produc=on  of  Niacin  was  a  three  step  process,  which  involves  three  different  enzymes  –  Each  enzyme  catalyzes  a  specific  step  –  Hypothesized  that  each  enzyme  was  encoded  by  a  

different  gene  

•  To  test  this,  they  induced  muta=ons  into  the  Neurospora  by  using  X-­‐irradia=on  and  then  plated  them  on  minimal  medium,  or  supplemented  media  

•  As  long  as  a  metabolic  step  is  not  affected  by  the  X-­‐irradia=on,  the  Neurospora  should  grow  on  the  minimal  media  

•  However,  failure  to  grow  on  the  media  indicates  that  a  muta=on  has  occurred  leading  to  a  growth  defect      

The  Gene  Is  The  Basic  Unit  of  Heredity:  Determining  What  A  Gene  Encodes  on  a  Molecular  Level    

•  Beadle  and  Tatum  observed  a  one-­‐to-­‐one  correspondence  between  the  gene=c  muta=ons  and  the  lack  of  a  specific  enzyme  required  in  a  biochemical  pathway  

•  From  their  work  arose  the  “One  Gene  –  one  enzyme  hypothesis”  

The  Gene  Is  The  Basic  Unit  of  Heredity:  Determining  What  A  Gene  Encodes  on  a  Molecular  Level    

•  Eventually,  the  one  gene-­‐one  enzyme  hypothesis  was  ameneded  based  on  several  other  discoveries  in  addi=on  to  that  of  Beadle  and  Tatum  –  The  discovery  that  DNA  holds  the  gene=c  informa=on  by  Avery,  Macleod  and  McCarty  as  

well  as  Hershey  and  Chase    –  The  discovery  of  the  DNA  double  helix  by  Watson  and  Crick  

•  Watson  and  Crick  further  proposed  that  a  gene  encodes  a  protein  –  Not  all  genes  encoding  proteins  encode  enzymes  –  Some  genes  encode  structural  proteins,  signaling  proteins  as  well  as  others  

•  This  hypothesis  has  been  amended  further,  because  there  are  some  genes  that  do  not  even  encode  polypep=des,  they  encode  RNAs  

•  Today  through  the  work  of  many  Molecular  Biologists  the  actual  structure  of  the  gene  has  been  determined  

•  In  1972,  Walter  Fiers  and  his  colleagues  were  the  first  to  sequence  an  en=re  gene