Top Banner
Chapter 1 Chapter 1 Measurment Introduction to Physics Introduction to Vectors Introduction to Calculus( 微微微 Chapter 0 Preface
23

Chapter 1 Chapter 1 Measurment Introduction to Physics Introduction to Vectors Introduction to Calculus( 微积分 ) Chapter 0 Preface.

Jan 17, 2016

Download

Documents

Shon Houston
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Chapter 1 Chapter 1 Measurment  Introduction to Physics  Introduction to Vectors  Introduction to Calculus( 微积分 ) Chapter 0 Preface.

Chapter 1Chapter 1 Measurment

Introduction to Physics

Introduction to Vectors

Introduction to Calculus( 微积分 )

Chapter 0 Preface

Page 2: Chapter 1 Chapter 1 Measurment  Introduction to Physics  Introduction to Vectors  Introduction to Calculus( 微积分 ) Chapter 0 Preface.

Chapter 1Chapter 1 MeasurmentChapter 0 Preface

Introduction to Physics

1) Objects studied in physics

2) Methodology for studying physics

3) Some other key points

(See 动画库 \ 力学夹 \ 绪论 .exe)

Page 3: Chapter 1 Chapter 1 Measurment  Introduction to Physics  Introduction to Vectors  Introduction to Calculus( 微积分 ) Chapter 0 Preface.

Chapter 1Chapter 1 MeasurmentChapter 0 Preface

Introduction to Vectors

A scalar is a simple physical quantity that does not depend on direction.

mass, temperature, volume, work…

A vector is a concept characterized by a magnitude and a direction.

force, displacement, velocity…

Page 4: Chapter 1 Chapter 1 Measurment  Introduction to Physics  Introduction to Vectors  Introduction to Calculus( 微积分 ) Chapter 0 Preface.

Chapter 1Chapter 1 MeasurmentChapter 0 Preface

1) Representation of vectors

2) Addition and subtraction of vectors

3) Dot and cross products

(See 动画库 \ 力学夹 \0-4 矢量运算 .exe)

(See 动画库 \ 力学夹 \0-4 矢量运算 .exe)

Page 5: Chapter 1 Chapter 1 Measurment  Introduction to Physics  Introduction to Vectors  Introduction to Calculus( 微积分 ) Chapter 0 Preface.

Chapter 1Chapter 1 Measurment

θ A

B

θ A

B

?

?

Chapter 0 Preface

)(||| θcos|BABA

3.1) Dot product:

θ A

B

θ A

B

)(Bcos

)(

Acos

No problem , if θ

Page 6: Chapter 1 Chapter 1 Measurment  Introduction to Physics  Introduction to Vectors  Introduction to Calculus( 微积分 ) Chapter 0 Preface.

Chapter 1Chapter 1 MeasurmentChapter 0 Preface

kAjAiAA zyx

kBjBiBB zyx

?BA

)BBB()( kjikAjAiABA zyxzyx

zzyyxx BABABA

zzyyxx BABABABA

ABBA

22 A|AAA

|

CABACBA

)(

Prove it?

Page 7: Chapter 1 Chapter 1 Measurment  Introduction to Physics  Introduction to Vectors  Introduction to Calculus( 微积分 ) Chapter 0 Preface.

Chapter 1Chapter 1 MeasurmentChapter 0 Preface

3.2) Cross product: nABsinBA)(

is a unit vector perpendicular to both and .

, , and also becomes a right handed system. nn

The length of   ×  can be interpreted as the area of the parallelogram having A and B as sides.

A

B

A

B

A

B

A

B

BA

n

BA-AB

θ

AB|BA| ,BA If

0BA ,B//A If

Scalar triple product:

?)( CBA

Page 8: Chapter 1 Chapter 1 Measurment  Introduction to Physics  Introduction to Vectors  Introduction to Calculus( 微积分 ) Chapter 0 Preface.

Chapter 1Chapter 1 MeasurmentChapter 0 Preface

kAjAiAA zyx

kBjBiBB zyx

?BA

)BBB()( kjikAjAiABA zyxzyx

jBABAiBABA zxxzyzzy

)()(

kBABA xyyx

)(

zyx

zyx

BBB

AAA

kji

BA

jBABA zxxz

)( kBABA xyyx

)(

iBABA yzzy

)(

Page 9: Chapter 1 Chapter 1 Measurment  Introduction to Physics  Introduction to Vectors  Introduction to Calculus( 微积分 ) Chapter 0 Preface.

Chapter 1Chapter 1 MeasurmentChapter 0 Preface

Introduction to Calculus( 微积分 )1) Limit of a function

Lxfcx

)(limƒ(x) can be made to be as close to L as desired by making x sufficiently close to c.

“The limit of ƒ of x, as x approaches c, is L."

Note that this statement can be true even if       or ƒ(x) is not defined at c. Lcf )(

1

1)(

2

x

xxfExample:

2|1)(lim 11

xx

xxf

Page 10: Chapter 1 Chapter 1 Measurment  Introduction to Physics  Introduction to Vectors  Introduction to Calculus( 微积分 ) Chapter 0 Preface.

Chapter 1Chapter 1 MeasurmentChapter 0 Preface

2) Derivative of a function( 函数的导数 )

• Motion with constant velocity

t

s

t1 t2

12

12 )()()(

tt

tststv

t

s

t1 t2

• Motion with changing speed

12

12 )()()(

tt

tststv

?

Page 11: Chapter 1 Chapter 1 Measurment  Introduction to Physics  Introduction to Vectors  Introduction to Calculus( 微积分 ) Chapter 0 Preface.

Chapter 1Chapter 1 MeasurmentChapter 0 Preface

How to find the instantaneous speed at t1?

12

121

)()(lim)(

12 tt

tststv

tt

• Motion with changing speed

t

tsttstv

t

)()(lim)(

0

tt 1ttt 2

dt

ds

Derivative of s

Page 12: Chapter 1 Chapter 1 Measurment  Introduction to Physics  Introduction to Vectors  Introduction to Calculus( 微积分 ) Chapter 0 Preface.

Chapter 1Chapter 1 MeasurmentChapter 0 Preface

For general function, its derivative is defined as:

x

xfxxf

dx

xdfx

)()(lim

)(0

')(' yxf

x

f(x)

x1 x2

A

A’

tangent

The meaning of derivative of a function:

x

y

tan

1

0limtanlim

xxAA' x

AA'

)(' 1xftan

tan)(' 1 xf

Page 13: Chapter 1 Chapter 1 Measurment  Introduction to Physics  Introduction to Vectors  Introduction to Calculus( 微积分 ) Chapter 0 Preface.

Chapter 1Chapter 1 Measurment

How big is an infinitesimal?...

0x is infinitesimal.x

Page 14: Chapter 1 Chapter 1 Measurment  Introduction to Physics  Introduction to Vectors  Introduction to Calculus( 微积分 ) Chapter 0 Preface.

Chapter 1Chapter 1 MeasurmentChapter 0 Preface

Page 15: Chapter 1 Chapter 1 Measurment  Introduction to Physics  Introduction to Vectors  Introduction to Calculus( 微积分 ) Chapter 0 Preface.

Chapter 1Chapter 1 MeasurmentChapter 0 Preface

Example:2xy

xx

xxx

x

xxx

x

xfxxfy

xx

x

22

lim)(

lim

)()(lim'

2

0

22

0

0

Some basic formulae:

0)'( c

xx ee )'(

1)'( xx)( numberrealais

xx cos)'(sin

xx sin)'(cos

xx

1)'(ln

Page 16: Chapter 1 Chapter 1 Measurment  Introduction to Physics  Introduction to Vectors  Introduction to Calculus( 微积分 ) Chapter 0 Preface.

Chapter 1Chapter 1 MeasurmentSome basic rules:

Chapter 0 Preface

'')'( vuvu '')'( uvvuuv

)0(''

)'(2

vv

uvvu

v

u

)(),( xvvfy )(')(')(' xvvfxy

dx

dv

dv

dy

dx

dyor

For a vector:

kdt

dAj

dt

dAi

dt

dA

dt

tAd zyx

)(

')'( CuCu ,C is a const.

Page 17: Chapter 1 Chapter 1 Measurment  Introduction to Physics  Introduction to Vectors  Introduction to Calculus( 微积分 ) Chapter 0 Preface.

Chapter 1Chapter 1 MeasurmentChapter 0 Preface

3) Differential of a function ( 函数的微分 )

If f(x) has its derivative at point x, then f ’(x)dx is its differential at that point.

dxxfdy )('dx

Differential of the function

Differential of the variable

So f ’(x) is also called differential quotient ( 微商 ) dx

dy

Page 18: Chapter 1 Chapter 1 Measurment  Introduction to Physics  Introduction to Vectors  Introduction to Calculus( 微积分 ) Chapter 0 Preface.

Chapter 1Chapter 1 MeasurmentChapter 0 Preface

dvduvud )(udvvduuvd )(

)0()(2

vv

udvvdu

v

ud

CduCud )( ,C is a const.

Operation rule is the same as that for derivative:

......

One application of differential

))((')()( 000 xxxfxfxfy 0xxif

))((')()( 000 xxxfxfxf

00 xWhen xffxf )0(')0()(

Page 19: Chapter 1 Chapter 1 Measurment  Introduction to Physics  Introduction to Vectors  Introduction to Calculus( 微积分 ) Chapter 0 Preface.

Chapter 1Chapter 1 MeasurmentChapter 0 Preface

Example:

0,)0cos(|)'(sin)0sin()sin( 0 xxxxxx x

Following approximate formulae often used in physics ( ) :

xx )sin(

Nxx N 1)1(

xx2

111

xx )1ln(

xex 1

xx )tan(

......

0x

xffxf )0(')0()(

Page 20: Chapter 1 Chapter 1 Measurment  Introduction to Physics  Introduction to Vectors  Introduction to Calculus( 微积分 ) Chapter 0 Preface.

Chapter 1Chapter 1 MeasurmentChapter 0 Preface

4) Integrals( 积分 )

• Motion with constant velocity

• Motion with changing speed

0vtS

t

v

t00

S

t

v

t00

S

How to find S?

Page 21: Chapter 1 Chapter 1 Measurment  Introduction to Physics  Introduction to Vectors  Introduction to Calculus( 微积分 ) Chapter 0 Preface.

Chapter 1Chapter 1 MeasurmentChapter 0 Preface

t

v

t00

t

i

ttvttvttvS N )(......)()( 21

NtifttvN

ii ,0,)(

1

0

01

0)()(lim

tN

ii

Nt

dttvttvS

In general, the integral from a to b of f(x) with respect to x is expressed as:

b

adxxf )( definite integral

dxxf )( indefinite integral

Page 22: Chapter 1 Chapter 1 Measurment  Introduction to Physics  Introduction to Vectors  Introduction to Calculus( 微积分 ) Chapter 0 Preface.

Chapter 1Chapter 1 MeasurmentChapter 0 Preface

How to find an integral of a function?

)()()( abxdb

a

If function f(x) is continuous on the interval [a, b] and if on the interval (a, b), then )()(' xfx

b

a

b

a

b

adx

dx

xddxxdxxf

)()(')(

)()('),()()( xfxabdxxfb

a

)()(',)()( xfxCxdxxf

Page 23: Chapter 1 Chapter 1 Measurment  Introduction to Physics  Introduction to Vectors  Introduction to Calculus( 微积分 ) Chapter 0 Preface.

Chapter 1Chapter 1 MeasurmentChapter 0 Preface

Example: ?12

1 dx

x

xx

1)'(ln xx ln)(

2ln|ln1 2

1

2

1 xdx

x

Basic integral formulae:

Cxdx

Ckxkdx

Cxxdx sincos

Cxxdx cossin

Cedxe xx

Cxdxx

ln1

)1(,1

1

aCa

xdxx

aa

k,C: const.