Top Banner
T ale S Chapitre n° 4 LA RADIOACTIVITÉ I- Détection des noyaux radioactifs 1°)Utilisation d’un compteur de radioactivité : le CRAB (cf. T.P.) 2°) Définitions Un noyau radioactif est Une transformation qui met en jeu des noyaux est appelée La radioactivité correspond à 3°) Propriétés des désintégrations Les désintégrations radioactives sont : II- Stabilité et instabilité des noyaux 1°) Rappels sur le noyau atomique Le noyau est constitué de particules appelées : les et les . Sa stabilité est assurée par l’interaction forte qui compense la répulsion électrique entre Le nombre de nucléons d’un noyau porte le nom de , et se note Le nombre de protons d’un noyau est le Le nombre de neutrons d’un noyau est donc égal à 2°) Notion de nucléide On donne le nom de nucléide à l’ensemble des noyaux caractérisés par des valeurs déterminées du nombre de masse et du nombre de charge. Exemple : Le nucléide 27 13Al est l’ensemble de tous les noyaux formés de 13 protons et 14 neutrons dans leurs différents états nucléaires. 3°) Les noyaux isotopes Les isotopes d’un élément sont les nucléides de même nombre de charge Z. Ils sont caractérisés par le même nombre de mais un nombre de différents. Ex. : Isotopes de l’hydrogène : 4°) La vallée de stabilité des noyaux Pour la centaine d’éléments existant, on connaît environ 350 noyaux naturels, dont une soixantaine sont instables et plus de 1500 noyaux artificiels, tous instables. Le diagramme (Z, N) permet de représenter l’ensemble de ces noyaux et d’expliquer leur comportement lorsqu’ils sont instables : a) Les noyaux stables L’ensemble des noyaux stables forme ce que l’on appelle la vallée de stabilité. Les noyaux légers (A < ) se répartissent au voisinage de la première bissectrice. Les noyaux plus lourds (A ) s’écartent de la première bissectrice : ces noyaux stables comportent en fait plus de - 1 -
3

Chapitre n° 4 LA RADIOACTIVITÉ - Saint-Witz · stabilité est assurée par l’interaction forte qui compense la ... de particules chargées ; ... aux rayons cosmiques provenant

Sep 13, 2018

Download

Documents

buitram
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Chapitre n° 4 LA RADIOACTIVITÉ - Saint-Witz · stabilité est assurée par l’interaction forte qui compense la ... de particules chargées ; ... aux rayons cosmiques provenant

Tale SChapitre n° 4

LA RADIOACTIVITÉ

I- Détection des noyaux radioactifs 1°)Utilisation d’un compteur de radioactivité : le CRAB

(cf. T.P.)

2°) Définitions• Un noyau radioactif est

• Une transformation qui met en jeu des noyaux est appelée• La radioactivité correspond à

3°) Propriétés des désintégrationsLes désintégrations radioactives sont :

II- Stabilité et instabilité des noyaux 1°) Rappels sur le noyau atomique

• Le noyau est constitué de particules appelées : les et les . Sa stabilité est assurée par l’interaction forte qui compense la répulsion électrique entre

• Le nombre de nucléons d’un noyau porte le nom de , et se note• Le nombre de protons d’un noyau est le• Le nombre de neutrons d’un noyau est donc égal à

2°) Notion de nucléideOn donne le nom de nucléide à l’ensemble des noyaux caractérisés par des valeurs déterminées du nombre de

masse et du nombre de charge.Exemple : Le nucléide 27

13Al est l’ensemble de tous les noyaux formés de 13 protons et 14 neutrons dans leurs différents états nucléaires.

3°) Les noyaux isotopesLes isotopes d’un élément sont les nucléides de même nombre de charge Z. Ils sont caractérisés par le même

nombre de mais un nombre de différents.Ex. : Isotopes de l’hydrogène :

4°) La vallée de stabilité des noyauxPour la centaine d’éléments existant, on connaît environ 350 noyaux

naturels, dont une soixantaine sont instables et plus de 1500 noyaux artificiels, tous instables.

Le diagramme (Z, N) permet de représenter l’ensemble de ces noyaux et d’expliquer leur comportement lorsqu’ils sont instables :

a) Les noyaux stables L’ensemble des noyaux stables forme ce que l’on appelle la

vallée de stabilité.Les noyaux légers (A < ) se répartissent au voisinage de la

première bissectrice.Les noyaux plus lourds (A ≥ ) s’écartent de la première

bissectrice : ces noyaux stables comportent en fait plus de

- 1 -

Page 2: Chapitre n° 4 LA RADIOACTIVITÉ - Saint-Witz · stabilité est assurée par l’interaction forte qui compense la ... de particules chargées ; ... aux rayons cosmiques provenant

b) Les noyaux instables Les noyaux instables peuvent être classés en trois catégories différentes, selon leur position dans le diagramme

par rapport à la vallée de stabilité :• En bout de vallée de stabilité, se trouvent les noyaux : ils se

désintègrent et rejoignent le domaine de stabilité en émettant des particules ( ) : ces noyaux sont alors qualifiés de

• Au-dessus de la vallée de stabilité, se trouvent les noyaux instables dits : ils se désintègrent et rejoignent le domaine de stabilité en émettant des particules ( ) ;

• En-dessous de la vallée de stabilité, se trouvent les noyaux instables dits : ils se désintègrent et rejoignent le domaine de stabilité en émettant des particules ( ) ;

III- Les rayonnements α , β et γ 1°) Lois de conservation ou lois de Soddy• Lors des désintégrations α et β, un noyau père (X) se transforme en un noyau fils (Y) avec production d’une

particule chargée :Rq. : le noyau fils formé est dans un état excité.

• Au cours de ces désintégrations, il y a : - Conservation du nombre des nucléons :- Conservation de la charge électrique :

2°) Le rayonnement α a) Nature

Le rayonnement α concerne les éléments lourds (A > ) et est formé de particules positives : des noyaux d’hélium 4

2He, appelées encore

b) É quation de la réaction de désintégration de type α Les lois de conservation sont vérifiées en écrivant :

c) Exemples• Désintégration du Radium :• Désintégration du Bismuth :

d) Protection et dangerLes particules α sont arrêtées par ou . Le rayonnement α

est donc , mais , c’est-à-dire transforme facilement un atome en par perte d’un ou plusieurs électrons :

3°) Les rayonnements β a) Nature

On distingue deux types de rayonnement β :• le rayonnement , constitué d’électrons très rapides représentés par 0

-1e (v ≈ 0,9 c) ;il concerne les éléments possédant

• le rayonnement , constitué de positons (antiélectrons) représentés par 0+1

e ; (il est rarement observé)

b) É quations des réactions de désintégration de type β Les lois de conservation sont vérifiées en écrivant pour :

• la désintégration de type :

Rq. : l’électron émis ne provient pas du cortège électronique, mais bien du noyau, par transformation d’un

neutron en proton selon l’équation :

• la désintégration de type :

c) Exemples • Désintégration de type β- :• Désintégration de type β+ :

- 2 -

Page 3: Chapitre n° 4 LA RADIOACTIVITÉ - Saint-Witz · stabilité est assurée par l’interaction forte qui compense la ... de particules chargées ; ... aux rayons cosmiques provenant

d) Protection et danger• Les particules β- sont arrêtées par . Le rayonnement β-

est donc• Les particules β+ ont des durées de vie très courtes dans la matière car lorsqu elles rencontrent un électron,

les deux particules s’annihilent et donnent naissance à un rayonnement γ, selon l’équation :

4°) Le rayonnement (ou désexcitation) γ a) Nature

Le rayonnement γ n’est pas constitué de particules chargées ; il s’agit

b) Propriétés • Le rayonnement γ se propage à la vitesse de la lumière : c ≈ • Sa fréquence est voisine de 1020 Hz : il s’agit donc d’un rayonnement . (fvisible ≈10 Hz)• Le rayonnement γ accompagne les désintégrations α, β- et β+ : les noyaux fils formés à l’état excité ( ) se

désexcitent en émettant ce type de rayonnement :• Il est très pénétrant : plusieurs ou plusieurs

sont nécessaires pour l’arrêter.

IV- La radioactivité dans notre environnement On peut distinguer deux types d’exposition à la radioactivité :

• Une due aux rayons cosmiques provenant des étoiles ou à des éléments radioactifs présents dans la croûte terrestre ;

• Une due à l’inhalation ou à l’ingestion d’éléments radioactifs.On distingue souvent radioactivité naturelle et radioactivité artificielle. Il s’agit du même phénomène, seule l’origine

des noyaux radioactifs diffère :• Les sources sont fabriquées par l’homme dans des réacteurs nucléaires ou des

accélérateurs de particules ;• Les sources ne sont généralement pas très actives.

Le tableau ci-dessous donne des exemples de sources de radioactivité naturelle et les types d’exposition à laquelle l’homme est soumis :

Nature

terre lait homme airchampignons contaminés

Nombre moyen de

désintégrations par seconde

et désintégrations par seconde et

par kg selon les terrains

désintégrations par seconde

et par litre

désintégrations par seconde

et par kg

L’Union européenne

recommande de ne pas dépasser

une concentrationde

désintégrations par seconde et par m3 dans les

habitations

De à désintégrations par seconde et

par kg. La norme européenne est

de désintégrations par seconde et

par kg

Origine

Uranium, thorium et leurs

descendants, potassium 40

potassium 40 potassium 40carbone 14

Le radon est un gaz issu de la

désintégration de l’uranium

Césium 137 et 134

- 3 -