Top Banner
Chaper 3 Weak Topologies. Reflexiv e Space .Separabe Space. Uniform Convex Spaces.
88

Chaper 3 Weak Topologies. Reflexive Space.Separabe Space. Uniform Convex Spaces.

Dec 17, 2015

Download

Documents

Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Chaper 3 Weak Topologies. Reflexive Space.Separabe Space. Uniform Convex Spaces.

Chaper 3

Weak Topologies. Reflexive Space .Separabe Space. Uniform Con

vex Spaces.

Page 2: Chaper 3 Weak Topologies. Reflexive Space.Separabe Space. Uniform Convex Spaces.

III.1

Page 3: Chaper 3 Weak Topologies. Reflexive Space.Separabe Space. Uniform Convex Spaces.

The weakest Topology

Recall on the weakest topology which

renders a family of mapping

continuous

IiYX ii :

topological space

arbitary set

Page 4: Chaper 3 Weak Topologies. Reflexive Space.Separabe Space. Uniform Convex Spaces.

To define the weakest topology on X

such that

i is continuous from X to iY

for each Ii

Let ),( ii YFw )(1iw

must be open in X

Page 5: Chaper 3 Weak Topologies. Reflexive Space.Separabe Space. Uniform Convex Spaces.

For any finite set IF (*) ,)(1

Fiiw

iw : open in iY

The family of the sets of the form (*)

form a base of a topology F of X

The topology is the weakest topology

that renders all i continuous

Page 6: Chaper 3 Weak Topologies. Reflexive Space.Separabe Space. Uniform Convex Spaces.

Proposition III.1

nx

Iixxxx inin )()(

Let be a sequence in X, then

F F( ) iY

Page 7: Chaper 3 Weak Topologies. Reflexive Space.Separabe Space. Uniform Convex Spaces.

)()(

)(

)(

..

)()(

)(

""

1

11

xxHence

wx

wxNn

tsN

Xinopeniswandwx

Yinopeniswandwx

IieachFor

ini

ni

in

ii

ii

Page 8: Chaper 3 Weak Topologies. Reflexive Space.Separabe Space. Uniform Convex Spaces.

Fiiin

ini

i

inii

i

ii

ii

Fiii

wx

FiwxNn

thenFiNNLet

wxNn

tsN

wx

ieachFor

Fiwxwhere

wUconsidertosufficientisIt

)(

)(

,max

)(

..

)(

,

,)(

)(""

1

1

1

Page 9: Chaper 3 Weak Topologies. Reflexive Space.Separabe Space. Uniform Convex Spaces.

Proposition III.2

IiYXZ ii

i

Let Z be a topological space and

Then is continuous

is continuous from Z to IiYi

Page 10: Chaper 3 Weak Topologies. Reflexive Space.Separabe Space. Uniform Convex Spaces.

Zinopenisw

w

wU

wULet

continuousisHence

continuousisceZinopenisw

Xinopenisw

thenYinopeniswIf

IieachFor

Fiii

Fiii

Fiii

Fiii

i

i

i

i

)()(

)(

)(

)(""

sin))((

,)(

,

""

1

11

111

1

11

1

Page 11: Chaper 3 Weak Topologies. Reflexive Space.Separabe Space. Uniform Convex Spaces.

III.2

Definition and properties ofthe weak topology σ(E,E´)

Page 12: Chaper 3 Weak Topologies. Reflexive Space.Separabe Space. Uniform Convex Spaces.

Definition σ(E,E´)

E: Banach space

E´: topological dual of E

EfExxfxf ,,)(

see next page

Page 13: Chaper 3 Weak Topologies. Reflexive Space.Separabe Space. Uniform Convex Spaces.

Definition : The weak topology

is the weakest topology on E such that

),( EE

REf :

is continuous for each Ef

Page 14: Chaper 3 Weak Topologies. Reflexive Space.Separabe Space. Uniform Convex Spaces.

Proposition III.3

The topology ),( EE on E

is Hausdorff

Page 15: Chaper 3 Weak Topologies. Reflexive Space.Separabe Space. Uniform Convex Spaces.

.),(log

,,

,),(),(

,),(),(

,,:

,,:

,,

..

sec

2121

12

11

2

1

HausderffisEonEEytopotheHence

OOandOyOx

EinopenEEisO

EinopenEEisOthen

zfEzO

andzfEzOLet

yfandxf

tsRandEf

ThmBanachHahnofformgeometricondBy

EyxLet

f

f

Page 16: Chaper 3 Weak Topologies. Reflexive Space.Separabe Space. Uniform Convex Spaces.

Proposition III.4

Ex 0

0x

FixxfExV i ,,: 0

Let ; we obtain a base of

neighborhood of by consider

sets of the form

where

Efi ,0 , and F is finite

Page 17: Chaper 3 Weak Topologies. Reflexive Space.Separabe Space. Uniform Convex Spaces.

Proposition III.5

nx

Efxfxfweaklyxx nn ,,

xxn

Let be a sequence in E. Then

(i)

(ii) if strongly, then

xxn weakly.

Page 18: Chaper 3 Weak Topologies. Reflexive Space.Separabe Space. Uniform Convex Spaces.

(iii) if xxn weakly, then

nx is bounded and

nnxx inflim

Page 19: Chaper 3 Weak Topologies. Reflexive Space.Separabe Space. Uniform Convex Spaces.

(iv) if xxn weakly and

ffn strongly in E´, then

xfxf nn ,,

Page 20: Chaper 3 Weak Topologies. Reflexive Space.Separabe Space. Uniform Convex Spaces.

nn

nn

n

n

n

n

nnn

n

xxand

xIICorollaryBy

Efxfxf

ibythenweaklyxxIfiii

weaklyxxIIIopositionBy

xfxf

xxfxxfxfxfSince

stronglyxxAssumeii

IIIopositionByi

inflim

sup,2.

,,

)(,)(

,1.Pr

,,

,,,

.)(

1.Pr)(

Page 21: Chaper 3 Weak Topologies. Reflexive Space.Separabe Space. Uniform Convex Spaces.

xfxfei

xfxfHence

ffffSince

boundisxiiiBy

xfxfiBy

xfxfxff

xfxfxff

xfxfxff

xfxfxfxf

xfxfiv

nn

nn

nn

n

n

nnn

nnn

nnn

nnnn

nn

,,..

0,,

0,

)(

0,,)(

,,

,,,

,,,

,,,,

,,)(

Page 22: Chaper 3 Weak Topologies. Reflexive Space.Separabe Space. Uniform Convex Spaces.

Exercise

),( EE ),( FF

Let E , F be real normed vector space

consider on E and F the topologies

and

Then the product topology on E X F is

),( FEFE

respectively.

Page 23: Chaper 3 Weak Topologies. Reflexive Space.Separabe Space. Uniform Convex Spaces.

Proposition III.6

Edim

),( EE

If ,then

is strong topology on E.

Page 24: Chaper 3 Weak Topologies. Reflexive Space.Separabe Space. Uniform Convex Spaces.

niEfexfxExFor

niets

EofeeebasisaChoose

UrxBSuppose

UVtsofVnhdopenEEaisthere

xofUnhdopenanfor

andExforthatshowtosufficientisIt

openEEissetopenstrongathatshowTo

ii

n

ii

i

n

,,1,)(,

,,11.

,,,

.)(

...),(

,.

.),(

1

21

,0

0

Page 25: Chaper 3 Weak Topologies. Reflexive Space.Separabe Space. Uniform Convex Spaces.

UrxBV

thenrntsChoose

nxBVthen

nixxfExV

letweifHence

nixxfifn

xxf

exxf

exxfxx

i

i

n

ii

n

iii

n

iii

),(

,..

),(

,,1,;

,,1,

,

,

,

0

0

0

0

10

10

100

Page 26: Chaper 3 Weak Topologies. Reflexive Space.Separabe Space. Uniform Convex Spaces.

Remark

Edim ),( EE If ,then

is strictly weaker then the

strong topology.

Page 27: Chaper 3 Weak Topologies. Reflexive Space.Separabe Space. Uniform Convex Spaces.

]dim

)(dim

11)(,),(

:

,[

0,;dim

,,10,

0..

,,0

,,1,;

)1,0(:

)1,0(:

.

1;

1

0

1

0

00

1

0

0

),(

nE

nRthen

isxfxfx

bydefinedRE

mapthethenysuchnoisthereIf

xfExcobecause

niyf

andytsEyisThere

Effandwhere

nixxfExVlet

andBxLetpf

BSClaim

closedstronglyisS

xExSLet

n

n

n

ii

i

n

i

EE

Page 28: Chaper 3 Weak Topologies. Reflexive Space.Separabe Space. Uniform Convex Spaces.

),(0

000

000

0000

000

000

0

0

00

,,10,

.

1

.0,)(lim

1)0(,.

)(

EE

i

t

Sx

SVytx

Vytxthen

nixytxfBut

Sytxei

ytx

tstistherethentgand

xgxoffuncontinuousisg

tyxtgfunctiontheConsider

Page 29: Chaper 3 Weak Topologies. Reflexive Space.Separabe Space. Uniform Convex Spaces.

III.3

Weak topology, convex setand linear operators

Page 30: Chaper 3 Weak Topologies. Reflexive Space.Separabe Space. Uniform Convex Spaces.

Theorem III.7

EC Let be convex, then

C is weakly closed

if and only if

C is strongly closed.

Page 31: Chaper 3 Weak Topologies. Reflexive Space.Separabe Space. Uniform Convex Spaces.

closedweaklyisC

openweaklyisC

CVthen

CVandxofnhdaisV

thenxfExVLet

Cxxfxfts

RandEfisthereCxLet

closedweaklyisC

thenclosedstronglyisCIfshowTo

c

c

c

0

0

0

.

,,;

,,..

0,

.

,:

Page 32: Chaper 3 Weak Topologies. Reflexive Space.Separabe Space. Uniform Convex Spaces.

Remark

CxfExH f ,,

The proof actually show that every

every strongly closed convex set

is an intersection of closed

half spaces

Page 33: Chaper 3 Weak Topologies. Reflexive Space.Separabe Space. Uniform Convex Spaces.

Corollary III.8],(: E

),( EE

If

is convex l.s.c. w.r.t. strongly topology

then

In particular, if

is l.s.c. w.r.t.

)),(( EEweaklyxxn

then )(inflim)( nn

xx

Page 34: Chaper 3 Weak Topologies. Reflexive Space.Separabe Space. Uniform Convex Spaces.

cslEEisthen

closedEEisAthen

convexandclosedstronglyisAthen

RxExALet

..),(

),(

.

,)(;

Page 35: Chaper 3 Weak Topologies. Reflexive Space.Separabe Space. Uniform Convex Spaces.

nn

n

xx

thenEEweaklyxxifHence

cslEEisthen

convexandcslstronglyis

convexandcontinuousstronglyis

thenxxLet

nObservatio

inflim

)),,((

..),(

..

,)(

:

Page 36: Chaper 3 Weak Topologies. Reflexive Space.Separabe Space. Uniform Convex Spaces.

Theorem III.9

FET :

),( EE

Let E and F be Banach spaces and let

be linear continuous (strongly) , then

T is linear continuous on E with

to F with ),( FF

And conversely.

Page 37: Chaper 3 Weak Topologies. Reflexive Space.Separabe Space. Uniform Convex Spaces.

continuousEEisTxfx

csuEEisTxfx

cslEEisTxfx

cslEEisTxfx

continuousstronglyisTxfx

EEEfromcontinuousisTxfx

thatshowtosufficientisit

IIIopositionBy

),(,

..),(,

..),(,

..),(,

,

)),(,(,

2.Pr

Page 38: Chaper 3 Weak Topologies. Reflexive Space.Separabe Space. Uniform Convex Spaces.

),(),(

log..)(

)(

),(...)(..

),(

),(),(log

..)(

)),(,()),(,(

sup,

FEFtoEfromcontinuouisT

TheoremGraphClosed

ytopostrongtrwFEinclosedisTGthen

FEinconvexisTG

FEFEtrwclosedisTGei

FEFEiswhich

FFEEytopoproduct

trwFEinclosedisTGthen

FFFtoEEEfrom

continuouslinearisTthatposeConversely

Page 39: Chaper 3 Weak Topologies. Reflexive Space.Separabe Space. Uniform Convex Spaces.

Remark),(, EEE

EEj :

Efxffxj ,),(

On is weak topology

by

xxj )(

Page 40: Chaper 3 Weak Topologies. Reflexive Space.Separabe Space. Uniform Convex Spaces.

EEj )(

In genernal j is not surjective

E is called reflexive

If

Page 41: Chaper 3 Weak Topologies. Reflexive Space.Separabe Space. Uniform Convex Spaces.

III.4

The weak* topologyσ(E′,E)

Page 42: Chaper 3 Weak Topologies. Reflexive Space.Separabe Space. Uniform Convex Spaces.

The weak* topology),( EE

xff ,

is the weakest topology on E´

such that

is continuous for all Ex

Page 43: Chaper 3 Weak Topologies. Reflexive Space.Separabe Space. Uniform Convex Spaces.

Proposition III.10

The weak* topology on E´

is Hausdorff

Page 44: Chaper 3 Weak Topologies. Reflexive Space.Separabe Space. Uniform Convex Spaces.

Proposition III.11

Einxxx n,,,,0 21

Ef 0

One obtains a base of a nhds for a

by considering sets of the form

nixffEfV i ,,1,,; 0

Page 45: Chaper 3 Weak Topologies. Reflexive Space.Separabe Space. Uniform Convex Spaces.

Proposition III.12

Exxfxfn ,,

nfLet

(i)

be a sequence in E´, then

),(* EEforffn

Page 46: Chaper 3 Weak Topologies. Reflexive Space.Separabe Space. Uniform Convex Spaces.

ffn (ii) If strongly, then

),( EEforffn

Page 47: Chaper 3 Weak Topologies. Reflexive Space.Separabe Space. Uniform Convex Spaces.

),( EEforffn

(iii) If

then

),( EEforffn

Page 48: Chaper 3 Weak Topologies. Reflexive Space.Separabe Space. Uniform Convex Spaces.

ffn *

nf

(iv) If then

is bounded and

nn

ff inflim

Page 49: Chaper 3 Weak Topologies. Reflexive Space.Separabe Space. Uniform Convex Spaces.

ffn * xxn (v) If and

strongly, then

xfxf nn ,,

Page 50: Chaper 3 Weak Topologies. Reflexive Space.Separabe Space. Uniform Convex Spaces.

Lemma III.2

n

iiin tsR

11 ..,,

n ,,, 1 Let X be a v.s. and

are linear functionals´on X such that

0)(,,10)( vnivi

Page 51: Chaper 3 Weak Topologies. Reflexive Space.Separabe Space. Uniform Convex Spaces.

)()(

0

0)()(

)()(

..,,,

,)()0,,0,1(

)()(

)(,),(),()(

:

1

1

1

1

1

1

1

uu

Xuuu

Xuuu

tsRandzeroallnotR

XFSince

RinsetconvexclosedisFRXFThen

XuuuuuF

bydefinedbeRXFLet

i

n

i

i

n

iii

n

iii

n

n

n

n

Page 52: Chaper 3 Weak Topologies. Reflexive Space.Separabe Space. Uniform Convex Spaces.

Proposition III.13

EfxfftsEx ,)(..

RE :If

then there is

is linear continuous´w.r.t ),( EE

Page 53: Chaper 3 Weak Topologies. Reflexive Space.Separabe Space. Uniform Convex Spaces.

Efxffthen

xxTake

Efxf

xffIIILemma

fthen

nixfifparticularIn

nixfEfV

followsasVtakemay

fts

EEforofVnhdaisThere

i

n

ii

i

n

ii

i

n

ii

i

i

,)(

,

,)(2.

0)(

,,10,,

,,1,;

1)(..

),(0.

1

1

1

Page 54: Chaper 3 Weak Topologies. Reflexive Space.Separabe Space. Uniform Convex Spaces.

Corollary III.14

RExxfEfH ,0,,;

If H is a hyperplane in E´ closed w.r.t

Then H is of the form

),( EE

Page 55: Chaper 3 Weak Topologies. Reflexive Space.Separabe Space. Uniform Convex Spaces.

Vffor

VffEither

convexisV

Exxx

nixffEfVwhere

HVistherethenHfSuppose

REwherefEfH

formtheofisH

n

i

c

)()13(

)()13(

0,,,,

,,1,;

,

,0,)(;

21

0

0

*

Page 56: Chaper 3 Weak Topologies. Reflexive Space.Separabe Space. Uniform Convex Spaces.

xfEfHthen

EfxfftsEx

IIITheoremBy

continuousEEisthen

ofnhdEEaisW

fVWgfgFrom

fVWgfgFrom

,;

,)(..

13.

),(

0.),(

)()()13(

)()()13(

00

00

Page 57: Chaper 3 Weak Topologies. Reflexive Space.Separabe Space. Uniform Convex Spaces.

III.5 Reflexive spaces

Page 58: Chaper 3 Weak Topologies. Reflexive Space.Separabe Space. Uniform Convex Spaces.

Remark),(, EEE

EEj :

Efxffxj ,),(

On is weak topology

by

xxj )(

Page 59: Chaper 3 Weak Topologies. Reflexive Space.Separabe Space. Uniform Convex Spaces.

E

j is isometry

j(E) is closed vector subspace of

Page 60: Chaper 3 Weak Topologies. Reflexive Space.Separabe Space. Uniform Convex Spaces.

EEj )(

In genernal j is not surjective

E is called reflexive

If

Page 61: Chaper 3 Weak Topologies. Reflexive Space.Separabe Space. Uniform Convex Spaces.

Lemma 1 (Helly) p.1

Efff n ,,, 21

Rn ,,, 21

Let E be a Banach space,

are fixed.

and

Then following statements are

equivalent

Page 62: Chaper 3 Weak Topologies. Reflexive Space.Separabe Space. Uniform Convex Spaces.

Lemma 1 (Helly) p.2

1; xExBE

..,0 tsBx E

nixf ii ,,2,1,

(i)

(ii)

where

Rf n

n

iii

n

iii

,,, 21

11

Page 63: Chaper 3 Weak Topologies. Reflexive Space.Separabe Space. Uniform Convex Spaces.

n

iii

n

iii

n

iii

n

iii

n

iii

n

i

n

iiiii

n

iin

f

havewelettingBy

sf

sxf

sxfi

sandRLetiii

11

1

11

1 1

121

,0

,

,)(

,,,)()(

Page 64: Chaper 3 Weak Topologies. Reflexive Space.Separabe Space. Uniform Convex Spaces.

)(

.')(

)()(

,,,,,,)(

:

,,,)()(

21

21

E

E

n

n

nn

Bthen

holdtdoesnithatSuppose

BiThen

xfxfxfx

byREmapthedefine

andRLetiii

Page 65: Chaper 3 Weak Topologies. Reflexive Space.Separabe Space. Uniform Convex Spaces.

)(

,

)(

..,,,

,)(

11

11

21

iiscontradictwhichf

Bxxf

Bxx

tsRaisthere

principleseparationstrictlyby

RinsetconvexclosedaisBSince

n

iii

n

iii

E

n

iii

n

iii

E

nn

nE

Page 66: Chaper 3 Weak Topologies. Reflexive Space.Separabe Space. Uniform Convex Spaces.

Lemma 2 (Goldstine)

EBJ

EB

Let E be a Banach space. Then

is dense in

w.r.t the weak* topology

EonEE ),(

Page 67: Chaper 3 Weak Topologies. Reflexive Space.Separabe Space. Uniform Convex Spaces.

VJx

nifJx

niffJx

nixf

tsBxLemmaHelly

ff

haveweR

thatnoteandnifLet

nifEV

formtheinofnhdabeVandBLet

i

ii

ii

E

i

n

iii

n

ii

n

iii

n

ii

i

E

,,1,

,,1,,

,,1,

..,0

,

,,,

,,1,

,,1,;

111

21

Page 68: Chaper 3 Weak Topologies. Reflexive Space.Separabe Space. Uniform Convex Spaces.

Theorem(Banach Alaoglu-Bornbaki)

1; fEfBE

is compact w.r.t. ),( EE

Page 69: Chaper 3 Weak Topologies. Reflexive Space.Separabe Space. Uniform Convex Spaces.

Theorem

EB

A Banach space E is reflexive

if and only if

is compact w.r.t weak topology

),( EE

Page 70: Chaper 3 Weak Topologies. Reflexive Space.Separabe Space. Uniform Convex Spaces.

),(..)(

,),(..

,(,,(,

,2.Pr

,(,

,)(,))((

,(,,(,::

sin,

.""

1

1

1

11

1

EEtrwcompactisBJB

ClaimbyandEEtrwcompactisBSince

EEEtoEEEfrom

continuousisJ

IIIopositionBy

RtoEEEfrom

continuousisJfthen

EfJfJf

EfanyFor

EEEEEEJClaim

isometryisJceBJBThen

reflexiveisEthatAssume

EE

E

EE

Page 71: Chaper 3 Weak Topologies. Reflexive Space.Separabe Space. Uniform Convex Spaces.

.

,

),(..

),(ker),(

)),,(,()),(,(

)),(,()),(,(

,9.

),(..""

reflexiveisEHence

EJEthen

BJBLemmaGoldstineBy

EEtrwcompactisJB

EEthanweaisEEbecause

EEEtoEEE

fromcontinuousisJ

EEEtoEEE

fromcontinuousisJIIIThmBy

normwithcontinuousisJ

EEtrwcompactisBthatSuppose

EE

E

E

Page 72: Chaper 3 Weak Topologies. Reflexive Space.Separabe Space. Uniform Convex Spaces.

Exercise

Suppose that E is a reflexive

Banach space . Show that

evere closed vector subspace M

of E is reflexive.

Page 73: Chaper 3 Weak Topologies. Reflexive Space.Separabe Space. Uniform Convex Spaces.

].),(

,,1,,ˆ;

ˆ,

)(

)()(ˆ[

.),(:

,,1

,,1,,;

.),(

),(...

),(...

),(...,

0

0

0

0

0

00

xofnhbEEais

nixxfExMV

EfclosedstronglyisMSince

Mxifxf

MxifxfxfLet

xofnhbEEaisMVClaim

niMfwhere

nixxfMxVformthein

xofVnhbMMaandMxanyFor

EEtrwcompactisMBB

EEtrwclosedisMthen

closedstronglyisM

EEtrwcompactisBreflexiveisESince

c

i

ii

c

i

i

EM

E

Page 74: Chaper 3 Weak Topologies. Reflexive Space.Separabe Space. Uniform Convex Spaces.

reflexiveisMTherefore

MMtrwcompactisBHence

BV

BMVtsI

EEtrwcompactisBSince

setsopenEEoffamilyaisMV

ClaimbyandBMVthen

BVthatsuch

setsopenMMoffamilyaisVIf

M

M

n

i

M

n

i

cn

M

Ic

MI

c

MI

I

i

i

),(..

..,,

),,(...

),(

),(

1

11

Page 75: Chaper 3 Weak Topologies. Reflexive Space.Separabe Space. Uniform Convex Spaces.

Corollary 1

E

Let E be a Banach space. Then

E is reflexive if and only if

is reflexive

Page 76: Chaper 3 Weak Topologies. Reflexive Space.Separabe Space. Uniform Convex Spaces.

.

,

,

,

.),1(

.)2(

.

),(..

),(..

),(),(

.)1(

reflexiveisE

JEandEbetweenisometryisJSince

reflexiveisJEExerciseby

EofsubspaceclosedisJESince

reflexiveisEbythen

reflexiveisEthatSuppose

reflexiveisEHence

EEtrwcompactisB

EEtrwcompactisB

ThmBornbakiAlaogluBy

EEEEThen

reflexiveisEthatSuppose

E

E

Page 77: Chaper 3 Weak Topologies. Reflexive Space.Separabe Space. Uniform Convex Spaces.

Corollary 2

),( EE

Let E be a reflexive Banach space.

Suppose that if K is closed convex

and bounded subset of E . Then

K is compact w.r.t

Page 78: Chaper 3 Weak Topologies. Reflexive Space.Separabe Space. Uniform Convex Spaces.

).,(..

),(..,

0,

),(..7.

,

EEtrwcompactisK

EEtrwcompactismBreflexiveisESince

msomeformBKboundedisKSince

EEtrwclosedisKIIIThmby

convexandclosedstronglyisKSince

E

E

Page 79: Chaper 3 Weak Topologies. Reflexive Space.Separabe Space. Uniform Convex Spaces.

Uniformly Convex

yxwithByx E,

A Banach space is called

uniform convex if for all ε>0 ,

there is δ>0 such that if

12

yxthen

Page 80: Chaper 3 Weak Topologies. Reflexive Space.Separabe Space. Uniform Convex Spaces.

x y

2

yx

Page 81: Chaper 3 Weak Topologies. Reflexive Space.Separabe Space. Uniform Convex Spaces.

Counter Examplefor Uniformly Convex

),( 2 RConsider

is not uniform convex.

2121 ),( xxxx

see next page

Page 82: Chaper 3 Weak Topologies. Reflexive Space.Separabe Space. Uniform Convex Spaces.

x

y

2

yx (0,1)

(1,0)

(0,-1)

(-1,0)

Page 83: Chaper 3 Weak Topologies. Reflexive Space.Separabe Space. Uniform Convex Spaces.

Examplefor Uniformly Convex

),( nRConsider

is uniform convex.

222

211 ),,( nn xxxxx

see next page

Page 84: Chaper 3 Weak Topologies. Reflexive Space.Separabe Space. Uniform Convex Spaces.

12

,4

11

4111

41

2

41

2

4

2

)log(2

)1,0(,

0

2

22

22

2

2222

2222

yx

haveweTake

yx

yx

yxyxyx

ThmramParalleyxyxyx

yxandByxanyFor

anyFor

Page 85: Chaper 3 Weak Topologies. Reflexive Space.Separabe Space. Uniform Convex Spaces.

Theorem

A uniformly convex Banach space E

is reflexive.

Page 86: Chaper 3 Weak Topologies. Reflexive Space.Separabe Space. Uniform Convex Spaces.

VJxtsBx

EEtrwBindenseisJBSince

EEtrwofnhbaisV

fEVLet

ftsfwithEf

convexityuniform

ofdefinitiontheinasbeletGiven

JxtsBx

forthatshowtosufficientisit

stronglyEinclosedisJBSince

JBthatshowTo

ELet

E

EE

E

E

E

..

,,..

,...

,2

,;

21,..1

0,0

..

,0

,

1,

Page 87: Chaper 3 Weak Topologies. Reflexive Space.Separabe Space. Uniform Convex Spaces.

.

ˆsin,ˆ)ˆ(ˆ

ˆ

12

)2

1(2

,2

ˆ

ˆˆ,,2

2,ˆ,

2,,

)ˆ,(sin

ˆ..ˆ

,..

,..

,..

,,..

.[

:

ioncontradicta

WxJcexJJxxxJxxBut

xx

fxx

xxxxff

fxfandfxf

VxJJxcethenhaveWe

WVxJtsBx

EEtrwopenisW

EEtrwclosedisBJx

EEtrwclosedisB

EEtrwcompactisBSince

BJxWThennotSuppose

BJxClaim

E

E

E

E

cE

E

Page 88: Chaper 3 Weak Topologies. Reflexive Space.Separabe Space. Uniform Convex Spaces.