Top Banner
1 Chap. 9 Sinusoidal Steady- State Analysis Content s 9.1 The Sinusoidal Source 9.2 The Sinusoidal Response 9.3 The Phasor 9.4 The Passive Circuit Elements in the Frequency Domain 9.5 Kirchhoff’s Laws in the Frequency Domain 9.6 Series, Parallel, and Delta-to-Wye Simplifications 9.7 Source Transformations & Thévenin-Norton Equivalent Circuits 9.8 The Node-Voltage Method 9.9 The Mesh-Current Method 9.10 The Transformer 9.11 The Ideal Transformer 9.12 Phasor Diagrams Objectives 1. 瞭瞭瞭瞭瞭瞭 瞭瞭瞭瞭瞭瞭瞭瞭瞭瞭瞭瞭瞭瞭瞭瞭 ,。 2. 瞭瞭瞭瞭瞭瞭瞭瞭瞭瞭瞭瞭瞭瞭瞭瞭瞭瞭瞭瞭瞭3. 瞭瞭瞭瞭瞭瞭瞭瞭瞭瞭 瞭瞭 瞭瞭瞭瞭瞭瞭瞭瞭瞭◆ 瞭瞭瞭瞭瞭瞭 ◆ 瞭瞭 瞭瞭瞭 Δ-Y 瞭瞭 ◆ 瞭瞭瞭瞭瞭 ◆ 瞭瞭瞭瞭瞭瞭瞭瞭瞭瞭瞭瞭瞭瞭 ◆ 瞭瞭瞭瞭瞭 ◆ 瞭瞭瞭瞭瞭 4. 瞭瞭瞭瞭瞭瞭瞭瞭瞭瞭瞭瞭瞭瞭瞭瞭瞭5. 瞭瞭瞭瞭瞭瞭瞭瞭瞭瞭 瞭瞭瞭瞭瞭瞭瞭瞭瞭瞭瞭瞭瞭瞭瞭瞭瞭瞭瞭 ,。
46

Chap. 9 Sinusoidal Steady-State Analysis

Jan 11, 2016

Download

Documents

Marcos Duarte

Chap. 9 Sinusoidal Steady-State Analysis. C ontents. 9.1 The Sinusoidal Source 9.2 The Sinusoidal Response 9.3 The Phasor 9.4 The Passive Circuit Elements in the Frequency Domain 9.5 Kirchhoff’s Laws in the Frequency Domain 9.6 Series, Parallel, and Delta-to-Wye Simplifications - PowerPoint PPT Presentation
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Chap. 9 Sinusoidal Steady-State Analysis

1

Chap. 9 Sinusoidal Steady-State Analysis

Contents9.1 The Sinusoidal Source 9.2 The Sinusoidal Response9.3 The Phasor9.4 The Passive Circuit Elements in the Frequency Domain9.5 Kirchhoff’s Laws in the Frequency Domain9.6 Series, Parallel, and Delta-to-Wye Simplifications 9.7 Source Transformations & Thévenin-Norton Equivalent Circuits9.8 The Node-Voltage Method 9.9 The Mesh-Current Method9.10 The Transformer 9.11 The Ideal Transformer9.12 Phasor Diagrams

Objectives1. 瞭解相量觀念,並藉此執行相量轉換及反相量轉換。2. 利用相量觀念將時域之弦波電源電路轉換至頻域。3. 利用下列電路分析技巧,解答頻域電路的相關問題: ◆ 克希荷夫定律 ◆ 串聯、並聯及 Δ-Y 轉換 ◆ 分壓與分流 ◆ 戴維寧等效電路與諾頓等效

電路 ◆ 節點電壓法 ◆ 網目電流法4. 利用相量法分析含有線性變壓器之電路。5. 瞭解理想變壓器之限制,並利用相量法分析含有線性變壓器之電路。

Page 2: Chap. 9 Sinusoidal Steady-State Analysis

2

9.1 The Sinusoidal Source

2

弦波電源 (sinusoidal source) (不管是獨立或相依,電壓或電流源) : 用來產生一個隨時間呈弦波變化之電源 ( 皆為週期性函數 )

週期(period)

峰值 or 振幅(peak or amplitude)

頻率 (frequency):

<cycles/second>

( 赫茲 , Hz)

角頻率 (angular frequency):

<radians/second>

π/Tπfω 22

相位角 (phase angle): < 通常用角度 degree 為單位 >

> 0

Page 3: Chap. 9 Sinusoidal Steady-State Analysis

均方根值 (Root Mean Square, rms, Value): the square root of the mean value of the squared periodic function

3

弦波電源的 rms值或稱有效值 (effective value),可經推導得:

Page 4: Chap. 9 Sinusoidal Steady-State Analysis

EX 9.1 Finding the Characteristics of a Sinusoidal Current

4

A sinusoidal current has a maximum amplitude of 20 A. The current passes through one complete cycle in 1 ms. The magnitude of the current at zero time is 10 A.

a) What is the frequency of the current in hertz (Hz)?b) What is the angular frequency in radians per second?c) Write the expression for i(t) using the cosine function. Express in degrees.d) What is the rms value of the current?

a)

b)

c)

d)

&

rms value =

Page 5: Chap. 9 Sinusoidal Steady-State Analysis

EX 9.2 Finding the Characteristics of a Sinusoidal Voltage

5

A sinusoidal voltage is given by the expression

a) What is the period of the voltage in milliseconds?b) What is the frequency in hertz?c) What is the magnitude of v at t = 2.778 ms?d) What is the rms value of v ?

a)

b)

c)

d)

.30120cos300 πtv

&

f =

& 2.778=

Page 6: Chap. 9 Sinusoidal Steady-State Analysis

EX 9.3 Translating a Sine Expression to a Cosine Expression

6

Translate the sine function to the cosine function by subtracting 90◦ (π/2 rad) from the argument of the sine function.

a) Verify the above translation.b) Express sin(ωt + 30◦) as a cosine function.

a)

b)

Let &

Page 7: Chap. 9 Sinusoidal Steady-State Analysis

EX 9.4 Calculating the rms Value of a Triangular Waveform

7

&

Page 8: Chap. 9 Sinusoidal Steady-State Analysis

8

9.2 The Sinusoidal Response

8

當開關閉合後,即 0t

KVL

其解為 :

暫態成分transient component

隨時間的增加而呈指數形式降低直至消失

穩態成分steady-state component呈弦波變化之形式持續存在

1. 穩態解仍為弦波函數。2. 對線性電路而言,響應信號之頻率與電源信號之頻率相同。 (非線性電路除外)3. 一般而言,穩態響應之最大振幅與電源之最大振幅不同。4. 一般而言,響應信號之相位角不同於電源之相位角。

穩態解之特性

弦波電源

Page 9: Chap. 9 Sinusoidal Steady-State Analysis

9.3 The Phasor

9

Euler’s identity

含有一已知弦波函數之振幅及相位角,將此複數定義為弦波函數之相量表示法 (phasor representation) 或相量轉換 (phasor transform) :

相量 (phasor): 是一個包含振幅(大小)及相位角的複數,但隱藏頻率。

sincos je j實部 (real part)

虛部 (imaginary part)

jmeV

相量轉換

用粗黑體字代表相量,而相量轉換將弦波函數由時域轉換至複數領域, 或稱為頻域(frequency domain) 。

j11 e&

Page 10: Chap. 9 Sinusoidal Steady-State Analysis

Inverse Phasor Transform

)26(cos100 ωt-v P -1

相量轉換可將穩態弦波響應之最大振幅與相位角問題,轉換為複數的代數運算。

1.暫態成份隨時間持續而消失,穩態成份必能滿足原微分方程式。2.在弦波電源驅動的線性電路,其穩態響應仍為弦波形式,且具有相同

的頻率。3.穩態解的形式為 R{Aej ejt } ,其中 A 是響應之最大振幅,而 是其

相位角。4.當以前述穩態解的形式代入原微分方程式,其指數項次 ejt 將可消去 ,

僅留下複數頻域下求解 A 和的運算式。

注意:

10

Page 11: Chap. 9 Sinusoidal Steady-State Analysis

Example ( 利用相量求穩態響應 )

令其穩態解為

代入

若改以 sin 為電源,則

重要提醒:相量讓你輕鬆做頻域與時域的轉換;電路分析時,其解請以頻域或時域表示,切勿同時包含頻域與時域。

11

Note: If

then

Page 12: Chap. 9 Sinusoidal Steady-State Analysis

EX 9.5 Adding Cosines Using Phasors

12

If and

express y = y1 + y2 as a single sinusoidal function.

a) Solve by using trigonometric identities.

b) Solve by using the phasor concept.

a)

b)

sinsincoscos)cos(

sincoscossin)sin(

o

o

o

o

Page 13: Chap. 9 Sinusoidal Steady-State Analysis

13

9.4 The Passive Circuit Elements in the Frequency Domain

13

The V-I Relationship for a Resistor

由於電阻本身為一純量,故跨於電阻兩端之電壓相量應與通過電阻之電流相量同相 (in phase) 。

時域

頻域

Page 14: Chap. 9 Sinusoidal Steady-State Analysis

14

The V-I Relationship for an Inductor

14

電感器的電壓相量領先電流相量 90° ,或是電流相量落後電壓相量 90° 。

頻域

時域

IV Ljω

Page 15: Chap. 9 Sinusoidal Steady-State Analysis

The V-I Relationship for a Capacitor

15

電容器的電壓相量落後電流相量 90° ,或是電流相量領先電壓相量 90° 。

時域

VI Cjω

頻域

)(sin vm θωtCVω-

)90-cos( vm θωtCVω-i

Page 16: Chap. 9 Sinusoidal Steady-State Analysis

Impedance and Reactance

16

1.電阻器的阻抗 (impedance) 為電阻 R , 電感器的阻抗為jL , 電容器的阻抗為 1/jC 。

2.阻抗的單位為歐姆,要注意是,雖然阻抗可能是複數,但它卻不是相量。

3.阻抗的虛部稱為電抗 (reactance) 。

Definition of Impedance :阻抗的定義

ZI

V

Page 17: Chap. 9 Sinusoidal Steady-State Analysis

17

9.5 The Kirchhoff’s Laws in the Frequency Domain

17

KVL in the Frequency Domain

時域

= 0

頻域

KCL in the Frequency Domain

時域 頻域

Page 18: Chap. 9 Sinusoidal Steady-State Analysis

18

9.6 The Series, Parallel, and Delta-to-Wye Simplifications

18

Combining Impedances in Series and Parallel

等效阻抗等於各阻抗之總和

nab ZZZZ

1111

21

等效阻抗之倒數等於各阻抗倒數總和

見下一頁之定義

Page 19: Chap. 9 Sinusoidal Steady-State Analysis

EX 9.6 Combining Impedances in Series

19

a) Construct the frequency-domain equivalent circuit.b) Calculate the steady-state current i by the phasor method.

a)

b)

750 cos(5000t + 30◦) V

Page 20: Chap. 9 Sinusoidal Steady-State Analysis

Addmitance and Susceptance

20

1.電阻器的導納 (addimitance) 為電導 G , 電感器的導納為 1/jL , 電容器的導納為 jC 。

2.導納的單位為西門子 (siemens) ,導納可能是複數,但不是相量。

3.導納的虛部稱為電納 (susceptance) 。

Definition of Admittance :導納的定義

電導 (conductance) 電納 (susceptance)

導納

Page 21: Chap. 9 Sinusoidal Steady-State Analysis

EX 9.7 Combining Impedances in Series and in Parallel

21

a) Construct the frequency-domain equivalent circuit.

b) Calculate the steady-state v, i1, i2, and i3 by the phasor method.

a)

b)

rad/s 200000ω 8 jLjω 5

1-j

Cjω

8 cos200,000t A

Page 22: Chap. 9 Sinusoidal Steady-State Analysis

Delta-to-Wye Transformations

22

阻抗之 Δ-Y 轉換公式與電阻之 Δ-Y 轉換關係相似。請參考 3.7 節及問題 3.61 。

Y

Y

Page 23: Chap. 9 Sinusoidal Steady-State Analysis

EX 9.8 Using a Delta-to-Wye Transform in the Frequency Domain

23

Page 24: Chap. 9 Sinusoidal Steady-State Analysis

EX 9.8 Using a Delta-to-Wye Transform (Contd.)

24

Page 25: Chap. 9 Sinusoidal Steady-State Analysis

9.7 The Source Transformations and Thévenin-Norton Equivalent Circuits

25

在頻域的戴維寧─諾頓等效電路之計算方法與電源轉換之觀念與純電阻電路相同,除了將等效電阻用一阻抗替代。

Page 26: Chap. 9 Sinusoidal Steady-State Analysis

EX 9.9 Performing Source Transformations

26

Page 27: Chap. 9 Sinusoidal Steady-State Analysis

EX 9.10 Finding a Thévenin Equivalent

27

KVL

Also,

Page 28: Chap. 9 Sinusoidal Steady-State Analysis

EX 9.10 Finding a Thévenin Equivalent (Contd.)

28

Page 29: Chap. 9 Sinusoidal Steady-State Analysis

9.8 The Node-Voltage Method

29

EX 9.11 Using the Node-Voltage Method in the Freq. Domain

節點 1 :

節點 2 :

控制變數:

節點 1 :

節點 2 :

Page 30: Chap. 9 Sinusoidal Steady-State Analysis

9.9 The Mesh-Current Method

30

EX 9.12 Using the Mesh-Current Method in the Freq. Domain

網目 1 :

網目 2 :

控制變數:

網目 1 :

網目 2 :

Page 31: Chap. 9 Sinusoidal Steady-State Analysis

9.10 The Transformer

31

The Analysis of a Linear Transformer Circuit

一次繞組 (primary winding) 連接至電源端二次繞組 (secondary winding) 連接至負載端

一次繞組自感值 (L1)二次繞組自感值 (L2)

互感值 (M)

一次繞組電阻值 (R1)二次繞組電阻值 (R2)

Let

阻抗 Zab 與變壓器之磁極性無關

Page 32: Chap. 9 Sinusoidal Steady-State Analysis

Reflected Impedance

32

反射阻抗 (reflected impedance, Zr) :變壓器二次側繞組及負載阻抗反射到一次側之等效阻抗

22 ZZ 222

22

Z

Mωr

線性變壓器將二次側自阻抗的共軛值反射至一次側,且乘上一常數倍。

Page 33: Chap. 9 Sinusoidal Steady-State Analysis

EX 9.13 Analyzing a Linear Transformer (Frequency Domain)

33

The parameters of a certain linear transformer are R1 = 200 , R2 = 100 ,

L1 = 9 H, L2 = 4 H, and k = 0.5. The transformer couples an impedance

consisting of an 800 resistor in series with a 1 µF capacitor to a sinusoidal voltage source. The 300 V (rms) source has an internal impedance of 500 + j 100 and a frequency of 400 rad/s.

Page 34: Chap. 9 Sinusoidal Steady-State Analysis

EX 9.13 Analyzing a Linear Transformer (Contd.)

34

Open circuit:

c

dThevenin’s Equiv.

Page 35: Chap. 9 Sinusoidal Steady-State Analysis

9.11 The Ideal Transformer

35

Exploring Limiting Values

理想變壓器 (ideal transformer) 的特性:1.耦合係數 k = 1 。2.每一線圈的自感值為無限大 (L1 = L2 = ∞) 。3.因寄生電阻產生之線圈損失可忽略不計。

Page 36: Chap. 9 Sinusoidal Steady-State Analysis

Exploring Limiting Values (Contd.)

36

2

2

1

2

1

N

N

L

L1k

同理

LL jXRRN

NRZ

2

2

2

11ab

Reflected Impedance

理想變壓器:1.各線圈之每匝伏特數之 絕對值相等,即

2. 各線圈之安培 -匝數之 絕對值相等,即

Terminal Behavior of the ideal transformer

Page 37: Chap. 9 Sinusoidal Steady-State Analysis

Determining the Voltage and Current Ratios

37

&

理想變壓器的電壓關係

理想變壓器的電流關係

Page 38: Chap. 9 Sinusoidal Steady-State Analysis

Determining the Polarity of the Voltage and Current Ratios

38

理想變壓器的黑點規則 (Dot Convention)

1.當線圈電壓 V1 及 V2 在黑點端同為正或負時, 採正號,否則採負號。2. 當線圈電流 I1 及 I2 同為流入或流出黑點端時, 採負號,否則採正號。

Page 39: Chap. 9 Sinusoidal Steady-State Analysis

Three ways to show the Turns Ratio

39

匝數比 (Turns Ratio):

For a = 5

( 注意:其他書籍或領域定義為 N1:N2)

Page 40: Chap. 9 Sinusoidal Steady-State Analysis

EX 9.14 Analyzing an Ideal Transformer Ckt. (Frequency Domain)

40

If vg = 2500 cos 400t V, find the steady-state expressions for (a) i1 ; (b) v1 ; (c) i2 ; and (d) v2 .

a)

rad/s 400

&

Also,

Page 41: Chap. 9 Sinusoidal Steady-State Analysis

EX 9.14 (Contd.)

41

c)

d)

b)

Page 42: Chap. 9 Sinusoidal Steady-State Analysis

The Use of an Ideal Transformer for Impedance Matching

42

將理想變壓器二次側負載阻抗反射至一次側時,須乘上 1/a2 。

Page 43: Chap. 9 Sinusoidal Steady-State Analysis

9.12 Phasor Diagrams

43

A graphic representation of phasors.

The complex number −7 − j 3.

A phasor diagram shows the magnitude and phase angle of each phasor quantity in the complex-number plane.

Phase angles are measured counterclockwise from the positive real axis, and magnitudes are measured from theorigin of the axes.

Two different magnitude scales are necessary, one for currents and one for voltages.

Page 44: Chap. 9 Sinusoidal Steady-State Analysis

EX 9.15 Using Phasor Diagrams to Analyze a Circuit

44

Find the value of R that will cause the current through that resistor, iR , to lag the source current, is , by 45◦ when = 5 krad/s.

By KCLΩ3

1 31 R /R

Page 45: Chap. 9 Sinusoidal Steady-State Analysis

EX 9.16 Analyzing Capacitive Loading Effects

45

Use phasor diagrams to explore the effect of adding a capacitor across the terminals of the load on the amplitude of Vs if we adjust Vs so that the amplitude of VL remains constant.

Utility companies use this technique to control the voltage drop on their lines.

Page 46: Chap. 9 Sinusoidal Steady-State Analysis

EX 9.16 Analyzing Capacitive Loading Effects (Contd.)

46