Top Banner
Unsupervised classification and spectral unmixing for sub-pixel labelling A.Villa ,,, J.Chanussot , J.A. Benediktsson , C.Jutten GIPSA-lab, Signal & Image Dept., Grenoble Institute of Technology, France. Faculty of Electrical and Computer Engineering, University of Iceland, Iceland. Aresys, Politecnico di Milano, Italy. IEEE IGARSS 2011 Vancouver, Canada - 2011
44
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: chanussot.pdf

Unsupervised classification and spectral unmixing for sub-pixel labelling

A.Villa?,�,†, J.Chanussot?, J.A. Benediktsson�, C.Jutten?

?GIPSA-lab, Signal & Image Dept., Grenoble Institute of Technology, France.�Faculty of Electrical and Computer Engineering, University of Iceland, Iceland.

† Aresys, Politecnico di Milano, Italy.

IEEE IGARSS 2011Vancouver, Canada - 2011

Page 2: chanussot.pdf

A new approach to classification Experiments Conclusions

Hyperspectral Images

Widely used in remote sensing:

λ

VIS0.4 μm

NIR2.4 μm

- Trees- Grass

√Wide spectral range and largenumber of wavelengths

√Very high spectral resolution

× Tradeoff between spectral andspatial resolution

Jocelyn Chanussot Gipsa-Lab 2 / 21

Page 3: chanussot.pdf

A new approach to classification Experiments Conclusions

Challenges

Low spatial resolution → appearance of mixed pixels

Pure pixel: 100% grass

Mixed pixel: 70% metal sheet30% grass

• Common in hyperspectral images

• Traditional classifiers inadequate,partially addressed by mixed pixeltechniques

• Critical for land cover mapping

Joint use (full + mixed techniques) desirable, but little investigated[Wang and Jia, 2010].

Jocelyn Chanussot Gipsa-Lab 3 / 21

Page 4: chanussot.pdf

A new approach to classification Experiments Conclusions

Challenges

Low spatial resolution → appearance of mixed pixels

Pure pixel: 100% grass

Mixed pixel: 70% metal sheet30% grass

• Common in hyperspectral images

• Traditional classifiers inadequate,partially addressed by mixed pixeltechniques

• Critical for land cover mapping

Incorporation of spectral unmixing in the classification process:

• Does it provide accuracy improvement?• Is it possible to improve the classification map spatial resolution?

Jocelyn Chanussot Gipsa-Lab 3 / 21

Page 5: chanussot.pdf

A new approach to classification Experiments Conclusions

1 A new approach to classification

2 Experiments

3 Conclusions

Jocelyn Chanussot Gipsa-Lab 4 / 21

Page 6: chanussot.pdf

A new approach to classification Experiments Conclusions

Context

Traditional techniques neglect sub-pixel and spatial information

Additional information provided by unmixing not fully exploited

Pure pixel: 100% grass

Mixed pixel: 70% metal sheet30% grass

1

1

1 1

10.6

0.6

0.9 0.8

0.8

0.9

0.9

0.6

Original image Classification Unmixing Finer resolution?

How to jointly use full and mixed pixel techniques?

Jocelyn Chanussot Gipsa-Lab 5 / 21

Page 7: chanussot.pdf

A new approach to classification Experiments Conclusions

Proposed Approach

Low resolutionhyperpspectral data

Spatial regularization

Abundances maps

"Upsampled" classification map

Classes identification

Final map

Unmixing

Classification

Jocelyn Chanussot Gipsa-Lab 6 / 21

Page 8: chanussot.pdf

A new approach to classification Experiments Conclusions

Proposed Approach

1. Abundances fractions are computed from a HSI

Low resolutionhyperpspectral data

Spatial regularization

Abundances maps

"Upsampled" classification map

Classes identification

Final map

Step 1

Step 2

Step 1:

Pure pixel: 100% grass

Mixed pixel: 70% metal sheet30% grass

Step 2:

1

1

1 1

10.6

0.6

0.9 0.8

0.8

0.9

0.9

0.6

Jocelyn Chanussot Gipsa-Lab 7 / 21

Page 9: chanussot.pdf

A new approach to classification Experiments Conclusions

The proposed approach

M = Mixed pixel

M

M M

M

M

M

M

M

Proposed methodThe abundances computation is in twosteps, to take the spatial information intoaccount:

1. Pixels with an abundance over acertain threshold are considered ’pure’

2. Abundances of ’mixed’ pixels arecomputed by selecting as endmemberspixels spatially close

Jocelyn Chanussot Gipsa-Lab 8 / 21

Page 10: chanussot.pdf

A new approach to classification Experiments Conclusions

The proposed approach

M = Mixed pixel

Proposed methodThe abundances computation is in twosteps, to take the spatial information intoaccount:

1. Pixels with an abundance over acertain threshold are considered ’pure’

2. Abundances of ’mixed’ pixels arecomputed by selecting as endmemberspixels spatially close

Jocelyn Chanussot Gipsa-Lab 8 / 21

Page 11: chanussot.pdf

A new approach to classification Experiments Conclusions

Proposed Approach

2. Creation of a finer classification map

Low resolutionhyperpspectral data

Spatial regularization

Abundances maps

"Upsampled" classification map

Classes identification

Final map

Step 3

Step 2

Step 2:

1

1

1 1

10.6

0.6

0.9 0.8

0.8

0.9

0.9

0.6

Step 3:

Jocelyn Chanussot Gipsa-Lab 9 / 21

Page 12: chanussot.pdf

A new approach to classification Experiments Conclusions

Proposed Approach

3. Final spatial regularization

Low resolutionhyperpspectral data

Spatial regularization

Abundances maps

"Upsampled" classification map

Classes identification

Final map

Step 3

Step 4

Step 3:

Step 4:

Jocelyn Chanussot Gipsa-Lab 10 / 21

Page 13: chanussot.pdf

A new approach to classification Experiments Conclusions

Spatial regularization

Criterion: minimization of the total perimeter of the connected areas (e.g.,belonging to the same class)

M

M M

M

M

M

M

M0,60,4

0,60,4

0,80,2

0,5 0,3 0,2

0,90,1

0,90,1

0,70,3

0,70,3

0,60,4

0,60,4

0,80,2

0,5 0,3 0,2

0,90,1

0,90,1

0,70,3

0,70,3

0,90,1

0,90,1

0,90,1

0,90,1

M

M M

M

M

M

M

M0,60,4

0,60,4

0,80,2

0,5 0,3 0,2

0,90,1

0,90,1

0,70,3

0,70,3

0,60,4

0,60,4

0,80,2

0,5 0,3 0,2

0,90,1

0,90,1

0,70,3

0,70,3

0,90,1

0,90,1

0,90,1

0,90,1

0,60,4

0,80,2

0,90,1

0,90,1

0,70,3

0,90,1

0,90,1

0,90,1

0,90,1

Criterion not satisfied Criterion satisfied

Jocelyn Chanussot Gipsa-Lab 11 / 21

Page 14: chanussot.pdf

A new approach to classification Experiments Conclusions

Spectral unmixing based approach [Villaet al., 2010]

1. VCA for class retrieval

2. FCLS for abundance determination

3. Simulated Annealing for spatialregularization

Novelties introduced:

1. Retrieve classes with unsupervisedclustering(→ more robust to outliers)

2. Include spatial information(→ use more accurateendmembers)

Jocelyn Chanussot Gipsa-Lab 12 / 21

Page 15: chanussot.pdf

A new approach to classification Experiments Conclusions

VCA vs. K-MEANS

0 1000 2000 3000 4000 5000 60000

2000

40000

1000

2000

3000

4000

5000

6000

0 1000 2000 3000 4000 5000 60000

2000

40000

1000

2000

3000

4000

5000

6000

VCA K-MEANS

Jocelyn Chanussot Gipsa-Lab 13 / 21

Page 16: chanussot.pdf

A new approach to classification Experiments Conclusions

1 A new approach to classification

2 Experiments

3 Conclusions

Jocelyn Chanussot Gipsa-Lab 14 / 21

Page 17: chanussot.pdf

A new approach to classification Experiments Conclusions

How to verify the results?

Proposedapproach

Final map(sub-pixel precision)

Decrease originalresolution

Jocelyn Chanussot Gipsa-Lab 15 / 21

Page 18: chanussot.pdf

A new approach to classification Experiments Conclusions

Experiments on real data

ROSIS University data set

• Classification of a metal sheet roof(120×90 pixels)

• 1.3 m spatial resolution, 103spectral bands.

• Spatial resolution of the originaldata degraded of a factor 3

AISA data set

• 400×500 pixels area, six classes ofinterest

• 6 m spatial resolution, 252 spectralbands

• Spatial resolution of the original datadegraded of a factor 5

Jocelyn Chanussot Gipsa-Lab 16 / 21

Page 19: chanussot.pdf

A new approach to classification Experiments Conclusions

Real data sets

ROSIS data set:

Original Image K-means (93.75%) VCA+SU (96.95%) KM+SU (95.89%)

Jocelyn Chanussot Gipsa-Lab 17 / 21

Page 20: chanussot.pdf

A new approach to classification Experiments Conclusions

Real data set

AISA data set:

K-means (51.61%) VCA+SU (59.69%) KM+SU (75.72%)

Jocelyn Chanussot Gipsa-Lab 18 / 21

Page 21: chanussot.pdf

A new approach to classification Experiments Conclusions

1 A new approach to classification

2 Experiments

3 Conclusions

Jocelyn Chanussot Gipsa-Lab 19 / 21

Page 22: chanussot.pdf

A new approach to classification Experiments Conclusions

Conclusions and Perspectives

New method to improve spatial resolution of thematic maps:

• Unsupervised clustering to define classes• Integration of spatial information to locally model abundances• Simulated Annealing proposed for spatial regularization

Clustering less sensitive to extreme pixels, VCA better in highly mixed scenarios

Next step: Incorporate spectral variability of the classes

Jocelyn Chanussot Gipsa-Lab 20 / 21

Page 23: chanussot.pdf

A new approach to classification Experiments Conclusions

Unsupervised classification and spectral unmixing for sub-pixel labelling

A.Villa?,�,†, J.Chanussot?, J.A. Benediktsson�, C.Jutten?

?GIPSA-lab, Signal & Image Dept., Grenoble Institute of Technology, France.�Faculty of Electrical and Computer Engineering, University of Iceland, Iceland.

† Aresys, Politecnico di Milano, Italy.

IEEE IGARSS 2011Vancouver, Canada - 2011

Jocelyn Chanussot Gipsa-Lab 21 / 21

Page 24: chanussot.pdf

A new approach to classification Experiments Conclusions

Challenges

Hyperspectral images issues:

1 Curse of dimensionality2 Exploitation of contextual information3 Presence of mixed pixels

Pure pixel: 100% grass

Mixed pixel: 70% metal sheet30% grass

• Common in hyperspectral images

• Traditional classifiers inadequate

• Usually not considered forclassification!

Jocelyn Chanussot Gipsa-Lab 22 / 21

Page 25: chanussot.pdf

A new approach to classification Experiments Conclusions

Context

Traditional approaches to image analysis are full pixel and mixed pixel techniques

• Full pixel techniques are traditional classification algorithms• Mixed pixel techniques are spectral unmixing, soft classification, . . .

Joint use is desirable, but little investigated [Wang and Jia, 2010].

Incorporation of spectral unmixing in the classification process:

• Does it provide accuracy improvement?• Is it possible to improve the classification map spatial resolution?

Jocelyn Chanussot Gipsa-Lab 23 / 21

Page 26: chanussot.pdf

A new approach to classification Experiments Conclusions

Linear Spectral Unmixing

Abundances estimation through spectral unmixing:• Goal: find extreme pixels (endmembers) that can be used to "unmix" other pixels.• Each "mixed" pixel is a combination of endmember fractional abundances.

Jocelyn Chanussot Gipsa-Lab 24 / 21

Page 27: chanussot.pdf

A new approach to classification Experiments Conclusions

Linear Spectral Unmixing

Abundances estimation through spectral unmixing:• Goal: find extreme pixels (endmembers) that can be used to "unmix" other pixels.• Each "mixed" pixel is a combination of endmember fractional abundances.

Jocelyn Chanussot Gipsa-Lab 24 / 21

Page 28: chanussot.pdf

A new approach to classification Experiments Conclusions

Context

Traditional techniques neglect information

Additional information provided by unmixing not fully exploited

Pure pixel: 100% grass

Mixed pixel: 70% metal sheet30% grass

1

1

1 1

10.6

0.6

0.9 0.8

0.8

0.9

0.9

0.6

Original image Classification Unmixing Finer resolution?

How to jointly use full and mixed pixel techniques?

Jocelyn Chanussot Gipsa-Lab 25 / 21

Page 29: chanussot.pdf

A new approach to classification Experiments Conclusions

The proposed approach?

M = Mixed pixel

M

M M

M

M

M

M

M

Proposed methodWe propose a technique in four steps:

1. Preliminary classification withprobabilistic classifier (SVM)

2. Choose suitable endmembercandidates and perform unmixing

3. Split every pixel into n sub-pixels, andassign them to a class

4. Perform spatial regularization in orderto correctly locate sub-pixels

?A. Villa, J. Chanussot, J.A. Benediktsson, C. Jutten, "Spectral Unmixing for the Classification of Hyperspectral Images

at a Finer Spatial Resolution", IEEE J. Sel. Topics Sign. Proc., vol. 5, n. 3, 2011

Jocelyn Chanussot Gipsa-Lab 26 / 21

Page 30: chanussot.pdf

A new approach to classification Experiments Conclusions

The proposed approach?

M = Mixed pixel

Proposed methodWe propose a technique in four steps:

1. Preliminary classification withprobabilistic classifier (SVM)

2. Choose suitable endmembercandidates and perform unmixing

3. Split every pixel into n sub-pixels, andassign them to a class

4. Perform spatial regularization in orderto correctly locate sub-pixels

?A. Villa, J. Chanussot, J.A. Benediktsson, C. Jutten, "Spectral Unmixing for the Classification of Hyperspectral Images

at a Finer Spatial Resolution", IEEE J. Sel. Topics Sign. Proc., vol. 5, n. 3, 2011

Jocelyn Chanussot Gipsa-Lab 26 / 21

Page 31: chanussot.pdf

A new approach to classification Experiments Conclusions

The proposed approach?

M

M M

M

M

M

M

M0,60,4

0,60,4

0,80,2

0,5 0,3 0,2

0,90,1

0,90,1

0,70,3

0,70,3

0,60,4

0,60,4

0,80,2

0,5 0,3 0,2

0,90,1

0,90,1

0,70,3

0,70,3

0,90,1

0,90,1

0,90,1

0,90,1

Proposed methodWe propose a technique in four steps:

1. Preliminary classification withprobabilistic classifier (SVM)

2. Choose suitable endmembercandidates and perform unmixing

3. Split every pixel into n sub-pixels, andassign them to a class

4. Perform spatial regularization in orderto correctly locate sub-pixels

?A. Villa, J. Chanussot, J.A. Benediktsson, C. Jutten, "Spectral Unmixing for the Classification of Hyperspectral Images

at a Finer Spatial Resolution", IEEE J. Sel. Topics Sign. Proc., vol. 5, n. 3, 2011

Jocelyn Chanussot Gipsa-Lab 26 / 21

Page 32: chanussot.pdf

A new approach to classification Experiments Conclusions

The proposed approach?

M

M M

M

M

M

M

M0,60,4

0,60,4

0,80,2

0,5 0,3 0,2

0,90,1

0,90,1

0,70,3

0,70,3

0,60,4

0,60,4

0,80,2

0,5 0,3 0,2

0,90,1

0,90,1

0,70,3

0,70,3

0,90,1

0,90,1

0,90,1

0,90,1

0,60,4

0,80,2

0,90,1

0,90,1

0,70,3

0,90,1

0,90,1

0,90,1

0,90,1

Proposed methodWe propose a technique in four steps:

1. Preliminary classification withprobabilistic classifier (SVM)

2. Choose suitable endmembercandidates and perform unmixing

3. Split every pixel into n sub-pixels, andassign them to a class

4. Perform spatial regularization in orderto correctly locate sub-pixels

?A. Villa, J. Chanussot, J.A. Benediktsson, C. Jutten, "Spectral Unmixing for the Classification of Hyperspectral Images

at a Finer Spatial Resolution", IEEE J. Sel. Topics Sign. Proc., vol. 5, n. 3, 2011

Jocelyn Chanussot Gipsa-Lab 26 / 21

Page 33: chanussot.pdf

A new approach to classification Experiments Conclusions

Simulated Annealing

Minimize a given Cost Function introducingrandom perturbations:

• decreases of the CF are always accepted• increases of the CF accepted with a probabilityinversely proportional to the degradation

• probability of ’bad solutions’ decreases as thesearch continues

Simulated Annealing optimization avoids local minima leading to global optimalsolution

Jocelyn Chanussot Gipsa-Lab 27 / 21

Page 34: chanussot.pdf

A new approach to classification Experiments Conclusions

Simulated Annealing

Cost function to be minimized: total perimeter of the connected areas (e.g.,belonging to the same class)

M

M M

M

M

M

M

M0,60,4

0,60,4

0,80,2

0,5 0,3 0,2

0,90,1

0,90,1

0,70,3

0,70,3

0,60,4

0,60,4

0,80,2

0,90,1

0,90,1

0,70,3

0,70,3

0,90,1

0,90,1

0,90,1

0,90,1

0,60,4

0,80,2

0,90,1

0,90,1

0,70,3

0,90,1

0,90,1

0,90,1

0,90,1

M

M M

M

M

M

M

M0,60,4

0,60,4

0,80,2

0,5 0,3 0,2

0,90,1

0,90,1

0,70,3

0,70,3

0,60,4

0,60,4

0,80,2

0,90,1

0,90,1

0,70,3

0,70,3

0,90,1

0,90,1

0,90,1

0,90,1

0,60,4

0,80,2

0,90,1

0,90,1

0,70,3

0,90,1

0,90,1

0,90,1

0,90,1

Cost function not optimized Cost function optimized

Jocelyn Chanussot Gipsa-Lab 28 / 21

Page 35: chanussot.pdf

A new approach to classification Experiments Conclusions

Simulated Annealing

M

M M

M

M

M

M

M0,60,4

0,60,4

0,80,2

0,5 0,3 0,2

0,90,1

0,90,1

0,70,3

0,70,3

0,60,4

0,60,4

0,80,2

0,90,1

0,90,1

0,70,3

0,70,3

0,90,1

0,90,1

0,90,1

0,90,1

0,60,4

0,80,2

0,90,1

0,90,1

0,70,3

0,90,1

0,90,1

0,90,1

0,90,1

M

M M

M

M

M

M

M0,60,4

0,60,4

0,80,2

0,5 0,3 0,2

0,90,1

0,90,1

0,70,3

0,70,3

0,60,4

0,60,4

0,80,2

0,90,1

0,90,1

0,70,3

0,70,3

0,90,1

0,90,1

0,90,1

0,90,1

0,60,4

0,80,2

0,90,1

0,90,1

0,70,3

0,90,1

0,90,1

0,90,1

0,90,1

Initial condition Iteration 1

M

M M

M

M

M

M

M0,60,4

0,60,4

0,80,2

0,5 0,3 0,2

0,90,1

0,90,1

0,70,3

0,70,3

0,60,4

0,60,4

0,80,2

0,90,1

0,90,1

0,70,3

0,70,3

0,90,1

0,90,1

0,90,1

0,90,1

0,60,4

0,80,2

0,90,1

0,90,1

0,70,3

0,90,1

0,90,1

0,90,1

0,90,1

M

M M

M

M

M

M

M0,60,4

0,60,4

0,80,2

0,5 0,3 0,2

0,90,1

0,90,1

0,70,3

0,70,3

0,60,4

0,60,4

0,80,2

0,90,1

0,90,1

0,70,3

0,70,3

0,90,1

0,90,1

0,90,1

0,90,1

0,60,4

0,80,2

0,90,1

0,90,1

0,70,3

0,90,1

0,90,1

0,90,1

0,90,1

Iteration n Final result

Jocelyn Chanussot Gipsa-Lab 28 / 21

Page 36: chanussot.pdf

A new approach to classification Experiments Conclusions

Simulated Annealing

Cost function to be minimized: total perimeter of the connected areas (e.g.,belonging to the same class)

M

M M

M

M

M

M

M0,60,4

0,60,4

0,80,2

0,5 0,3 0,2

0,90,1

0,90,1

0,70,3

0,70,3

0,60,4

0,60,4

0,80,2

0,5 0,3 0,2

0,90,1

0,90,1

0,70,3

0,70,3

0,90,1

0,90,1

0,90,1

0,90,1

M

M M

M

M

M

M

M0,60,4

0,60,4

0,80,2

0,5 0,3 0,2

0,90,1

0,90,1

0,70,3

0,70,3

0,60,4

0,60,4

0,80,2

0,5 0,3 0,2

0,90,1

0,90,1

0,70,3

0,70,3

0,90,1

0,90,1

0,90,1

0,90,1

0,60,4

0,80,2

0,90,1

0,90,1

0,70,3

0,90,1

0,90,1

0,90,1

0,90,1

Cost function not optimized Minimum cost function

Jocelyn Chanussot Gipsa-Lab 28 / 21

Page 37: chanussot.pdf

A new approach to classification Experiments Conclusions

Experiment on real data

AVIRIS Indian Pine data set• (145×145 pixels, 220 bands), 16 classes of interest• Spatial resolution of the original data degraded of a factor 2• 10% of the labelled samples used as training set

AVIRIS Hekla data set• (180×180 pixels, 157 bands), 9 classes of interest• Spatial resolution of the original data degraded of a factor 2• 15% of the labelled samples used as training set

Comparison with SVM 1vs1, RBF kernel

20 40 60 80 100 120 140

20

40

60

80

100

120

140

20 40 60 80 100 120 140 160 180

20

40

60

80

100

120

140

160

180

Indian Pine GT Hekla GT

Jocelyn Chanussot Gipsa-Lab 29 / 21

Page 38: chanussot.pdf

A new approach to classification Experiments Conclusions

Evaluation of the results

Jocelyn Chanussot Gipsa-Lab 30 / 21

Page 39: chanussot.pdf

A new approach to classification Experiments Conclusions

Evaluation of the results

Jocelyn Chanussot Gipsa-Lab 30 / 21

Page 40: chanussot.pdf

A new approach to classification Experiments Conclusions

Evaluation of the results

Jocelyn Chanussot Gipsa-Lab 30 / 21

Page 41: chanussot.pdf

A new approach to classification Experiments Conclusions

AVIRIS Indian Pine

20 40 60 80 100 120 140

20

40

60

80

100

120

140

10 20 30 40 50 60 70

10

20

30

40

50

60

70

Ground truth SVM map (OA = 72.31%)

20 40 60 80 100 120 140

20

40

60

80

100

120

140

20 40 60 80 100 120 140

20

40

60

80

100

120

140

Proposed, before SA (OA = 89.82%) Proposed, final map (OA = 91.10%)

Jocelyn Chanussot Gipsa-Lab 31 / 21

Page 42: chanussot.pdf

A new approach to classification Experiments Conclusions

AVIRIS Hekla

10 20 30 40 50 60 70 80 90

10

20

30

40

50

60

70

80

90

10 20 30 40 50 60 70 80 90

10

20

30

40

50

60

70

80

90

Low res. GT SVM map (OA = 69.19%)

20 40 60 80 100 120 140 160 180

20

40

60

80

100

120

140

160

18020 40 60 80 100 120 140 160 180

20

40

60

80

100

120

140

160

180

Proposed, before SA (OA = 78.90%) Proposed, final map (OA = 81.71%)

Jocelyn Chanussot Gipsa-Lab 32 / 21

Page 43: chanussot.pdf

A new approach to classification Experiments Conclusions

A robust method

0.6 0.65 0.7 0.75 0.8

70

75

80

85

90

Treshold Pure Pixels

Ove

rall

Acc

urac

y (%

)

AVIRIS Indian Pine (Complete)

Traditional SVM

Proposed Method

5 10 15 20

70

75

80

85

90

Number of ’candidates endmember’

Ove

rall

Acc

urac

y (%

)

AVIRIS Indian Pine (full data set)

Proposed method

Traditional SVM

0.6 0.65 0.7 0.75 0.868

70

72

74

76

78

80

82

Treshold Pure Pixels

Ove

rall

Acc

urac

y (%

)

AVIRIS Hekla

Proposed Method

Traditional SVM

5 10 15 2068

70

72

74

76

78

80

82

Number of ’candidates endmember’

Ove

rall

Acc

urac

y (%

)

AVIRIS Hekla

Jocelyn Chanussot Gipsa-Lab 33 / 21

Page 44: chanussot.pdf

A new approach to classification Experiments Conclusions

Conclusions and Perspectives

New method to improve spatial resolution of thematic maps:

• Spectral Unmixing considered to handle mixed pixels and abundances determination• Simulated Annealing proposed for spatial regularization

Better definition of spatial structures with respect to full pixel classifiers when theimage contains mixed pixels

Large quantitative improvement

Jocelyn Chanussot Gipsa-Lab 34 / 21